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Abstract: Elevator supervisory group control (ESGC) is a complex combinatorial
optimization task that can be solved by modern search heuristics. To reduce its
complexity and to enable a theoretical analysis, a simplified ESGC model (S-ring) is
proposed. The S-ring has many desirable properties: Fast evaluation, reproducibility,
scalability, and extensibility. It can be described as a Markov decision process and
thus be analyzed theoretically and numerically. Algorithm based validation (ABV),
as a new methodology for the validation of simulation models, is introduced. Based
on ABV, we show that the S-ring is a valid ESGC model. Finally, the extensibility
of the S-ring model is demonstrated.
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5.1 INTRODUCTION
Today’s urban life cannot be imagined without elevators. The cen-

tral part of an elevator system, the elevator group controller, assigns
elevator cars to service calls in real-time while optimizing the overall
service quality, the traffic throughput, and/or the energy consumption.
The elevator supervisory group control (ESGC) problem can be clas-
sified as a combinatorial optimization problem (Barney, 1986; So and
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Chan, 1999; Markon and Nishikawa, 2002). It reveals the same complex
behavior as many other stochastic traffic control problems, i.e. materi-
als handling systems with automated guided vehicles (AGVs). Due to
many difficulties in analysis, design, simulation, and control, the ESGC
problem has been studied for a long time. First approaches were mainly
based on analytical methods derived from queuing theory, whereas cur-
rently computational intelligence (CI) methods and other heuristics are
accepted as state of the art (Crites and Barto, 1998; Schwefel et al.,
2003).

In this article we propose a simplified ESGC system, the sequential
ring (S-ring). The S-ring is constructed as a simplified model of an
ESGC system using a neural network (NN) to control the elevators.
Some of the NN connection weights can be modified, whereby testing
different weight settings and their influence on the ESGC performance
is enabled. The performance of one specific NN weight setting x⃗ is based
on simulations of specific traffic situations, which automatically lead to
stochastically disturbed (noisy) objective function values f̃(x⃗). Since it
is difficult for an optimization algorithm to judge the fitness f(x⃗) of one
ESGC configuration, the determination of the optimal weight setting x⃗∗

is not trivial. Direct search methods that rely on the direct comparison
of function values face the problem of modifying the weights without
generating too many infeasible solutions.

The S-ring was introduced as a benchmark problem to enable a com-
parison of ESGC algorithms, independently of specific elevator config-
urations (Markon et al., 2001; Markon and Nishikawa, 2002). Results
from the S-ring, obtained with low computational costs, should be trans-
ferable to more complex ESGC models.
In the following, we will present different techniques to answer the ques-
tion whether the S-ring is a simplified, but valid ESGC simulation model.
We propose a new validation methodology that takes the optimization al-
gorithm for the simulation model into account. Tuning the optimization
algorithm for the simplified simulation model results in a good parame-
ter setting of the optimization algorithm. This setting is also applicable
to the complex simulation model.

It is generally assumed that the performance of an algorithm depends
on the structure of the search space. (Reeves and Yamada, 1998) ob-
served that local optima of randomly generated instances of an opti-
mization problem are distributed in a ‘big-valley’ structure. For exam-
ple, better local optima tend to be closer to the global optimum. This
big-valley structure is convenient for many search algorithms. But do
real-world problem instances – as opposed to randomly generated prob-
lem instances – possess a big-valley structure? Experiments indicate
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that this is not the case. As (Whitley et al., 2002) write: ’Local op-
tima are generally members of large plateaus of equally-fit solutions.’
This plateau-like distribution has also been observed while optimizing
the S-ring and real ESGC problems alike. Additionally, knowledgeable
persons have evaluated the model output for reasonableness. Thus, im-
proved algorithm parameter settings obtained from simulation results on
the S-ring should be transferable to real ESGC problems. S-ring simu-
lations might give valuable hints for the optimization of highly complex
elevator group controller optimization tasks.

The rest of this article is organized as follows: In section 5.2, we in-
troduce the elevator group control problem. Section 5.3 discusses S-ring
basics, whereas section 5.4 presents simulation and analysis techniques.
Section 5.5 demonstrates the validity of this model simplification. The
extensibility of the S-ring model is demonstrated in section 5.6. The
final section combines a summary with an outlook.

