Tuning Evolutionary Algorithms
Overview and Comprehensive Introduction
— Extended Abstract —

Thomas Beielstein

Department of Computer Science, University of Dortmund, Germany
thomas.beielstein@udo.edu,
WWW home page:http://1sll-www.cs.uni-dortmund.de

1 Introduction

At present, it is intensely discussed which type of experimental research method-
ologies should be used to improve the acceptance and quality of evolutionary
algorithms (EAs). A broad spectrum of presentation techniques makes new re-
sults in evolutionary computation (EC) almost incomparable. Discussions and
sessions related to this subject took part during the congress on evolutionary
computation (CEC) and on the genetic and evolutionary computation confer-
ence (GECCO). In [1], Eiben and Jelasity list explicitely four problems, that
result from this situation:

the lack of a standardized test-functions, or benchmark problems,

— the usage of different performance measures,

the impreciseness of results, and therefore no clearly specified conclusions,
and

the lack of reproducibility of experiments.

EC shares these problems with other scientific disciplines. Solutions from these
other disciplines, that have been successfully applied for many years, might be
transferable to EC. Here we can mention: statistical design of experiments [2],
design of computational experiments to test heuristics [3,4], experimental de-
signs for simulation [5], or deterministic computer experiments [6].

We suggest to use techniques that are well known in statistics under the name
design of experiments (DOE) for many decades. In our approach, an experiment
consists of a problem and its related fitness function, an algorithm, and a quality
criterion: we will use design of experiments, regression analysis, and generalized
linear models, to improve algorithm performance. The main focus in this paper
lies on natural problem classes: its elements are problems that are based on
real-world optimization problems in contrast to artificial problem classes [1].

Thus, the approach presented here might be interesting for optimization prac-
titioners that are confronted with a complex real-world optimization problem in
a situation where only few preliminary investigations are possible to find good
parameter settings [7,8]. Kleijnen and Pala describe a competition, organized
by the Business Section of the Netherlands Society for Statistics and Operation

11 Thomas Beielstein

Research: Only 32 runs are permitted to obtain the maximum output for a given
simulation model by selecting the best combination of six inputs [9]. Further-
more, DOE is applicable a priory to tune different parameter settings of two
algorithms to provide a fair comparison.

The approach presented here can be used to solve the following tasks:

Investigation: Analyzing and tuning models and optimization criteria: i.e. what
are important parameters, what should be optimized?

Comparison: Comparing the performance of competing stochastic search al-
gorithms such as evolutionary algorithms, simulated annealing etc.

Conjecture: Understanding, further research, based on statistics and visual-
ization techniques

Quality: Improving the robustness of simulation runs.

Additionally, these methods can be used in other contexts to improve the op-
timization runs, i.e. to generate systematically feasible starting points that are
better than randomly generated initial points. Our approach has to be distin-
guished from the following approaches:

1. Classical design of experiments as used in industrial optimization and com-
puter experiments. Although experimental design is a sub-discipline within
mathematical statistics, its techniques must be adapted if applied to sim-
ulation models: Stochastic simulation as introduced in Eq. 3 uses pseudo-
random numbers. Since common or antithetic seeds can be used, the simula-
tion practitioner has much more control over the noise in the experiments [8].
Randomness is replaced by pseudo-randommness. Therefore, we can control
the source of variability. The different simulation runs for one specific factor
combination can be performed under exactly the same conditions. Blocking
and randomization, important techniques to reduce the systematic influence
of different experimental conditions, are unnecessary in simulation. The ran-
dom number seed is the only random element in a random simulation model.

2. The Meta-EA approach, i.e. [10, 11], might locate good parameter sets with-
out providing much insight as how sensitive performance is to parameter
changes.

3. Schaffer’s study of control parameters of GAs [12]. Schaffer proposes a com-
plete factorial design experiment that requires 8,400 run configurations, each
configuration was run to 10,000 fitness function evaluations. In contrast to
this, we propose an approach that requires a small amount of fitness function
evaluations only. Furthermore, our approach takes the underlying problem
instance into account and does not draw any conclusions that are problem
independent.

