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1 Introduction

Elevators play an important role in today’s urban life. The central part of an elevator system,
the elevator group controller, assigns elevator cars to service calls in real-time while optimizing
the overall service quality, the tra�c throughput, and/or the energy consumption. The elevator
supervisory group control (ESGC) problem can be classified as a combinatorial optimization
problem [Bar86, SC99, MN02]. Its behavior reveals the same complex behavior as many other
stochastic tra�c control problems, i.e. materials handling systems (MHS) with automated
guided vehicles (AGVs).

Due to many di�culties in analysis, design, simulation, and control, the ESGC problem
has been studied for a long time. First approaches were mainly based on analytical approaches
derived from queuing theory, whereas nowadays computational intelligence (CI) methods and
other heuristics are accepted as state of the art [CB98, MN02, SWW02].

In this article we will propose a validation methodology for a simplified ESGC system, the
sequential ring (S-ring). The S-ring is based on a neural network (NN) to control the elevators.
Some of the NN connection weights can be modified, so that di↵erent weight settings and their
influence on the ESGC performance can be tested. The performance of one specific weight
setting ~x is based on simulations of specific tra�c situations, which automatically lead to
stochastically disturbed (noisy) fitness function values f̃(~x). The determination of an optimal
weight setting ~x⇤ is di�cult, since it is di�cult to find an e�cient strategy that modifies the
weights without generating too many infeasible solutions, and to judge the performance or
fitness f(~x) of one ESGC configuration.

The S-ring was introduced as a benchmark problem to enable a comparison of ESGC
algorithms, independently of specific elevator configurations [BFM00, Bey01]. Results from
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the S-ring, obtained with low computational costs, should be transferable to more complicate
ESGC models.

In the following, we will present di↵erent techniques to answer the question whether or
not the S-ring is a simplified, but valid ESGC simulation model. We propose a new validation
methodology that takes the optimization algorithm for the simulation model into account.
After a few runs of the optimization algorithm on the simplified simulation model, we can
determine good parameter settings for the optimization algorithm, that are also applicable
to the complex simulation model. Thus, improved algorithm parameter settings obtained
from simulation results on the S-ring should be transferable to real ESGC problems. S-ring
simulations might give valuable hints for the optimization of highly complex elevator group
controller optimization tasks.

The rest of this paper is organized as follows: in Section 2, the ESGC problem is introduced.
Section 3 discusses di↵erent validation techniques. Section 4 gives a summary and an outlook.

2 The Elevator Supervisory Group Control Problem

2.1 Elevator Control

We introduce one specific instance of the ESGC problem, a so-called destination call system:
in contrast to traditional elevators, where customers only press a button to request up or
down service and choose the exact destination from inside the elevator car, a destination call
system enables the customer to choose the desired destination at a terminal before entering
the elevator car [BEM03]. The following investigations are based on a neural network based
controller, developed by Fujitec, one of the world’s leading elevator manufacturers. This
controller is trained by use of a set of fuzzy controllers, each representing control strategies for
di↵erent tra�c situations [Mar95].

The concrete control strategy of the neural network is determined by the network structure
and neural weights. While the network structure as well as many of the weights are fixed, some
of the weights on the output layer, which have a major impact on the controller’s performance,
are variable and therefore subject to optimization. Thus, we are looking for an algorithm
to optimize the variable weights of the neural controller. The controller’s performance can
be computed by the help of a discrete-event based elevator group simulator developed and
provided by Fujitec. This ESGC simulation model will be referred to as the ‘lift model’ (or
simply ‘lift’) throughout the rest of this paper.

Unfortunately, the resulting response surface shows a couple of characteristics which makes
the identification of globally optimal weights di�cult if not impossible. The topology of
the fitness function can be characterized as highly nonlinear and highly multi-modal. It is
randomly disturbed due to the nondeterminism of service calls, and dynamically changing with
respect to tra�c loads. Thus local measures such as gradients can not be derived analytically.

Furthermore, the maximum number of fitness function evaluations is limited to the order
of magnitude 104, due to the computational e↵ort for single simulator calls.
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Figure 1: Relationship between the S-ring, the lift model and real elevator systems.

2.2 The Lift Model Objective Function

The objective function for this study is the average waiting time of all passengers served during
a simulated elevator movement of two hours. Di↵erent tra�c patterns occur during this time-
period: up-peak (morning rush hour), two-way (less intense, balanced tra�c during the day),
and down-peak tra�c (rush hour at closing time).

