
Sequential Parameter Optimization

Thomas Bartz–Beielstein
Systems Analysis Group

Department of Computer Science
University of Dortmund, Germany
thomas.bartz-beielstein@udo.edu

Christian W. G. Lasarczyk
Systems Analysis Group

Department of Computer Science
University of Dortmund, Germany

christian.lasarczyk@udo.edu

Mike Preuss
Systems Analysis Group

Department of Computer Science
University of Dortmund, Germany

mike.preuss@uni-dortmund.de

Abstract- Sequential parameter optimization is a heuris-
tic that combines classical and modern statistical tech-
niques to improve the performance of search algorithms.
To demonstrate its flexibility, three scenarios are dis-
cussed: (1) no experience how to choose the parame-
ter setting of an algorithm is available, (2) a comparison
with other algorithms is needed, and (3) an optimization
algorithm has to be applied effectively and efficiently to
a complex real-world optimization problem. Although
sequential parameter optimization relies on enhanced
statistical techniques such as design and analysis of com-
puter experiments, it can be performed algorithmically
and requires basically the specification of the relevant
algorithm’s parameters.

1 Introduction

Modern search heuristics involve a set of parameters that

can affect their performance drastically. We propose an ap-

proach for determining adequate parameters of optimization
algorithms, tailored for the optimization problem at hand.

The proposed approach employs a sequential technique from
computational statistics and statistical experimental design.
Sequential parameter optimization (SPO) can even be ap-

plied to search algorithms that produce stochastically dis-

turbed results, especially evolutionary algorithms (genetic
algorithms, evolution strategies, genetic programming, or

newer approaches such as algorithmic chemistries and parti-
cle swarm optimization).

To show the universality of this approach we tackle opti-
mization scenarios in which

• newly developed algorithms are applied to a well-

known problems (Section 3.1), or
• well-known algorithms are applied to well-known

problems (Section 3.2), or
• well-known algorithms are used to optimize un-

known, complex real-world optimization problems
(Section 3.3).

These scenarios have one thing in common: They are defini-

tively too complex to allow for reliable manual parameter

tuning, because the number of different parameter combi-

nations grows exponentially with the number of algorithm
parameters—even worse: If quantitative or continuous pa-

rameters are considered, as in the following, there are infini-
tively many combinations.
The major differences between SPO and other approaches
that have been proposed to solve these problems, e.g. meta-
heuristics, can be described as follows: SPO keeps the com-

putational cost for determining an improved parameter set

relatively low. Furthermore, the optimization practitioner

can learn—but she is not forced to learn—from experiments;

the method is semi–automatic, the course of the tuning pro-
cess is subject to change. And, this is probably the most

important difference, SPO can be applied in an algorithmical

manner, it requires the specification of very few parameters

and no additional programming effort.
Our aims in this paper are

• to demonstrate its usefulness for very different al-

gorithms and optimization tasks and explain how it

works (what)
• and to shed light on possible SPO use cases, the ques-

tions it can help to answer, and the expected results
(why).

The paper is structured as follows: Section 2 introduces
sequential parameter optimization. Next, we present three
application scenarios (Sect. 3). The paper closes with a
discussion and an outlook.

2 Sequential Parameter Optimization

Designs are the key elements of an algorithmic SPO descrip-

tion, thus we provide some definitions first. An algorithm
design DA is specified by defining ranges of values for the
design variables. A design point x 2 DA is a vector with
specific settings of the considered algorithm, see e.g. Tab. 1.
We will consider quantitative factors only. How qualitative
factors can be included into the experimental analysis is dis-
cussed in [1, 2]. Problem designs DP provide information
related to the optimization problem, such as the available
resources, e.g. the number of function evaluations t

max

, or

initialization and termination criteria. An experimental de-

sign D consists of a problem design DP and an algorithm
design DA. We regard the run of a stochastic search algo-

rithm as an experiment with stochastic output Y (x), with
x 2 DA for one problem design only. If random seeds
are specified, the output would be deterministic. This case
will not be considered further, because in practice it is not

common to specify the seed that is used in an optimization
run.