4. In contrast to Eiben et al. [13], our approach is based on parameter tun-
ing, and not on parameter control. Parameter control deals with parameter
values that are changed during the optimization run. The assumption that
specific problems require specific EA parameter settings is common to both
approaches [14].

Tuning EAs I

5. Considering the exemplary study of simulated annealing by David Johnson’s
group [15,16], our approach is related to the discipline experimental algo-
rithmics [17]. Thus it can be added to the category ‘assessment of heuristics’
as classified in [18]. But in contrast to approaches from experimental algo-
rithmics, that provide methodologies for the design, implementation, and
performance analysis of computer programs for solving algorithmic prob-
lems, our goal is to provide methods for very complex real-world problems.

6. Empirical modeling of genetic algorithms as presented by Myers and Han-
cock [19]. Their methodology has a different goal than our approach: we are
trying to tune an evolutionary algorithm with the fewest amount of exper-
iments, whereas Myers and Hancock’s approach requires 129,600 program
runs.

7. Francois and Lavergne demonstrate the applicability of generalized linear
models to design evolutionary algorithms [20]. This approach is similar to
[19]. Again, data sets of size 1,000 or even more are necessary, although only
a simplified evolutionary algorithm with two parameters (Moses) is designed.

8. Sacks et al. model the deterministic output of a computer experiment as
the realization of a stochastic process [6]. This approach differs significantly
from our approach, the same applies to design and analysis of computer
experiment (DACE) methods [21].

Despite of the differences mentioned above, it might be beneficial to adapt some
of these well-established ideas from other fields of research to improve the ac-
ceptance and quality of evolutionary algorithms.

This paper is structured as follows: section 2 describes how evolutionary
algorithms can be treated as experiments. Evolution strategies (ES), as a special
class of evolutionary algorithms, and their parameterizations are introduced in
this section. How stochastic optimizers for complex real-world problems can
be compared is discussed in Sec. 3. DOE methods that are used to perform a
comparison of different simulation run configurations are presented in Section 5.
Finally, section 6 introduces the DOE-software package JEA and gives some
constructive examples.

The main contribution of this paper is to propose an answer to the complex
question: how to determine strategy-parameters for search algorithms that are
suitable to optimize efficiently and effectively real-world optimization problems?
Since the solution to this question requires the determination of a adequate
performance measure for algorithms, we are able to provide a partial answer to
the problems mentioned by Eiben and Jelasity.

2 Evolutionary Algorithms

2.1 EA as Experiments

The popularity of evolutionary algorithms has constantly increased in the last
decades, but there are many degrees of freedom when starting an optimiza-
tion run. The optimization of real-world problems requires good initial strategy-
parameters, since many real-world problems need high—dimensional inputs and

v Thomas Beielstein

Table 1. Fractional factorial 2j,® design. This design was used in [22] to tune a
multi criteria evolutionary algorithm for airfoil design optimization. The first column
shows the run configuration. Capital letters (A,B,C) and their combinations denote
population size, offspring-parent ratio, selection mechanism (age), and recombination
operators respectively. Columns 7-11 translates the DOE factor representation into the
corresponding ES parameter values, cp. Tab. 2. The remaining columns present results
y; from 5 simulation runs with different random seeds 7.

pi |A B C D=F =|u r K Ri Ry |vi Y2 ys Ya Ys
AB AC
1 - - - 4+ 4+ |2 2 1 GI GI (0 .07 .0 .07 .06
2 + - - - = |5 2 1 GD GD (.06 .0 .07 .0 .09
3 - + — — + 2 5 1 GD GI |.0 .0 .0 16 .0
4 + + - 4+ = |5 5 1 GI GD (.18 .35 .67 .14 .03
5 e T R 2 250 GI GD |[.09 .0 .19 .08 .01
6 + — + - + 5 2 250 GD GI |[.11 .17 .02 .1 .15
7 - + + — — 2 5 250 GD GD |.18 .0 .04 .21 .45
8 + + + - + 5 5 250 GD GI [.38 .41 .01 .24 .21