An evolution strategy (ES) was chosen to determine optimal NN weights [BS02, BEM03].
For the comparison of di↵erent ES parameter settings the best individuals produced by the
ES were assigned handling capacities at 30, 35, and 40 seconds. A handling capacity of n
passengers per hour at 30s means that the elevator system is able to serve a maximum of
n passengers per hour without exceeding an average waiting time of 30s. These values were
created by running the lift simulator with altering random seeds and increasing passenger loads
using the network weights of the best individuals found in each optimization run. Finally, to
obtain a minimization problem, the handling capacities were averaged and then subtracted
from 3000 pass./h. The latter value was empirically chosen as an upper bound for the given
scenario. The resulting fitness function is shown in Eq. 1 and is called ‘inverse handling
capacity’ in the following.

F (x) = 3000.0� fP (~x), (1)

where fP is the averaged handling capacity (pass./h), P is the parameter design of the evolu-
tion strategy optimization algorithm (cf. Eq. 6), and ~x is a 36 dimensional vector that specifies
the NN weights.

2.3 The S-ring Model as a Simplified ESGC Model

The S-ring can be seen as a simplified and easily reproducible ESGC model. It is based on the
Kac ring, see e.g. [Gou95]. The S-ring can be solved exactly for small problem sizes, while still
exhibiting non-trivial dynamics. The main di↵erences between ESGC models and the S-ring
can be summarized as follows: Elevator cars in the S-ring model have unlimited capacity, and
passengers are taken, but not discharged. The running directions of the cars are only reversed
at terminal floors. All floors are indistinguishable: there are identical passenger arrival rates
on every floor, and identical floor distances. The cars use uniform running and stopping times,
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and the whole model uses discrete time steps. Furthermore, sequential state transitions are
performed [MAB+01].

The S-ring can be seen as a one-dimensional cellular automaton[CD98]: The state at time
t is given as

[s
0

(t), c
0

(t), . . . , sn�1

(t), cn�1

(t)] ⌘ x(t) 2 X = {0, 1}2n.

There are n sites, each with a 2-bit state (si, ci), and with periodic boundary conditions at
the ends. si is set to 1 if a server is present on the ith floor, otherwise it is set to 0. The
same applies to the ci bits: they are set to 1 if at least one customer is waiting on the ith
floor. Instead of using synchronous updating at all sites independently, one updating cycle
is decomposed into n steps as follows: The state evaluation is sequential, scanning the sites
from n� 1 to 0, then again around from n� 1. At each time step, one triplet ⇠ ⌘ (ci, si, si+1

)
is updated, the updating being governed by the stochastic state transition rules, and by the
‘policy’ ⇡ : X ! {0, 1}. A new customer arrives on the ith floor with probability p, and m
di↵erent elevator cars are considered [MAB+01].

2.4 The S-Ring Model Objective Function

The S-ring model can be used to define an optimal control problem, by equipping it with an
objective function Q (here E is the expectation operator):

Q(n, m, p, ⇡) = E
⇣X

ci

⌘
. (2)

Thus Q can be read as the expected number of floors with waiting customers. For given
parameters n, m, and p, the system evolution depends only on the policy ⇡, thus this can be
written as Q = Q(⇡). The optimal policy is defined as

⇡⇤ = arg min
⇡

Q(⇡). (3)

The basic optimal control problem is to find ⇡⇤ for given parameters n, m, and p. The per-
formance of a particular policy cannot be determined exactly, it must be estimated. Problems
related to optimization via simulation are discussed in [BINN01].

3 The S-Ring Model as a Valid ESGC Model

3.1 Context Description

In the following we will present standard validation techniques for simulation models. We
will di↵erentiate between model verification and model validation. Although verification
and validation of simulation models are related in some sense, we will consider validation
only [LK00, BINN01]. Classical validation processes are used to produce a model that repre-
sents a given system behavior. This model should be accurate enough that it can be used as
a representative of the real system.

We will extend these techniques by introducing a new approach, that takes the choice of an
optimization algorithm into account. Our goal is to define problem classes for optimization al-
gorithms: optimization algorithms reveal the same behavior if applied to problems of the same
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equivalence class. Simulation models are equivalent, if they belong to the same problem class.
The validation of simulation models can be transfered to the question: do the corresponding
models belong to the same problem class?

3.2 Standard Validation Techniques

The complete validation process requires subjective and objective comparisons of the model
to the real system. Subjective comparisons are judgments of experts (‘face validity’), whereas
objective tests compare data generated by the model to data generated by the real system.
We will discuss objective tests only, for subjective tests, the reader is referred to [BINN01].
Building a model that has a high face validity, validating the model assumptions, and compar-
ing the model input-output transformations to corresponding input-output transformations
for the real system can be seen as three widely accepted steps of the validation process [NF67].
In the following we will consider input-output transformations only. The model is viewed as
the function:

f : (X, D)! Y (4)

Thus values of the uncontrollable input parameters X and values of the controllable decision
variables (or of the policy) D are mapped to the output measures Y .

The model can be run using generated random variates Xi to produce the simulation-
generated output measures. E.g. the S-ring model takes a policy and a system configuration
and determines the average number of waiting customers in the system using the generated
random variates that determine a customer arrival event.