SPO can be interpreted as a search heuristic optimizing
the performance of non–deterministic algorithms. Therefore
it includes methods to cope with stochastically disturbed re-
sults, while keeping the number of required steps (algorithm
runs) as low as possible. In most cases, time constraints rule
out grid search, exhaustive local search methods, or even
(evolutionary) meta–optimization algorithms: This is where



I

II

III

Y(x)

Figure 1: SPO consists of 3 iterative stages. The first stage deter-
mines design points. Latin hypercube sampling and model based
selection is used to chose new points. The best point found so far is
reevaluated. During the second stage designs points are evaluated

by running the algorithm using the proposed setting. During the
third stage a model is build, to estimate the algorithms performance

for untested settings. Results of second and third stage may be of

interest to the user. As experimental results are obviously interest-
ing for the user, also the model could show insightful properties of

parameters and their relation.

SPO may help.
Figure 1 illustrates the interaction of the three key com-

ponents of SPO:

I Experimental analysis of a set of design points

II Estimation of algorithm performance my means of a
stochastic process model, and

III Determination of additional design points.

These components will be discussed in the following.

Assume, that an initial set of design points I has been de-

termined already (how to determine I will be described in
Section 2.3.1).

2.1 Experimental Evaluation

Experiments are performed to estimate the performance of

a design point x 2 DA of an algorithm design for a given
problem design. Let I(t) denote the set of design points
to evaluate at sequential step t and x

⇤
(t) be the best design

point at sequential step t. Due to the stochastic nature of

the search algorithms considered here, performance for each
design point is evaluated by means of several repeats. The
best design point from the previous iteration x

⇤
(t � 1) is

included in the set I(t) and re–evaluated, thereby doubling
its number of repeats.

SPO enforces fair comparison to the current best design
point; newly generated design points are tested as often as

the best design point has been. Incrementing the number

of repeats by factor 2 each iteration gradually decreases the

estimation error between the mean of measured and the true
function value of a design point x.

2.2 Modeling

Following [3], the response is modeled as a realization of a
regression model and a random process. A Gaussian corre-

lation function and a regression model with polynomial of

order 2 have been used. Hence, the model reads

Y (x) =

pX

j=1

�jfj(x) + Z(x), (1)

where Z(·) is a random process with mean zero and covari-
ance V (u, v) = �

2R(✓, u, v), and the correlation function
was chosen as

R(✓, u, v)

dY

j=1

exp

�
�✓j(uj � vj)

2

�
.

2.3 Design Point Determination

We use Latin Hypercube Sampling (LHS) [4] to determine
new design points. Such points could be calculated systemat-

ically for every number k of desired design points and every

dimension size d. Additionally this approach enables a good
coverage of the design space.

To determine k design points we have to divide range
of each dimension into k equally sized intervals. For each
design point we map a range in each dimension one–to–one
and draw a random value within this range. If parameter as-
signed to this dimension requires values to be in N rounding
happens afterwards.

2.3.1 Initial and Sequential Design Points

The initial design points are chosen by a LHS design as de-
scribed above. The number of parameters in the stochastic
process model from Equation 1 determines the minimal num-

ber of design points. The set of design point in sequential

steps comprehends the best point found so far and a set of

expected good designs, whereby expectation is based on the
model created in previous SPO step.

Therefore we first create an additional set of design point

candidates. This set is typically much larger than initial set
of design points. Computing the candidates model value, the
generalized expected improvement criterion is determined
next [5]. In short, this criterion takes into account, that we
are uncertain about unknown design points and estimates
probability of a candidate of being better than the known
best so far, by taking the modeling error into account. So we
select those design point candidates that possess the highest
probability of being better than the best.

By choosing an appropriate number of design points can-

didates exploration and exploitation can be balanced. If the
number of candidate design points is too small, the model

based exploration of the search space is not satisfying be-

cause many parameter combinations remain unconsidered.



Algorithm specific parameters
• parameters: range & type
• optimization criterion

SPO specific parameters
• initial design: size & samples per design point
• sequential step:

- number of candidates (LHS)
- number of new and old selected design points

• termination criterion

Figure 2: Parameters required to optimize an algorithm using
sequential parameter optimization.

On the other hand, if number of design point candidates is
very high, exploration is quite good, but as selection happens,

candidates selected for real experimentation may be next to

each other which can lead to a “waste” of experimentation
effort on a small region just expected but not ensured to be
good.

2.4 Configuration

We distinguish two aspects of configuration. The first as-

pect considers settings of the algorithm to be optimized, the
second aspect considers settings of the SPO approach. The
algorithm interface requires the specification of an algorithm
design as shown in the first 4 columns of Tab. 1. For each pa-

rameter the user has to specify minimal and maximal values
and a parameter type. SPO allows quantitative factors only,
because it uses space filling designs and Kriging methods.