are computationally expensive. Therefore only few optimization runs are pos-
sible, that should be performed with ‘good’ strategy parameters. Optimization
practitioners are interested in the development of models to perform the opti-
mization with a minimum amount of simulation runs. DOE techniques can be
applied to optimization algorithms such as evolutionary algorithms, considering
the run of an algorithm as an experiment, gaining insightful conclusions into the
behavior of the algorithm and the interaction and significance of its parameters.
The first two steps in this analysis are called screening and modeling. In a third
step, we can use RSM to improve significant parameter settings (optimization).
Therefore, DOE methods, combined with response surface methods, might lead
to an improved EA design. From the viewpoint of an experimenter, factors can
be defined as parameters, variables, and behavioral relationships that can be
changed during an experiment. How factors can be interpreted from a statistical
point of view will be discussed in Sec. 5.

Generally, there are two different factors that influence the behavior of an
optimization algorithm: problem specific factors, i.e. the fitness function, and
algorithm specific factors, i.e. the population size. Latter can be divided into
endogenous and exogenous factors. Exogenous factors, or ‘exogenous strategy
parameters’ as they are called in [23], are kept constant during the optimization
run, whereas endogenous strategy parameters, i.e. step-widths, are modified by
the algorithms during the run.

2.2 Evolution Strategies: Algorithm Specific Factors

The methodology presented in this paper leads to results that are tailored for
one specific algorithm-optimization combination. It is transferable to any kind

Tuning EAs A%

of EA design or even any parameterizable search stochastic algorithm such as
simulated annealing, tabu search or genetic algorithms. To give an example,
we will analyze evolution strategies. Evolution strategies build a special class
of EAs. Beyer and Schwefel provide a comprehensive introduction to evolution
strategies [23].

An ES-algorithm run can be described briefly as follows (see Fig. 1): The
parental population is initialized at time (generation) ¢ = 0. X offsprings are
generated in the following manner: a parent family of size p is selected randomly
from the parent population. Recombination is applied to the object variables
and the strategy parameters. The mutation operator is applied to the resulting
offspring vector. Selection is performed to generate the next parent population.
A termination criterion is tested. If this criterion is not fulfilled, the generation
counter (t) is incremented and the process continues with the generation of the
next offspring generation.

Initialize and Evaluate Population

Terminate? Select Mating Partners
Environmental
Selection Recombine
Evaluate Mutate

Fig. 1. Evolutionary algorithms.

In the following, we extend the classical (u/p T) ES notation to an experi-
mental design vector representation. We consider the following eleven parameters
or control variables:

1. Number of parent individuals: p

2. Number of offspring individuals: A. Based on p and A, we can define the
offspring—parent ratio: v := A/p.

3. Selection mechanism: Plus-strategies (u + A), and comma-strategies (s, A)
can be generalized by introducing the parameter k that defines the maximum

VI Thomas Beielstein

age (in generations) of an individual. If & is set to 1, we obtain the comma-
strategy, if k equals +00, we model the plus-strategy. This representation
will be used throughout the rest of this article.

Number of standard deviations: n,

Global mutation parameter: 7

Individual mutation parameter: 7;

Mixing number: p, the size of the parent family that is chosen from the
parent pool of size u to create A offsprings.

8. Recombination operator for object variables: R;. We consider global inter-
mediate GI, global discrete GD, local intermediate LI, and local discrete
LD recombination. Discrete (dominant) recombination is recommended for
the object variables.

9. Recombination operator for strategy variables: Ry . Beyer and Schwefel rec-
ommend intermediate recombination to reduce large fluctuations in the evo-
lutionary dynamics [23].

10. Random seed: rg.
11. Total number of iterations: Ni.¢.

NOo Ot

The following vector notation provides a very compact description of an ES
parameter design [23,24].:

DEs :(:uaVaHano'aToaTiapaRlaRQ,TOaNtOt),' (1)

This representation will be used throughout the rest of this article and is sum-
marized in Tab. 2, which also shows typical parameter settings. The exogenous
strategy parameters are kept constant during one optimization run. They are
summarized in Table 2. A vector notation can be used for the optimization and
problem specific parameters such as the fitness function f, the problem dimen-
sion D, the number of repeats for each scenario Ne,), etc.

d: (f7D7nmaX7Nexp,Nreeval,...),. (2)

A simulation run configuration consists of the problem specific design con-
figuration, e.g. represented by d as shown in Eq. 2 and the parameter design
configuration p, e.g. as shown in Eq. 1.