If real system data is available, a statistical test of the null hypothesis can be conducted:

H
0

: E(Y ) = µ is tested against H
1

: E(Y ) 6= µ, (5)

where µ denotes the real system response and Y the simulated model response.

3.3 Algorithm Based Validation

Our approach is based on the assumption that specific problems require specific algorithm
parameter settings [WM97]. Algorithm based validation (ABV) is related to parameter tun-
ing, but has to be distinguished from parameter control [EHM99]. Parameter control deals
with parameter values that are changed during the optimization run, whereas parameter tun-
ing refers to exogenous algorithm parameters to be selected before the optimization run is
started [BS02]. Including the optimization algorithm into the validation process, we propose
the following methodology [FL01]:

I. Tuning: First, the parameter setting of an optimization algorithm for one specific prob-
lem is tuned [Bei03]. The S-ring simulation output is the expected average number of
floors with waiting customers (minimization problem). Therefore, we can define the
performance Q of a policy ⇡ for a given S-ring setting S := (n, m, p) 2 S as defined in
Eq. 2, where S is the set of all possible S-ring configurations. Furthermore, the following
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variable P 2 P provides a very compact description of an ES parameter design:

P := (µ
pop

, ⌫,, n�, ⌧
0

, ⌧i, ⇢, R
1

, R
2

, r
0

, N
tot

) , (6)

where µ
pop

denotes the population size, ⌫ is the o↵spring–parent ratio, r
0

is a random
seed, etc. A comprehensive introduction to ES is given in [BS02], whereas [BEM03]
and [Bei03] describe the ES-parameterization in detail. P is the class of all possible ES
parameter settings. Summarizing, we have the following function (cf. Eq. 4)

g : (X, P, S, Q)! Y (7)

where g is defined in terms of the parameter vector P , giving the performance of di↵erent
ES-parameterizations for one pre-specified S-ring model and for one constant quality
function Q from the set Q of quality functions. Therefore, we are able to obtain the
expected performance E(Y ) of an ES-algorithm for a given problem S 2 S as:

E(Y ) = gS,Q(X, P ), (8)

Based on regression analysis, the functional relationship between the parameter settings
of algorithms and their expected performance can be specified as a linear model [Kle87,
KG92]:

E(Y ) = X� (9)

where Y is the vector of ES performance values, X is a matrix of explanatory variables,
and ~� is the vector of regression parameters.

Recent publications propose generalized linear models (GLMs) [MN89, FL01, Dob02].
A GLM consists of response variables Yi, a parameter vector �, a set of explanatory
(independent or predictor) variables X and a monotone link function h such that

h(µ) = X�, (10)

where µ = E(Y ). After selecting an adequate family of distributions, the GLM can be
fitted.

Finally, optimal algorithm parameter setting P ⇤ can be determined [KG92, MN89].

II. Extending the single problem to a problem class: The lift problem can be seen as
an extension of the S-ring problem. We assume that both problems belong to the class
of ESGC problems L (validation of the lift model is omitted here, this has been done by
Fujitec). To verify our assumption, we extend the model specified in Eq. 10 (or Eq. 9)
by introducing a new variable that specifies the underlying optimization problem L 2 L
and its corresponding performance measure.

h(µ) = X� + ↵L + X̃�L, (11)

The intercept ↵L models di↵erent algorithm performances. Important in our context are
possible interactions between the problem and the model parameters. Scaling of possibly
di↵erent performance values is not necessary. If there are no interactions, we conclude
that the problem is a member of the corresponding class. The inverse handling capacity
F as defined in Eq. 1 was used as a corresponding performance measure Q0 for the lift
model.

Kyoto, Japan, August 25–28, 2003



MIC2003: The Fifth Metaheuristics International Conference ??-7

Following this approach, we are able to identify problem classes S by performing a
statistical test: The null hypothesis

H
0

: ~�L = 0, (L 2 S) is tested against the alternative H
1

: ~�L 6= 0, (12)

The test given in Eq. 12 can be regarded as an extension of the standard validation test
in Eq. 5.

Finally, we are able to answer the question whether the S-ring model and the lift model belong
the same reference class: a pre-specified optimization algorithm shows a similar performance
on both problem instances.

4 Summary and Outlook

We extended the classical validation approach for simulation models to an algorithm based
validation (ABV) approach. A small set of simulation runs can be performed to tune the
exogenous parameters of the optimization algorithm. The tuned algorithm can be used to
perform the real optimization runs. The S-ring model as a simplified ESGC model was used
as a comprehensive example to demonstrate the applicability of this approach. (The full
paper will contain numerical examples). ABV can be extended in many ways, e.g. to test the
hypothesis that a new operator for an optimization algorithm improves its performance.
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