By rounding decimals we additionally allow integer values.
Rounding happens right after creating a new design point

using a space filling design, so prediction, modeling, and
execution is based on rounded values.

In addition to these values, we have to specify a perfor-

mance criterion, e.g. the average fitness of best individual or

worst fitness of best individual on optimizing an online algo-

rithm. Our SPO implementation is based on the DACE tool-
box developed by Lophaven et al. [6] and extends heuristics
(e.g. the expected improvement) proposed by Schonlau [7].

Furthermore, there are some parameters needed by the
sequential approach. The number of initial design points and
the number of samples per point can be mentioned here as
well as the number of design points that will be evaluated
in each sequential step. The determination of the latter is
based on the stochastic process model introduced in Eq.(1)

and the number of best evaluated points out of those we
choose for real experimentation. Additionally we have to
specify the number of best so far design point we want to
run further experiments in the next sequential step. Finally,

a termination criterion has to be selected, e.g. a number of

sequential steps or number of repetitions for the best setting.
Figure 2 lists required configuration parameters.

3 Application

3.1 Algorithmic Chemistries

3.1.1 Algorithm

Algorithmic chemistries are artificial chemistries that aim
at algorithms. An algorithmic chemistry is a multiset of in-

structions, which consist of an opcode and three addresses
targeting sources and destination register. Instructions can-

not be accessed in a specific order. To execute an algorith-

mic chemistry they are drawn randomly and executed in an
environment containing a common set of registers. We dis-

tinguish two kinds of registers. Instructions interact with
each other via connection registers, by reading results of

other instructions and feeding their computation into regis-

ters possibly read by one or more other instruction. A second,

readonly set of registers contains input values. At the end of

execution a predefined connection register is interpreted as
the chemistry’s output.

While different multisets are considered as different pro-
grams, different executions of a single program show dif-

ferent behavioral variants due to random execution order.

Concentration of instructions mainly influences variant’s
probability. If two instructions share the same register as
their target register and one of both is necessary to compute
a desired value, chemistries can increase their chance for suc-

cessful execution by increasing the frequency of the required
instruction or by decreasing/removing the not required one.

We use genetic programming (GP) to adjust these con-

centrations by selecting those chemistries that show prefer-

able variants. An GP individual consist of an algorithmic
chemistry and the address of the register interpreted as the
individual’s output. Individuals are initialized by generating
a random set of valid instructions.

As we use a (µ,�)–strategy, a set of µ parents produce
� offspring. Crossover rate determines the proportion of

offsprings generated by recombination. To recombine two
individuals, the offspring’s chemistry is formed by a random
subset of both parents chemistries and the address of the
result register is randomly take by on of both parents. Re-

maining offspring are generated by reproducing a random
parent.

Before offspring are evaluated, they get mutated. With
a probability called mutation rate we change each entity

under evolution independent from one another by setting it

to random, valid value.
Evaluation happens by executing an algorithmic chem-

istry on a set of fitness cases. Thereby the randomized way
of execution introduces a new source of noise. To reduce
noise we simply increase the set of fitness cases used for

evaluation. If number of fitness cases is small, we increase
training set by duplication. Apparently this increases the
computational costs of evaluation, so we want to keep the
number of fitness cases as low as possible.

For a detailed description of algorithmic chemistries see

[8, 9].



Table 1: Algorithm design for genetic programming of algorithmic
chemistry solving the 4–Bit odd parity problem.

Parameter N/R Min Max 4–Bit
Population size µ N 1000 5000 4651
Selection pressure (�/µ) R 2 20 10.8
Crossover rate R 0% 100% 2.6%
Mutation rate R 0.1% 10% 2.6%
Initial length N 1 50 29
Connection registers N 10 50 28
Training size N 16 256 117

3.1.2 Design Considerations

The first time we used GP to evolve algorithmic chemistries
we tried to adopt as many settings as possible from a linear
GP systems. As random execution of instructions differs
much from executing linear individuals, we soon felt uncom-

fortable with simply adopting settings.
So we tried a to improve performance by adjusting set-

tings more or less systematically. In [8] we use an iterative
latin hypercube sampling designs to adjust parameters. In
each iteration we narrow the parameters ranges by examining
the results manually. Obviously its difficult to grasp com-

plex interactions between parameters this way. As problems
became more difficult, ranges of good settings decreases
and importance of parameter interactions increases, so iter-

ative latin hypercube designs where not suitable anymore.