In the next section, we will discuss how different algorithms can be compared.
Based on these considerations we are able to apply DOE methods to improve
the behavior of the ES for a given optimization configuration. This task can be
interpreted as the determination of optimal values of p* for a given problem
design d or as an analysis of a regression meta-model [25].

3 Comparing Stochastic Optimizers

3.1 Performance Measures

Before we can compare two algorithms, we have to specify a concrete measure
for their comparison. Unfortunately, there are nearly as many different measures

Tuning EAs

Table 2. DOE parameter for ES.

VII

| Symbol | Parameter

|Typical Values

m number of parent individuals 10...100

v = \/p |offspring-parent ratio 5...7

No number of standard deviations 1...D

To global mutation parameter 1/v/ 2\/5

Ti individual mutation parameter 1/v2D

K age 1...00

p mixing number 2

R, recombination operator for object|{discrete}
variables

R recombination operator for strategy|{intermediate}
variables

Niot total number of fitness function eval-|5 - 102
uations

for the goodness of an algorithm as optimization algorithms, i.e. the quality of
the best solution, the percentage of runs terminated successfully, the number
of iterations or time steps required to obtain the results, the robustness of the
algorithm, or the distance between the best and easily found solutions. The per-
formance measure under consideration should make the comparison well-defined,
algorithmic, reproducible and fair. A good overview over the experimental anal-
ysis of algorithms is given in [26]. To demonstrate that there is no canonical
measure, we will list some typical measures:

The mean best fitness can be defined as the average value of the best fitness
values found at termination for one specific run configuration. Considering
the quality of the best solution, it is a common practice to show a graph
of the solution quality versus time. A model based on this measure will be
discussed in Sec. 5.6.

If the optimal solution is known, the percentage of run configurations termi-
nated successfully (success rate) can be used to measure the performance of
an algorithm [27]. Eiben et al. discuss the relationship between success rate
and mean best fitness [1]. We will present a model based on the success rate
in Sec. 5.6.

Schaffer proposes the following technique to determine the number of fitness
function evaluations at which to compare different optimization algorithms:
choose a point at which some, but not all run configurations, are doing well.
‘Doing well’ is defined as at least 10% of the run configurations located the
optimum at least 50% of the time [12].

Time-dependent measures such as the performance profile can be used to
measure the computational effort [28]. A measure to determine the quality-
effort relationship can be defined as the ratio of time to produce a solution
within 5 percent of the best-found solution value g o5 to the time to produce
that best value thest [29]: 70.05 = t0.05/tbest- Since running-times depend on

VIII Thomas Beielstein

the computer system, measures of computational effort might be advanta-
geous: Counting operations, especially for major subtasks such as fitness
function calls can be mentioned in this context explicitly. The performance
ratio and the performance profile can be based on the number of function
evaluations.

— Robustness can be defined as a good performance over a wide range of in-
stances of one test problem or even over a wide range of different test prob-
lems.

— To measure the algorithm speed, the average number of evaluations to a
solution can be used. For runs finding no solutions, the maximum number
of evaluations can be used.

— Barr and Hickman discuss performance measures for parallel algorithms [3].

Selection of Measures We will consider the quality of the best solution found
during an optimization run as a performance measure and propose two different
approaches:

The first approach is based on the performance values found during the
run, whereas the second approach interprets the outcome of an experiment as a
proportion. In the second approach, the success rate is used to analyze a binomial
model. This will lead to logistic regression models.

Since many optimization runs produce experimental results that do not fol-
low a Gaussian distribution, our conclusions will be based on generalized linear
models (GLMs). On the other hand, if the performance results are Gaussian, or
can be easily transformed to Gaussian distributed values, classical analysis of
variance (ANOVA) or regression model can be recommended.

4 Test functions

Although the no free lunch theorem (NFL) for search states that there does not
exist any algorithm that is better than another over all possible instances of
optimization problems, this result does not imply that we should not compare
one algorithm to another. Keeping in mind that we are considering problems of
practical interest, the reader may refer to the discussion in [30, 31].