5.2 THE ELEVATOR SUPERVISORY GROUP
CONTROLLER PROBLEM

The elevator group controller determines the floors where the cars
should go to. Additional elevator controllers handle the functions inside
the car, such as door control, measurement of the car load, and car calls.
Since the group controller is responsible for the allocation of elevators to
hall calls, a control strategy to perform this task in an optimal manner
is required. The main goal in designing a better controller is to minimize
the time passengers have to wait until they can enter an elevator car after
having requested service. This time-span is called the waiting time. The
so-called service time additionally includes the time a passenger stays
within the elevator car.

An important aspect is the changing traffic pattern we can observe
throughout the day in an office building (Markon, 1995). There is ‘up-
peak’ traffic in the morning when people start to work and symmetri-
cally we observe ‘down-peak’ traffic in the evening. Most of the day
there is ‘balanced’ traffic with much lower intensity than at peak times.
‘Lunchtime’ traffic consists of two - often overlapping - phases where
people first leave the building for lunch or head for a restaurant floor,
and then get back to work. The ESGC problem subsumes the following
problem: How to assign elevators to passengers in real-time while op-
timizing different elevator configurations with respect to overall service
quality, traffic throughput, energy consumption etc.

Fujitec, one of the world’s leading elevator manufacturers, developed
a controller that is trained by use of a set of fuzzy controllers. Each con-



112 Metaheuristics: Progress as Real Problem Solvers

troller represents control strategies for different traffic situations
(Markon, 1995). The NN structure and the neural weights determine
a concrete control strategy. The network structure as well as many of
the weights remain fixed, only some of the weights on the output layer
can be modified and optimized. A discrete-event based elevator group
simulator permits computing the controller’s performance. This highly
complex ESGC simulation model will be referred to as the ‘lift model’
(or simply ‘lift’) throughout the rest of this paper.

The identification of globally optimal NN weights is a complex opti-
mization problem. The distribution of local optima in the search space
is unstructured and there are many local minima on flat plateaus. The
objective function values are stochastically disturbed due to the non-
determinism of service calls, and dynamically changing with respect to
traffic loads. (Arnold and Beyer, 2003) compared evolution strategies
(ES) with other search methods in the presence of noise. Their results
indicate that gradient based optimization techniques cannot be applied
successfully to this optimization problem.

(Beielstein et al., 2003) applied evolution strategies to determine opti-
mal NN weights. Their lift model has been implemented as follows: The
objective function considers different time dependent traffic patterns as
described above. Let the handling capacity of an elevator system be de-
fined as the maximum number of customers an elevator system is able
to serve per hour without exceeding an average waiting time. We con-
sidered handling capacities at 30, 35, and 40 seconds. This results in
a multi-criteria optimization problem. The different objectives are ag-
gregated to obtain a single-criteria optimization problem by averaging
handling capacities and then subtracting from 3,000 pass./h to obtain
a minimization problem. The latter value was empirically chosen as
an upper bound for the given scenario. The resulting fitness function
reads: F (x⃗) = 3000.0−f a⃗(x⃗), where f a⃗ is the average handling capacity
(pass./h), a⃗ is the parameter design of the evolution strategy optimiza-
tion algorithm, and x⃗ is a 36 dimensional vector that specifies the NN
weights. F (x⃗) is called the ‘inverse handling capacity’. The computa-
tional effort for single simulator runs limits the maximum number of
fitness function evaluations to the order of magnitude 104.

In general, ESGC research results are incomparable, since the elevator
group control per se is not appropriate as a ‘benchmark problem’:
– Elevator systems have a very large number of parameters that differ
widely among buildings, elevator models, manufacturers etc.
– Elevator cars have complex rules of operation, and even slight differ-
ences, e.g. in door operation or in the conditions for changing the trav-
eling direction, can affect the system performance significantly. Even
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the smallest elevator system has a very large state space, making direct
solution infeasible, thus no exact solutions are available for comparison.
– The sophisticated ESGC rules are usually trade secrets of the manu-
facturers, and cannot made commonly available for research.