Starting with [9] we use SPO to adjust parameter settings.
Table 1 shows parameters, that are part of our algorith-

mic design and their range of values. The first four parame-
ters are well known from other evolutionary algorithms, so
we do not explain in detail, why they belong to out algo-

rithm design. To ensure that design points do not violate the
µ < � constraint, we adjust population size µ and selection
pressure (�/µ) with �/µ > 1. Further we adjust mutation
and crossover rate. In following paragraphs, we explain the

reason for considering the three other parameters and the
optimization criterion we use.

If the initial chemistry size is too small, then the initial di-

versity is small. If initial size is large, probability of a single
instruction to be drawn is low, an individual’s number of be-
havioral variants increases and results are less reproducible.

Therefore we design for initial size too.
Obviously we need a minimum number of connection

registers to organize chemistry’s data flow, but an increasing
number of connection registers also increases search space.
So its necessary to find an adequate number of connection
registers

Training set size determines the number of fitness cases
used to evaluate an individual and is a part of our algorithms
design. As we terminate runs after a limited number of

executed instruction, there is an implicit pressure for smaller

training set sizes. While smaller sets increase noise, they also
decrease the number of executed instruction per generation
and therefore increase the number of possible generations if
number of instruction executions is limited.

The task (problem design) has been to evolve a boolean
function returning true iff parity of 4 input bits is odd.

Evolving parity functions using operation set {AND, OR,
NAND, NOR} is known as one of the most difficult boolean
functions to evolve. While we first tried to optimize for suc-
cess rate, it soon turns out, that success are very rare events
within the initial designs, unable to guide the further opti-

mization process. Therefore we adjust the problem design by

optimizing for the proportion of correctly classified inputs,

which leads to 2

4 fitness levels instead of a single one.
In spite of this “understated” optimization criterion SPO

has been able to detect very promising designs (probability
of success: 80%) for evolving a perfect solution of the 4–bit

odd parity problem. The last column in Tab. 1 shows the
best setting found during optimization process.

3.2 Classical Test Suites

The previous section described how to apply SPO to newly
developed algorithms. Next we report how PSO can be used
to improve well–known algorithms.

Two important aspects in optimization will be discussed

in this section: (i) effectivity and (ii) efficiency. First, we
will demonstrate how SPO can improve the effectivity of

algorithms. Effectivity can be characterized as the algo-

rithm’s ability to obtain the best goal for a given resource
limit (budget), e.g. maximum number of function evaluations
t

max

. Efficiency is the ability to reach a pre-specified goal,

e.g. the known best function value, with the least amount of
resources.

It is still a common practice in evolutionary computation
not to tune the parameters of each heuristic for each problem.

Some authors claim that the parameter settings used in their
experimental study are based on experience and turned out

to yield very satisfying performance results for a broad class
of optimization problems (some authors have become more
cautious because of “no free lunch”).

SPO has the capability to tune even complex optimization
algorithms during the pre-experimental planning phase. The
choice of an adequate experimental setup—and this includes
algorithm parameters that have been chosen with respect

to the optimization problem—is as important as a sound
statistical interpretation of the experimental results. What

is the use of comparing algorithms with parameter settings
that are totally inadequate for the underlying problem?

3.2.1 Particle Swarm Optimization

As there are no theoretical results for many evolutionary

algorithms availabale, “default” settings from the literature
are chosen as starting points. We will analyze the parti-

cle swarm optimizer (PSO) [10]. Assume a d-dimensional

search space, S ⇢ Rd
, and a swarm consisting of s particles.

The i-th particle is a d-dimensional vector,

xi = (xi1, xi2, . . . , xid)
T 2 S.

The velocity of this particle is also a d-dimensional vector,

vi = (vi1, vi2, . . . , vid)
T
.



Table 2: Default algorithm design of the PSO algorithm. Similar

designs have been used in [12] to optimize well–known bench-

mark functions. Some authors use x

max

as an additional parameter,
that specifies the search interval in the objective variable space,

e.g. xi 2 [�x

max

, x

max

]. Default and tuned values are shown in
Tab. 4.

Parameter N/R Min Max
Swarm size: s N 5 100
Cognitive parameter: c

1

R
+

0 4
Social parameter: c

2

R
+

0 4
Starting value of the inertia weight w: w

max

R
+

0.5 1
Final value of w in percentage of w

max

:

wscale

R
+

0 1

Percentage of iterations, for which w
max

is
reduced: witerSc

R
+

0 1

Velocity, maximum value: v
max

R
+

10 1000

The best previous position encountered by the i-th particle
(i.e., its memory) in S is denoted by,

p

⇤
i = (p

⇤
i1, p

⇤
i2, . . . , p

⇤
id)

T 2 S.