5 Analysis: Design of Experiments

5.1 Experiments

As we have classified important parameters of evolution strategies in Sec. 2,
and defined a measure for their comparison in Sec. 3, we can conduct experi-
ments to assess the significance of single parameters such as population size or
selective pressure. We should keep in mind that simulation runs are treated as
experiments: we begin by formulating a hypothesis, then set up experiments to
gather data that do verify or falsify this hypothesis. We will use guidelines from
experimental algorithmics in our experimental studies [18]:

Tuning EAs X

1. State a clear set of objectives: formulate the question as a hypothesis.

2. After an experimental design is selected, simply gather data. Do not modify
the hypothesis until all data have been collected.

3. Analyze the data to test the hypothesis stated above.

4. In the next cycle of experimentation a new hypothesis can be tested.

5.2 How to choose exogenuous parameters

Evolutionary algorithms and many other related algorithms such as simulated
annealing [32] or tabu search [33], require the determination of exogenous pa-
rameter settings before the optimization run is performed. Thus, the choice of
an adequate exogenous parameter setting is based on expert knowledge. Johnson
suggests to explain the corresponding adjustment process in detail, and there-
fore to include the time for the adjustment in all reported running-times to
avoid a serious underestimate [26]. An important step to make this procedure
more transparent and more objective is to use DOE techniques: they provide an
algorithmical procedure to tune the exogenous parameter settings for the algo-
rithms under consideration before the complex real-world optimization task is
optimized or two algorithms are compared.

Besides the improved performance of an algorithm, fine-tuning of exogenous
parameters might reveal information about its robustness. This may lead to new
insights in the role of the offspring-parent ratio v, or the relationship between re-
combination and mutation operator . Experimental design provides an excellent
way of deciding which simulation runs should be performed so that the desired
information can be obtained with the least amount of experiments [34, 35,7, 25,
36].

5.3 Basic DOE Terminology

The input parameters and structural assumptions, that define a simulation model
are called factors, the output value(s) are called response(s). The different values
of parameters are called levels. Levels can be qualitative, i.e. selection scheme, or
quantitative, i.e. population size. An experimental design is a set of factor level
combinations. Kleijnen defines DOE as ‘the selection of combinations of factor
levels that will be simulated in an experiment with the simulation model’[37].
One parameter design setting, cp. Eq. 1, is run for different pseudo-random
number settings, resulting in replicated outputs. We will discuss linear regression
models and their extensions, the so-called generalized linear models [38, 39].

5.4 Linear Regression Models
Generally, a simulation model can be represented as follows:
y = fi(z1,..., 2K, 70), 3)

where f; is a mathematical function, e.g. f; : R**! — IR: Given the values of
the argument z; and the random number seed 7y, the simulation program yields

X Thomas Beielstein

exactly one value. The Taylor series expansion yields the first order approxima-
tion y = fy = Zf:o Bizr- The last equation is the basis for regression models
based on simulation data. Our goal is to use least square methods to estimate
the linear model y = X/ + €, where the y denotes a column vector with the n
responses, € is the vector of n error terms, and 8 denotes is the vector with ¢
parameters 3; (n > ¢). The error term € has expectation E(e) = 0 and variance
V(e) = 0% X is the (n x g) matrix of independent regression variables. zg is
the dummy variable equal to 1, the remaining ¢ — 1 variables correspond to the
simulation parameters z. Therefore, we obtain the (n x ¢) regression matrix

1z 12 - T1g—1
X = 1 Ti1 T2 - Tig—1 . (4)
1 Tnl Tn2 """ Tn,g—1

Experimental settings (designs), where the regression matrix X satisfies X X7 =
nl, are called orthogonal. In the following, we will consider orthogonal designs
with two factors for each level (2F factorial designs and 2¥~? fractional factorial
designs), and orthogonal design where center points are added to the 2% design
(central composite designs). A variable z is called standardized, if x ranges
between —1 and +1. The original variables with range [I, h] can be standardized
using the linear transformation # = a + bz with a = (I+ h)/2 and b = (I — h)/2.
Thus, the entry —1 in the regression matrix denotes a factor at its low level, and
+1 a factor at its high level. The intuitive definition of a main effect of a factor
is the change in the response produced by the change in the level of that factor
averaged over the levels of the other factors, whereas the interaction effect AB
of factor A and factor B is the average difference between the effect of A at the
high level of B and the effect of A at the low level of B.