In principle, the optimization practitioner can cope with the enormous
complexity of the ESGC problem in two different ways: The problem
can be simplified or resources can be used extensively (i.e. paralleliza-
tion, see, e.g. (Beielstein et al., 2003c)). We will concentrate on the
first strategy and present a simplified ESGC model. Ideally, a simplified
ESGC model should comply with the following requirements: It enables
fast and reproducible simulations and is applicable to different building
and traffic configurations. Furthermore it must be a valid simplification
of a real elevator group controller and thus enable the optimization of
one specific controller policy and the comparison of different controller
policies. The simplified model should be scalable to enable the simula-
tion of different numbers of floors or servers. It should be extensible, so
that new features (i.e. capacity constraints) can be added. Last but not
least, the model is expected to favor a theoretical analysis. We propose
a model that conforms to all these requirements in the next section.

5.3 S-RING BASICS
When passengers give a hall call, they simply press a button. There-

fore, only a one bit information for each floor is sent to the ESGC. It
appears intuitively correct to map the whole state of the system to a
binary string. The system dynamic is represented by a state transition
table and can be controlled by a policy. The sequential-ring model (S-
ring model) has only a few parameters: The number of elevator cars m,
the number of queues n, and the passenger arrival rate p (Markon et al.,
2001). A 2-bit state (si, ci) is associated with each site. The si bit is
set to 1 if a server is present on the ith floor, to 0 otherwise. Corre-
spondingly, the ci bit is set to 0 or 1 if there is no waiting passenger
resp. at least one waiting passenger. Figure 5.1 depicts a typical S-ring
configuration. The state at time t is given as

x(t) := (s0(t), c0(t), . . . , sn−1(t), cn−1(t)) ∈ X = IB2n, (5.1)

with IB := {0, 1}. A transition probability function f , a decision function
δ, and a reward function r are used to determine the dynamic of the
system. A look-up table as shown in table 5.1 can be used to represent
f , δ, and r in a compact manner. We will give a formal definition of the
S-ring in the appendix (definition 1).

The state evolution is sequential (S-ring stands for sequential ring),
scanning the sites from n − 1 down to 0, and then again around from
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Table 5.1. The triple in the first column represents the state of the actual site: Cus-
tomer waiting, server present, and server present on the next floor. The probability
of a state change to the state in the fourth column is given in the second column.
Columns three and five denote the decision and the reward respectively. I.e., the
server has to make a decision (to ‘take’ or to ‘pass’ the customer) if there is a cus-
tomer waiting (1xx), and if there is a server present on the same floor (11x) but no
server on the next floor (110).

ξ(t) Prob π(x) ξ(t + 1) ∆r

000 1 − p 000 0
p 100 −1

100 1 100 0
010 1 − p 001 0

p 0 101 −1
1 010 0

110 1 0 101 0
1 010 +1

001 1 − p 001 0
p 101 −1

101 1 101 0
011 1 011 0
111 1 011 +1

the unobservable case. Next we will introduce some elementary policies:
– The most obvious heuristic policy is the greedy one: When given the
choice, always serve the customer: πg(o) ≡ 1. Rather counter-intuitively,
this policy is not optimal, except in the heavy traffic (p > 0.5) case. This
means that a good policy must bypass some customers occasionally. The
greedy-policy does not take any information about the state of the sys-
tem into account.
– The random policy is another trivial policy that leads to rather poor
results. For some given σ ∈ [0, 1], we can define πb(o) = 0 with probabil-
ity (w. pr.) 1− σ, and 1 otherwise. Actions based on the random-policy
require no information about the actual system state.
– A quite good heuristic policy, that takes information about the actual
state of the system into account, is the balance-policy: πb(o) = 0, if
sn−1 = 1, and 1 otherwise. The intention is to put some distance be-
tween servers by passing when there is another tailing server, letting it
serve the customer: Waiting customers on the (n− 1)th floor queue are
not served by the leading server, thus a gap is created between the lead-
ing and the following server. Balancing the positioning of the servers,
πb is significantly better than πg for medium values of p.
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Finally, we present the perception policy representation: Let θ : IR →
IB define the Heaviside function (see definition 4), and x = x(t) be the
state at time t (see equation 5.1), and y ∈ IR2n be a weight vector. A
linear discriminator, or perceptron, πp(x) = θ(yT · x), can be used to
present the policy in a compact manner. The perception presentation
can be used to encode the other policies mentioned above. Variants
of this policy require information on the complete state of the current
system, since the state vector x is used.