Assume b to be the index of the particle that attained the best

previous position among all the particles in the swarm, and t

to be the iteration counter. Then, the resulting equations for
the manipulation of the swarm are [11],

vi(t + 1) =wvi(t) + c

1

r

1

(p

⇤
i (t)� xi(t))

+c

2

r

2

(p

⇤
b(t)� xi(t)) , (2)

xi(t + 1) =xi(t) + vi(t + 1),

where i = 1, 2, . . . , s; w is a parameter called the inertia
weight; c

1

and c

2

are positive constants, called the cognitive

and social parameter, respectively; and r

1

, r

2

are vectors
with components uniformly distributed in [0, 1], x

min

and
x

max

define the bounds of the search space, and v

max

is a
parameter that was introduced in early PSO versions to avoid
swarm explosion. Table 2 summarizes the design variables
of particle swarm optimization algorithms.

3.2.2 SPO to Improve Effectivity

Our first comparison is based on the results from an exper-

imental study of particle swarm optimization that compre-

hends four different benchmark problems to show that PSO
is “a promising optimization approach”[12]. We report re-

sults from the dimension 10, results from other dimensions
are similar. The first design comprehends 80 points that have
been generated with Latin hypercube sampling. Each design
point represents one parameter setting and has been initially
evaluated two times. Several evaluations are neccessary be-
cause of the stochastic nature of the PSO algorithm. This
number can be kept low, because only a few evaluations are
necessary to detect worse design points that should not be
considered further. A design correction mechnism was in-

cluded to prevent outliers that disturb the analysis. It ensures
that the relation c

1

+ c

2

6 4.0 holds. We re–implemented a
PSO based on the description given in [12]. Table 3 shows
results published in [12] denoted by “Default I”, the results
from our impementation are denoted by “Default II”. Due

Table 3: A comparison of the results published in [12] using default
settings(Default I), own experimental results using these settings
(Default II), and results from the tuned version of the PSO. Note,

that [12] report only four digits after the decimal and no stan-

dard deviations. The standard deviation for the results from the
Rosenbrock function is 298.3827.

Problem Default I Default II Tuned
Sphere 0 2.82e-09 1.66e-21
Rosenbrock 96.17 148.84 4.20
Rastrigin 5.56 10.43 0.98
Griewangk 0.09 0.12 0.07

Table 4: A comparison of the default and the tuned parameter set-

tings. Tuned parameters for the Rosenbrock and Rastrigin function

are identical.

Problem s c
1

c
2

w
max

wscale witerSc v
max

Default 20 2 2 0.9 0.44 1 100
Sphere 29 0.75 2.49 0.73 0.34 0.64 6.64
Rosenbrock 5 0.69 3.32 0.76 0.48 0.85 1.54
Rastrigin 5 0.69 3.32 0.76 0.48 0.85 1.54
Griewangk 32 1.80 2.20 0.86 0.45 0.53 9.66

to PSO’s stochastic nature (and the experimental setup) the
variances of the experimental data are relatively high.

However, the performance improvements caused by SPO
are significant. Are there any explanations for these sig-

nificant differences between results from default and tuned
algorithm designs? Comparing the default and the tuned
algorithm designs (Tab. 4), the following observations can
be made. Small c

1

values are preferable, that means that the

influence of the local best position should be reduced. The
influence of the global best position is rather strong. The de-

fault and the tuned v

max

values show the most striking differ-

ence: smaller values are definitively better. This is not a big
surprise—it is a consequence of the experimental setup that
avoids search positions outside the interval [�x

max

, x

max

],

the algorithm is “forced to be good”. Results from this ex-

perimental setup are biased and highly questionable. Other
designs should be preferred [2]. SPO was able to reduce
the variance in the results drastically, therefore the tuned
parametrizations are only better but also more robust than
the default settings. Compared to other algorithms (evolu-

tion strategies or classical optimizers such as Quasi–Newton
methods) the performance of the PSO is rather poor. For

example, a function value of 4.2 after 10,000 function evalu-

ations for Rosenbrock’s function is not efficient. However,

sequential parameter optimization can reduce this value as
will be demonstrated next.