5.5 Tuning

Generally, we suggest the following three-stage approach: Screening — Modeling
— Optimization.

1. Screening: Screening considers only the main effects and no interactions.
Therefore, we recommend fractional-factorial 2P designs. These are or-
thogonal designs and require a moderate number of experiments. If we can-
not differentiate between two effects, these effects are called confounded. An
2k=P design is of resolution R if no p-factor effect is confounded with an-
other effect that has less than R — p factors [34]. Roman numerals denote
the corresponding design resolution. Our first experiments are based on res-
olution IIT designs (see Tab. 1). These designs ensure that no main effect is
confounded with any other main effect, but main effects can be confounded
with two-factor interactions.

Tuning EAs XI

2. Modeling: Interactions are taken into account. At this stage resolution IV or
resolution V designs are recommended.

3. Optimization: Central composite designs, that require a relatively high num-
ber of runs, are often used at this experimental stage. They can be combined
with response surface methods.

We apply the standard techniques from regression analysis for meta-model
validation, cf. [40]. A linear approximation may be valid in a sub-domain of the
full experimental area. In RSM, we determine the direction of improvement using
the ‘path of the steepest descent’ (minimization problem) based on the estimated
first-order model [25]. The path of the steepest descent is perpendicular to the
fitted first-order model. If no further improvement along the path of the steepest
descent is possible, we can explore the area by fitting a local first-order model
and obtain a new direction for the steepest descent. This step is repeated several
times until we find the expected optimum area. As a criterion we may use that
the linear model is inadequate close to the optimum. Optionally, a second-order
model that requires additional runs and special RSM designs, can be fitted in
the expected optimum area. The optimal values are estimated by taking the
derivations of the second-order regression model. We combine in our approach
DOE and RSM techniques, that are adapted to the special needs and restrictions
of the optimization task.

A numerical example of this procedure is omitted in this extended abstract
but will be included in the full article. Alternatively, the reader is referred to [22],
where the parameterization of an ES on the airfoil-design optimization problem
is discussed.

5.6 Generalized Linear Models

Linear models, regression analysis, and analysis of variance as discussed so far
are applicable to problems that have errors that are Gaussian. In many situations
the optimization practitioner has to face response values that follow some skewed
distribution or have non-constant variance. To deal with non-normal responses,
data transformations are often an effective way. The choice of an adequate trans-
formation can be difficult. Draper and Smith discuss the need for transformation
and present different transformation methods [40]. Since the transformation may
result in incorrect values for the response value, i.e. logY, if Y < 0, generalized
linear models provide an alternative [39].

A Model Based on the Quality of the Best Solution Histograms can give
first hints, whether or not it might be adequate to use a specific distribution (i.e. a
Gamma distribution might be better suited than the Gaussian distribution).
Next we can consider QQ-plots and or a KS-test to support the assumption.
Stepwise model selection, by adding or removing terms, can be used to find
a more parsimonious regression model [38]. The statistical software package R
provides functions such as stepAIC that automate this selection process [41].

An example is omitted here, the reader is referred to [20] for an example that
uses a simplified EA and artifical test problems.

XII Thomas Beielstein

A Logistic Regression Model Based on the Success Rate Whether or
not the optimization run has located a pre-specified optimum can be used as a
performance measure for algorithms. In this case, where the outcome variable can
take only two values, a linear regression model is not appropriate, but a logistic
regression model might be adequate. Thus, each (optimization run, problem)-
combination generates a binary response value:

DxP - B, (5)

with d € D and p € P as defined in Eq. 1 and Eq. 2 respectively. As Nexp
optimization runs for each factor-level setting will be performed, the number of
successful runs can be seen as a random variable having a binomial distribution.