5.3.1 The S-Ring Model as an Optimization
Problem

The ‘optimization via simulation’ approach requires the definition of
a performance measure for the simulation model. The long-run time-
average number of customers in the system or in the queue (Q) are
commonly used performance measures in queuing theory (Banks et al.,
2001). Consider a simulation run of a queuing system over a period of
time T . The steady-state time-average number in queue is

Q := lim
T→∞

∫ T
0 Q(t)dt

T
w.pr. 1. (5.2)

The basic optimal control problem is to find a policy π∗ for a given S-
ring configuration S ∈ S (see definition 1), so that the expected number
of sites with waiting passengers Q, that is the steady-state time-average
as defined in equation 5.2, in the system is minimized:

π∗ = arg min
π

Q(π). (5.3)

Equivalently, a policy π is optimal, if it maximizes the expected reward.
The general S-ring problem: For a given S-ring S, find the optimal policy
π∗, can be modified to the

Problem 1 (Perceptron S-ring problem) For a given S-ring S,
find the weight vector y ∈ IR2n that represents the optimal policy π∗.

The perceptron S-ring problem can serve as a benchmark problem
for many optimization algorithms, since it relies on the fitness function
F : IR2n → IR (Markon et al., 2001; Beielstein and Markon, 2002). In
general, π can be realized as a look-up table of the system state x and
π∗ is found by enumerating all possible π and selecting the one with
the lowest Q. Since this count grows exponentially with n, the naive
approach would not work for any but the smallest cases.
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5.4 ANALYSIS AND SIMULATION OF THE
S-RING SYSTEM

The S-ring system can be interpreted as a Markov decision process.
Let x(t) ∈ X denote the state of the S-ring system at time-step t, where
X denotes the state space of the S-ring system. A single state transition
describes the changes of the system, if the kth floor queue is considered.
A transition cycle describes the changes of the system, if the n sites (k =
0, 1, . . . , n−1) are considered in sequence. The N different system states
can be enumerated using the function snum : IB2n → {0, 1, . . . , 22n − 1}
defined as snum(x(t)) :=

∑n
i=1 2i−1(si + 2n−1ci), and the function slegal,

that determines the feasibility of a state (
∑n

i=1 si = m).
If the kth floor queue is scanned, the corresponding state transition
can be described by a S-ring single state transition matrix Pk. The
matrix element (pij) defines the state transition probability from state
i to state j. The single state transition matrices can be multiplied to
obtain the transition cycle matrix: P :=

∏n
i=1 Pn−i+1. Based on P, we

can determine the limiting state probability distribution.

Example 1 Even the simplest non-trivial case with n = 3 floors and
m = 2 elevators requires 23 ·

(3
2

)
= 24 different states. Based on the

limiting state probability distribution π⃗ and on the vector c⃗, that contains
at its ith position the number of customers when the system is in the ith
state, we can determine the value Q for the greedy strategy as π⃗ · c⃗ =
3 ·p2/(p4−p3+2p2+1). E.g., if we chose p = 0.3, we obtain Q = 0.2325.

The S-ring can be seen as a partially-observable Markov decision pro-
cess (POMDP) (see definition 5). The unobservable MDP (UMDP) is
a subclass of the POMDP: No information on the state of the system
is available. The S-ring equipped with the random or with the greedy
policy is an UMDP.
The complete state of the system is known to the observer at each time
point in the fully observable Markov decision process (MDP). The per-
ceptron S-ring is a MDP.
POMDPs can be formulated as optimization problems: I.e. for a given
POMDP, the decision maker selects the policy with the maximum ex-
pected value. There exist several dynamic programming approaches
for solving POMDP problems: Standard algorithms are value iteration
and policy iteration (Howard, 1972). A solution by dynamic program-
ming and by numerical methods such as Q-learning, Kiefer-Wolfowitz
stochastic approximation and a (1+1)-ES is presented in (Markon and
Nishikawa, 2002).