3.2.3 SPO to Improve Efficiency

SPO is an integrated approach that combines several meth-

ods from classical and modern statistics. Results can be
used to (i) generate new design points and to improve the
algorithm’s performance and (ii) to understand how the al-

gorithm works. Results from the previous experiments will
be used to generate run–length distributions (RLD). Figure 3
illustrates how SPO improves the efficiency: only 2000 func-



tion evaluations are necessary to nearly complete 100 % of
the runs successfully, the default configuration requires more
than 10,000 function evaluations to complete less than 80

% of the runs successfully. Imagine an experimental setup

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
Empirical CDF

Number of function evaluations

F(
X)

 default
 tuned

Figure 3: RLD comparing the default and the tuned PSO on the
Rosenbrock function. This is only one example that demonstrates
how SPO improves the efficiency of search heuristics. Consider

the arrow: 80 % of the runs from the tuned algorithm were able
to complete the run successfully after 1000 function evaluations,

whereas none of the PSO with the default configuration was able
to reach the pre–specified goal with the budget.

with t

max

= 5000 function evaluations. Based on the pa-

rameterization of the PSO the experimenter can demonstrate,

that (a) PSO fails completely, or (b) PSO is able to solve the
problem in any case. Both experimental results are statisti-

cally sound—however, whether the results are scientifically
meaningful is another question. The new experimentalism
provides tools to tackle these questions [13].

3.3 Evolutionary Algorithms

Evolutionary algorithms are direct search heuristics and thus
easily applied to all kinds of optimization problems. Their

enormous flexibility is also one of their weaknesses because
it stems from utilization of many different operators that

come together with a lot of parameters. However, it is dif-

ficult to choose the right operators and/or parameters when
problem knowledge is very limited.

In this section, the optimization problem is a simplified
real–world problem from the chemical engineering domain:
the design of a non–sharp separation sequence. Such a sep-
aration process is needed if the available feed stream (raw
material) is a mixture of different substances of which only
some combinations are acceptable for further processing. A
descriptive example in this context is crude oil; it is parti-

tioned into several fractions, e.g. kerosene, gas, and diesel

oil. One way to perform separation is by distillation where
the feed is heated and pumped into a column (large vertical
tube), so that materials with lower/higher boiling point drift
to the top/bottom and can be extracted as separate streams.

The columns are laid out such that minimum requirements
concerning cleanness of the products are fulfilled, these 2

design variables are refered to as light key and heavy key

recovery. In previous work, separation has often been con-

sidered ideal (sharp), resulting in pure products. However,

in many industrial environments, absolute cleanness is not

necessary and remixing pure components after first produc-
ing them requires very expensive equipment; this is clearly

not desirable. We therefore already take the non–sharpness
into account during optimization of the separation sequence
design. This problem and the appropriate simulation tech-

niques have been provided by the Chair of Technical Ther-

modynamics of the RWTH Aachen.

F

P1

P2

1

2

3

4

5

6

7

8

9

Figure 4: Used separation problem: The feed (F) is split into two

product streams P1 and P2 by use of 2 columns. Numbers indicate

optimization variables controlling column requirements (1-4) and

stream divider proportions (5-9).

The problem instance dealt with in the following has been
described by Aggarwal and Floudas [14] and tackled with
several deterministic algorithms (mainly MINLP). A three–
component feed stream has to be separated into two three–

component products with defined component proportions.

We use two columns and 4 stream dividers, resulting in 9
real–valued optimization variables. The optimization task is
to minimize the yearly cost of a facility that performs this
separation (see Fig. 4).

Search points generated by the EA are first put into a
shortcut simulator that computes the layout and checks if the
described process is possible at all. E.g., column pressures
cannot exceed certain limits, and mass and heat balances
must be valid. If so, the design can be evaluated rigorously

with a much more time consuming commercial simulator.

But even at this stage simulation can fail unexpectedly, mean-

ing that the suggested design is not realizable. The problem
is thus heavily constrained: only one inequality constraint

can be given in algebraic form but 18 others are hidden in
the shortcut simulator.

As can be expected, it is not easy for an EA to generate
valid solutions at all. To enable testing different parameters
without spending much time on simulation, we utilize the
non–linear fitness function defined in [14] for search points

regarded as valid by the shortcut simulator. In fact, first



Table 5: Algorithm design for optimizing the separation problem
with an ES, other parameters are kept at default values. Original

values correspond to manually tested parameter settings, the best

found configuration (last column) is well beyond these ranges for
three parameters.