For an introduction into logistic regression the reader is referred to [42],
Myers and Hancock present an example that uses a genetic algorithm to solve
consistent labeling problems [19].

e EERIET e Ty LI
e P BEIEET Ll P Y pibam
Tim® e e (kS
i 1 N T | [T
Lama iraes b lams . s rima
iEmnmn s - irms
] rEiErmaa v e —p— EEILIE S]
& T [T ERET
i v i ra v g
Tedraes - = O SERdEE e = s
¥ o ! mm Ly ——— g |
B e
ek Pleams Maar i AT b
Tewra v Prebger Irmafe 5 EEPRiradE EET
- # il
Mg e
=
E
i v
s
I TR b RLALLE L]

Fig. 2. The DOE software package BEA combines JAVA classes and the statistical
software package R. The figure shows a screen-shot of the JEA GUI (XJEA).

6 The JEA-Software Package

The JAVA evolutionary algorithms (JEA) software package provides access to
standardized implementations of evolutionary algorithms and related optimiza-
tion algorithms such as particle swarm optimizers. JEA combines methods from

Tuning EAs XIIT

statistical DOE and simulation analysis. It enables the simulation practitioner
to tune special algorithms for a specific optimization problem and to compare
different variants of one (or even of several) algorithms. Fig. 2 shows the JEA
graphical user interface XJEA, that enables a convenient access to JAVA and R
objects. The related software package JEAT is described in [43].

7 Summary and Outlook

This paper introduces a framework that can be used to improve the acceptance
and quality of research in the field of evolutionary computation. It summa-
rizes state of the art techniques for EA parameter tuning. Parameter tuning
is beneficial in the following situations: Real-world optimization problems al-
low only a few preliminary experiments to find good EA parameter settings. As
the commonly used ‘one factor at a time approach’ is considered as inefficient
and ineffective, we recommend DOE methods. To enable a fair and more objec-
tive comparison of different optimization algorithms, these algorithms should be
tuned a priory.

Referring to the methodology proposed by Francois and Lavergne, GLM are
used to handle responses that are not Gaussian. If the responses are normally
distributed, classical regression analysis can be applied.

References

1. A.E. Eiben and M. Jelasity. A critical note on experimental research method-
ology in ec. In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC’2002), pages 582-587. IEEE Press, 2002.

2. R. A. Fisher. The Design of Ezperiments. Oliver and Boyd, Edinburgh, 1935.

3. R. Barr and B. Hickman. Reporting computational experiments with parallel
algorithms: Issues, measures, and experts’ opinions. ORSA Journal on Computing,
1992.

4. J. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1996.

5. W.D. Kelton. Experimental design for simulation. In J.A. Joines, R.R. Barton,
K. Kang, and P.A. Fishwick, editors, Proceedings of the 2000 Winter Simulation
Conference, 2000.

6. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409-435, 1989.

7. J. Kleijnen. Statistical Tools for Simulation Practitioners. Marcel Dekker, New
York, 1987.

8. J. P. C. Kleijnen. Experimental design for sensitivity analysis, optimization, and
validation of simulation models. In J. Banks, editor, Handbook of simulation. Wiley,
New York, 1997.

9. J. P. C. Kleijnen and O. Pala. Maximizing the simulation output: a competition.
Simulation, 73:168-173, September 1999.

10. T. Béck. FEwolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

XIV Thomas Beielstein

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

F. Kursawe. Grundlegende empirische Untersuchungen der Parameter von Evolu-
tionsstrategien — Metastrategien. Dissertation, Fachbereich Informatik, Univer-
sitat Dortmund, 1999.

J. D. Schaffer, R. A. Caruana, L. Eshelman, and R. Das. A study of control param-
eters affecting online performance of genetic algorithms for function optimization.
In J. D. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufman.

A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Trans. on Evolutionary Computation, 3(2):124-141, 1999.
D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67-82, 1997.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation. part i, graph partitioning. Oper-
ations Research, 37(6):865-892, 1989.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by sim-
ulated annealing: an experimental evaluation. part ii, graph coloring and number
partitioning. Operations Research, 39(3):378-406, 1991.