The conclusions drawn from the theoretical and numerical analysis
might be complemented by simulation experiments. The S-ring can
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Arrival Departure

Figure 5.2. Event graph. The thin arrow represents an event at the beginning (ar-
rival) scheduling an event at the end of the arrow (departure) immediately. The heavy
arrows indicate that the event at the beginning of the arrow may schedule the event
at the end of the arrow.

be treated as a discrete-event-simulation model (Banks et al., 2001).
An arrival event schedules a departure event without any intervening
time, whereas other events occurring at time ti are scheduled at time
ti+1 := ti + 1. Based on the event-graph method, where each event is
represented by a node, and directed arrows show how events are sched-
uled from other events, the S-ring can be presented as depicted in fig-
ure 5.2 (Som and Sargent, 1989). A flowchart for the departure event
is shown in figure 5.3. An event-based variant of the S-ring was im-
plemented in simlib. simlib is a C-based simulation ‘language’, that
provides functions to accumulate and to summarize simulation data,
to schedule events, and to generate random variates (Law and Kelton,
2000).

5.5 THE S-RING MODEL AS A VALID ESGC
MODEL

The complete validation process requires subjective and objective
comparisons of the model to the real system. Subjective comparisons
are judgments of experts (‘face validity’), whereas objective tests com-
pare data generated by the model to data generated by the real system.
Building a model that has a high face validity, validating the model as-
sumptions, and comparing the model input-output transformations to
corresponding input-output transformations for the real system can be
seen as three widely accepted steps of the validation process (Naylor and
Finger, 1967).

Important similarities of the S-ring with real elevator systems have
been observed by experts: Both are found to show suboptimal perfor-
mance when driven with simple greedy policies. They exhibit a charac-
teristic instability, commonly called bunching in case of elevators.

In the following we will consider input-output transformations more
detailed. The model is described by the function:
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Figure 5.3. Function depart. The probability of an arrival event is set to 0.5.



120 Metaheuristics: Progress as Real Problem Solvers

f : (Z, D) → Y (5.4)

Thus values of the uncontrollable input parameters Z and values of the
controllable decision variables (or of the policy) D are mapped to the
output measures Y . The model can be run using generated random vari-
ates Zi to produce the simulation-generated output measures. E.g. the
S-ring model takes a policy and a system configuration and determines
the expected average number of floors with waiting customers in the
system using the generated random variates that determine a customer
arrival event. If real system data is available, a statistical test of the
null hypothesis can be conducted:

H0 : E(Y ) = µ is tested against H1 : E(Y ) ̸= µ, (5.5)

where µ denotes the real system response and Y the simulated model
response. We will extend these standard validation techniques by in-
troducing a new approach, that takes the choice of an optimization al-
gorithm into account. The main idea is based on the observation that
the complexity of a model can only be seen in relation to the associ-
ated optimization algorithm (Naudts and Kallel, 2000): The functions
Hn,b : {0, 1}n → {0, 1} defined by Hn,b(b) = 1 and Hn,b(a) = 0 if a ̸= b
(‘needle in a haystack’) can be extremely difficult for (standard) genetic
algorithms, whereas they are simple for the degenerated search heuristic
that generates the solution b deterministically.
We additionally assume that every problem requires a specific algorithm
parameter setting a⃗ (Wolpert and Macready, 1997). a⃗ includes the exoge-
nous parameters such as the population size in evolutionary algorithms
or the starting temperature for the cooling schedule in simulated an-
nealing. (François and Lavergne, 2001) introduce a methodology that
classifies problem classes based on the parameterization of the underlying
optimization algorithm. This methodology is extended in the following
to ‘optimization via simulation’ approaches. We will give a definition
first:

Definition 5.1 (Algorithm based equivalence) Let the regression
model E(Y ) = Xβ model the functional relationship between the algo-
rithm A and its expected performance E(Y ) for the optimization problem
P . α denotes a new variable that specifies the underlying optimization
problem P . Two optimization problems P1 and P2 are equivalent with re-
spect to an algorithm A (P1 ≡A P2), if there are no interactions between
the model parameters β and the problem parameter α.

Remark 1 P1 ≡A P2 does not require that the main effect of α is in-
significant.
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Problem P2

Fitness distribution 1

Fitness distribution 2

Figure 5.4. Schematic representation of algorithm based validation. A regression
model describes the functional relationship between the parameter setting of an al-
gorithm and its expected performance. Two optimization problems are equivalent, if
there are no interactions between the problem and model parameters.

Remark 2 If P1 ≡A P2, then an optimization algorithm A with param-
etrization a⃗ shows a similar behavior on problem P1 and problem P2.