Parameter name N/R Min Max Original Best
Population size µ: N 10 100 10-20 98
Maximum age : N 1 100 1-20 1
Selection pressure �/µ: R

+

0.1 10 1-5 7.76
Learning rate ⌧ : R

+

0.0 1.0 0.05-0.2 0.6

tests with a multi–membered evolution strategy (ES) and
several default parameter settings (column original in Tab. 5)

revealed that the valid search space volume is small and
seemingly unconnected (non–convex). Although discretized
penalties had been added, the ES mostly failed to generate
even one valid solution throughout a whole optimization run.

Random search delivers estimates for the probability to
generate a valid solution by chance (⇢ metric, see [15]), it is
below 10

�5 for this problem. At this point, we applied SPO
to obtain a set of ES parameters—if any—that guarantees
valid solutions with high probability. Table 5 enumerates
minimum and maximum values for algorithm designs tried
by SPO. Note that chosen ranges are quite large to allow
for testing non–standard parameter settings. The remain-

ing ES parameters are kept at standard values (discrete re-

combination, one step size, initial mutation strengths 0.25)

throughout all runs. We used the mean best fitness of all

runs of a design point as experiment outcome Y , whereas
each run was assigned a budget of 10000 evaluations which
is quite large considered that the shortcut simulator is able
to perform only ⇡ 20 evaluations per second.

After only three sequential steps with 25 initial design
points (152 runs alltogether), SPO found that despite the
small budget allowed, relatively large population sizes and
high selection pressures work best (last column in Tab. 5).

The most surprising finding is that tuned self–adaptation
learning rates are much higher than recommended values
⌧ = 1/

p
2N ⇡ 0.24 [16] for multimodal functions. The

best found variant employs ⌧ = 0.6, other good configura-

tions choose ⌧ 2 [0.3, 0.5].
A possible explanation for these values is that large se-

lection pressures and high learning rates together enable fast

response to better (lesser constrained) newly found search
points, their neighborhood is explored more intense. The in-
creased population size probably helps maintaining diversity

much longer than with default values µ 2 [10, 20].
We also performed a control experiment to verify that the

new parameter settings are not an artifact of ’lucky’ sampling.

Of 40 runs, the tuned ES found valid solutions 26 times,

corresponding to a 65% success rate, compared to a success
rates of less than 10% for the manually tested parameters.

4 Discussion and Outlook

In the previous section, we have presented three different ap-

plications of SPO. They are different in the following sense:
in Sec. 3.1, the algorithm-problem interaction is unknown

because the technique is relatively new; however, the test

problem is well-known. In Sec. 3.2, comparison of differ-

ent algorithms has been the main task. Even though both
problems and algorithms have been tested thoroughly be-

fore, their interaction is obviously not understood well. Oth-
erwise, good parameter values could have been estimated
beforehand. In Sec. 3.3, the problem features are relatively

unknown so that the interaction is once more unpredictable.
In all three cases, SPO found parameter values that led to
increased performance, thereby utilizing the algorithms po-
tential to a much higher extent.

Summarizing, we can state that whenever parameters for
an algorithm-problem combination have not been thoroughly

searched before, application of SPO makes sense because
otherwise one cannot be sure to have a competitive parameter

set. As bad configurations of an optimization method can
lead to drastic performance losses, it can render a whole
empirical study worthless.

The remainig question is: are there useful alternatives to
SPO? Our experience indicates that classical regression tech-

niques such as linear models can be applied too [17]. Some
approaches exist to automate classical statistical methods.

But these methods are much more complicated compared to
SPO. A visualization of the response surface may indicate
where linear regression models fail: the response surface
may be highly multi-modal or even chaotic. Systematic
(grid) search is also not an option because its cost increases

exponentially in the number of parameters.
However, there are some drawbacks, too. SPO is con-

strained to decimal and integer values which is an obvious
limitation. If number of combinations of nominal or ordinal
parameters is low, you can optimize for each combination
and choose the best one. Nevertheless, sometimes it is pos-

sible to transform nominal or ordinal scales into continuous
ones, e.g. a (µ,, �)–strategy allows a stepwise transition
from (µ,�) to (µ + �)–selection. Another difficulty when
applying SPO stems from the fact that it also requires the
specification of some — fortunately few — parameter val-

ues. Concerning this issue, there are currently no theoretical

results available, so that one has to rely on experience from
previous experimental studies.

It is often easy to find algorithm designs that do not

work—or, alternatively, to find a problem instance that dis-

turbs the algorithm’s performance. However, SPO makes
the determination of working algorithm designs for specific
problems easy, too. Thereby, it enables fair comparisons
between algorithms, hopefully resulting in increased knowl-
edge gain for empirical studies in evolutionary computation
yet to come.