C. Demetrescu and G. F. Italiano. What do we learn from experimental algorith-
mics? In Mathematical Foundations of Computer Science, pages 36-51, 2000.

B. Moret. Towards a discipline of experimental algorithmics, 2000.

R. Myers and E.R. Hancock. Empirical modelling of genetic algorithms. Ewvolu-
tionary Computation, 9(4):461-493, 2001.

O. Francois and C. Lavergne. Design of evolutionary algorithms — a statistical
perspective. IEEE Transactions on Evolutionary Computation, 5(2):129-148, April
2001.

R. J. Beckman M. D. McKay and W.J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239-245, 1979.

T. Beielstein and B. Naujoks. Tuning multi criteria evolutionary algorithms for
airfoil design optimization. Technical report, Universitit Dortmund, 2003. (to
appear).

H.-G. Beyer and H.-P. Schwefel. Evolution strategies — A comprehensive introduc-
tion. Natural Computing, 1:3-52, 2002.

T. Beielstein and S. Markon. Threshold selection, hypothesis tests, and DOE
methods. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood,
Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings of the 2002
Congress on Ewvolutionary Computation CEC2002, pages 777-782. IEEE Press,
2002.

J. Kleijnen and W. Van Groenendaal. Simulation - A Statistical Perspective. Wiley,
Chichester, 1992.

D. Johnson. A theoretician’s guide to the experimental analysis of algorithms,
1996.

T. Beielstein, J. Dienstuhl, C. Feist, and M. Pompl. Circuit design using evolu-
tionary algorithms. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry
Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings
of the 2002 Congress on Evolutionary Computation CEC2002, pages 1904-1909.
IEEE Press, 2002.

E. D. Dolan and J. J. More. Benchmarking optimization software with performance
profiles. Technical Report ANL/MCS-P861-1200, Argonne National Laboratory,
2001.

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

Tuning EAs XV

R. Barr, B. Golden, J. Kelly, M. Rescende, and W. Stewart. Designing and report-
ing on computational experiments with heuristic methods. Journal of Heuristics,
1(1):9-32, 1995.

D.L. Whitley, K.E. Mathias, S. Rana, and J. Dzubera. Building better test func-
tions. In L. Eshelman, editor, Proc. of the Sizth Int. Conf. on Genetic Algorithms,
pages 239-246, San Francisco, CA, 1995. Morgan Kaufmann.

D. Whitley, J.P. Watson, A. Howe, and L. Barbulescu. Testing, evaluation and per-
formance of optimization and learning systems. Technical report, The GENITOR
Research Group in Genetic Algorithms and Evolutionary Computation, Colorado
State University, 2002.

L. Ingber and B. Rosen. Genetic algorithms and very fast simulated reannealing:
A comparison. Mathematical Computer Modelling, 16(11):87-100, 1992.

Fred Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, Oxford, England, 1993. Blackwell Scien-
tific Publishing.

G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for experimenters. Wiley
series in probabilty and mathematical statistics: Applied probability and statistics.
Wiley, 1978.

G. E. P. Box and N. R. Draper. Ezperimental Model Building and Response Sur-
faces. Wiley, 1987.

A M. Law and W.D. Kelton. Simulation Modelling and Analysis. McGraw-Hill
Series in Industrial Egineering and Management Science. McGraw-Hill, New York,
3rd edition, 2000.

J. P. C. Kleijnen. Experimental designs for sensitivity analysis of simulation mod-
els. In A. W.Heemink et al., editor, Proceedings of EUROSIM 2001, 2001.

J. M. Chambers and T. H. Hastie, editors. Statistical Models in S. Wadsworth &
Brooks/Cole, Pacific Grove, California, 1992.

P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman and Hall,
2nd edition, 1989.

N. R. Draper and H. Smith. Applied regression analysis. Wiley series in probability
and statistics. Wiley, New York, 3rd edition, 1998.

R. Thaka and R. Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299-314, 1996.

D. Collett. Modelling Binary Data. Chapman and Hall, 1991.

T. Beielstein and C. Feist. Jeat — a JAVA based test frame for tuning and comparing
algorithms. Technical report, Universitdt Dortmund, 2003. (to appear).