Equation 5.4 can be written equivalently as fP,Q : (Z, a⃗) → Y, where Y
is the performance of an algorithm with the exogenous parameter setting
a⃗ for the problem P and the quality function Q.
Similar to the test from equation 5.5 the following statistical test to
identify equivalent problems can be performed: The null hypothesis H0 :
α = 0, is tested against the alternative H1 : α ̸= 0 (P1 and P2 are not
equivalent).

Our goal is to show that the S-ring model is a valid ESGC-model,
so that we can transfer results from the S-ring to the lift model. The
first step in algorithm based validation (ABV) requires the selection
of an optimization algorithm. Evolution strategies, that are applica-
ble to many optimization problems, have been chosen in the follow-
ing (Beielstein et al., 2003b). Recent publications propose generalized
linear models (GLMs) or methods from computational statistics such
as design and analysis of computer experiments (DACE) or regression
trees (Bartz-Beielstein and Markon, 2004; Bartz-Beielstein et al., 2004).
GLM analysis provides a unified approach for linear and non-linear mod-
els with both normal and non-normal responses (McCullagh and Nelder,
1989; François and Lavergne, 2001). A generalized linear model that is
based on the Gamma distribution and the canonical link is used in the
following analysis. To model the problem, a factor L with two levels
{S-ring, Lift} is introduced. We are interested to see whether or not
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there are interactions between algorithm parameters and L. Starting
from the over fitted model we perform a backward elimination proce-
dure.3 The final model shows that there are no significant interactions
between the problem L and other factors.4 We can conclude that the
S-ring problem and the lift problem are equivalent with respect to ES.
Therefore the S-ring model can be seen as a valid simplification of the lift
model. Remark 2 justifies the development of a simplified ESGC model:
An improved (tuned) parameterization a⃗ of algorithm A and problem P1

(S-ring) can be applied to optimize the complex optimization problem
P2 (lift).

5.6 S-RING MODEL EXTENSIONS
The S-ring model has been introduced as simplified elevator system

model with very limited parameters and features. To improve our un-
derstanding of its applicability, it makes sense to explore two types of
changes to this model. Firstly, effects of mechanisms looking inappropri-
ate compared to a real elevator system shall be investigated. Secondly,
features not existent in the S-ring model but obviously present in the
real-world situation may be subsequently added to find out if they in-
fluence the design of a controller significantly.

For our experiments, we used a default NN controller with all weights
set to 1.0 and a previously optimized controller which has been adapted
to an arrival rate of 0.3. Experiences from previously performed opti-
mization studies, i.e. (Beielstein et al., 2003a), recommended the follow-
ing experimental setup: A (10+50)-ES performing the optimization was
allowed 50,000 evaluations with 1,000 simulation steps each. 1,000 steps
have been chosen to cope with the problem of the initial transient (Law
and Kelton, 2000). We used self-adaptation with τ = 0.3, σ ∈ [0.01, 1.0]
and re-evaluation of surviving parents.

The S-ring model has been defined in a way that favors its analysis
as Markov decision process: Within a full circle, floor states are up-
dated in sequence. Alternatively, one can imagine random order or even

3The model search (determination of the predictors, their orders and interactions) can be
based on the Akaike Information Criterion (AIC). Backward elimination starts with an over-
fitted model, whereas forward selection adds a new variable to the model at each stage of the
process.
4Another way to test for interactions between the factor L and other factors is to compare
two nested models M2 ⊂ M1. M1 includes interactions between L and other factors of the
reduced model, whereas interactions are omitted in M2. M1: Y ∼ Function * model is
compared to M2: Y ∼ Function + model. The symbol ‘+’ denotes independent factors
and the symbol ‘*’ denotes interactions between two factors. ANOVA indicates that there is
no significant difference if interactions between L and the other factors are included.
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Figure 5.5. Two NN controllers dealing with different update methods (sequential,
random, quasi-parallel) and arrival rates on an S-ring with 20 floors and 6 servers.
Left hand: Default controller, all weights are 1.0, right hand: ES-optimized controller.
Each point represents a simulation run with 1 million steps. Lower values are better.
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Figure 5.6. Default (left) and optimized NN controller performance on a wide range
of arrival rates and server capacities on an S-ring with 20 floors and 6 servers. Each
point represents a simulation run with 1 million steps. Lower values are better.