Acknowledgment

T. Bartz–Beielstein’s research was supported by the DFG
as part of the collaborative research center “Computational
Intelligence” (531). Christian W.G. Lasarczyk gratefully

acknowledges support from a DFG grant to W.B. under Ba
1042/7–3. Mike Preuss gratefully acknowledges DFG grant
SCHW 361/13-1, in close cooperation with the Chair of

Technical Thermodynamics (LTT) of the RWTH Aachen,



namely Prof. Dr. Klaus Lucas and Frank Henrich.

Bibliography

[1] T. Bartz-Beielstein and S. Markon, “Tuning search al-
gorithms for real-world applications: A regression tree
based approach,” in Proceedings of the 2004 IEEE
Congress on Evolutionary Computation. Portland,

Oregon: IEEE Press, 20-23 June 2004, pp. 1111–1118.

[2] T. Bartz-Beielstein, “New Experimentalism Applied
to Evolutionary Computation,” Ph.D. dissertation, Uni-

versity of Dortmund, April 2005.

[3] T. Santner, B. Williams, and W. Notz, The Design and

Analysis of Computer Experiments. Springer, 2003.

[4] M. D. McKay, R. J. Beckman, and W. J. Conover, “A
comparison of three methods for selecting values of

input variables in the analysis of output from a com-

puter code,” Technometrics, vol. 21, no. 2, pp. 239–245,

1979.

[5] M. Schonlau, W. Welch, and R. Jones, “Global versus
local search in constrained optimization of computer

models,” in New developments and applications in ex-
perimental design, N. Flournoy, W. Rosenberger, and
W. Wong, Eds. Institute of Mathematical Statistics,

1998, vol. 34, pp. 11–25.

[6] S. Lophaven, H. Nielsen, and J. Søndergaard, “DACE
- A Matlab Kriging Toolbox,” Informatics and Mathe-

matical Modelling, Technical University of Denmark,

Tech. Rep. IMM-REP-2002-12, 2002.

[7] M. Schonlau, “Computer experiments and global opti-
mization,” Ph.D. dissertation, University of Waterloo,

Ontario, Canada, 1997.

[8] C. W. G. Lasarczyk and W. Banzhaf, “An algorithmic
chemistry for genetic programming,” in Proceedings of
the 8th European Conference on Genetic Programming,

ser. LNCS, M. Keijzer, A. Tettamanzi, P. Collet, J. I.

van Hemert, and M. Tomassini, Eds., vol. 3447. Berlin
Heidelberg: Springer, 2005, pp. 1–12.

[9] ——, “Total synthesis of algorithmic chemistries,” in
Gecco 2005, 2005, (accepted).

[10] R. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory,” in Proc. Sixth International

Symposium on Micro Machine and Human Science
(Nagoya, Japan). Piscataway, NJ: IEEE Service Cen-

ter, 1995, pp. 39–43.

[11] R. Eberhart and Y. Shi, “Comparison between genetic
algorithms and particle swarm optimization,” in Evolu-
tionary Programming, V. Porto, N. Saravanan, D. Waa-

gen, and A. Eiben, Eds. Springer, 1998, vol. VII, pp.

611–616.
[12] Y. Shi and R. Eberhart, “Empirical study of par-

ticle swarm optimization,” in Proceedings of the
Congress of Evolutionary Computation, P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Za-

lzala, Eds., vol. 3, 1999, pp. 1945–1950.

[13] T. Bartz-Beielstein, K. E. Parsopoulos, and M. N.

Vrahatis, “Design and analysis of optimization algo-

rithms using computational statistics,” Applied Numeri-
cal Analysis & Computational Mathematics (ANACM),
vol. 1, no. 2, pp. 413–433, 2004.

[14] A. Aggarwal and C. A. Floudas, “Synthesis of general
distillation sequences — nonsharp separations,” Com-
puters chem. Engng., vol. 14, pp. 631–653, 1990.

[15] Z. Michalewicz and M. Schoenauer, “Evolutionary al-
gorithms for constrained parameter optimization prob-
lems,” Evolutionary Computation, vol. 4, no. 1, pp.

1–32, 1996.

[16] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies:

A comprehensive introduction,” Natural Computing,

vol. 1, no. 1, pp. 3–52, 2002.

[17] T. Bartz-Beielstein, “Experimental analysis of evolu-

tion strategies - overview and comprehensive introduc-
tion,” University of Dortmund, Technical Report of

the Collaborative Research Center 531 Computational

Intelligence CI–157/03, 2003.