quasi-parallelism. The general behavior of our model must remain stable
whatever variant is chosen because the update order of the real system
we want to model is usually not known beforehand. We cannot yet prove
that this is true for all possible configurations and controllers, but sim-
ulations done so far (see figure 5.5) indicate that the S-ring behavior is
very similar for different update orders.
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An obvious difference between real-world elevator cars and S-ring ones
is that the latter have infinite capacity. Previously, we assumed that it
is reasonable to neglect capacities for a wide range of parameter set-
tings. Simulation runs depicted in figure 5.6 show that this is indeed the
case. Only for extreme passenger flows congestion occurs and waiting
customers sum up to large numbers. However, the turning point can be
shifted upwards with a good controller policy.

5.7 SUMMARY AND OUTLOOK
We proposed a simplified elevator supervisory group controller, the so-

called S-ring. The S-ring can serve as a helpful benchmark problem for
evaluating and comparing search heuristics. Different techniques for its
analysis and simulation were presented. A new method was developed
to validate the S-ring as an ESGC model by taking an optimization al-
gorithm into account. Furthermore, we demonstrated how new features
can easily be added to the S-ring.
The current work can be extended by implementing different parallel
optimization strategies. Additionally, this methodology is transferable
to other traffic systems or, more general, other distributed control prob-
lems. Hence, we hope that the S-ring is an interesting real-world related
optimization problem for other researchers.
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APPENDIX: DEFINITIONS
Definition 1 (S-ring) The S-ring is the tuple

S = (n, m,X , x0,A,O, f, o, r, g),

where n ∈ IN and m ∈ IN are the number of queues and servers respectively. X , A, and
O denote finite set of states, actions and observation respectively, o is an observation
function, and x0 denotes the initial state. X is defined as the set of binary vectors

x = (sn−1, . . . , s0, cn−1, . . . , c0) ∈ IB2n

with
∑n−1

i=0 si = m. Let g(t) : IN+
0 → {0, 1, 2, . . . , n−1} be the function that determines

the number of the floor queue scanned at time step t:

g(t) := n − 1 − (t mod n). (5.A.1)

h : X × IN+
0 → IB3 is a helper function, that extracts three bits (customer present

on the actual floor, server present on the actual floor, and server present on the next
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floor) from the state vector x:

h(x, t) :=(cg(t), sg(t), sg(t−1)) (5.A.2)

=(x2n−1−g(t), xn−1−g(t), xn−1−(g(t−1) mod n)).

The transition probability function

f : X ×A× IN+
0 × X → [0, 1] (5.A.3)

defines probabilities for a state transition from state x to state x′ depending on the
action a performed. Finally,

r : X × X × IN+
0 → ZZ (5.A.4)

is the reward function. S denotes the set of all possible S-ring configurations.

Definition 2 (Decision rule) A decision rule is a mapping from observa-
tions to actions:

δ : O → A, δ(o) = {0, 1}. (5.A.5)

Definition 3 (Policy) A sequence (δ0, δ1, δ2 . . .) of decision rules is called a
policy.

Definition 4 (Heaviside Function)

θ(z) =

{
0, if z < 0
1, if z ≥ 0,

(5.A.6)

Definition 5 (POMDP) A partially-observable Markov Decision Process
(POMDP) M is a tuple M = {X , x0,A,O, f, o, V }, where:

X denotes a finite or countable set of states, x0 ∈ X is the initial state, A
denotes a set of actions, and O denotes a set of observations. If not men-
tioned otherwise, the Markov assumption is made in general: Each state has
all information necessary to predict the next event and action.

f : X × A × X → [0, 1] defines probabilities for a state transition from state
x to state y depending on the action a performed. f(x, a, y) is the probability
that state y is reached from state x on action a. Therefore, each action can be
represented by a state transition table of size N × N , or by a state transition
matrix P k with entries (pk

ij) as defined in equation 5.1. The probabilities in
the transition matrix take also exogenous effects into account.

o : X → O denotes the observation function: The corresponding set of obser-
vations O can be interpreted as a set of messages sent to the decision maker
after an action is completed.

And finally, the value function V : H → IR. If V is time-separable, then it can
be written as a combination of the reward function r and the cost function c,
that are defined as follows:

r : X → IR, and c : X ×A → IR. (5.A.7)
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