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We propose a new methodology for the experimental analysis of evolutionary optimization algorithms. The
proposed technique employs computational statistic methods to investigate the interactions among opti-
mization problems, algorithms, and environments. The technique is applied for the parameterization of
the Particle Swarm Optimization algorithm. An elevator supervisory group control system is introduced
as a test case to provide intuition regarding the performance of the proposed approach in highly complex
real–world problems.

1 Introduction

Modern search heuristics have proved to be very useful for solving complex real–world optimization prob-
lems that cannot be tackled through classical optimization techniques [1]. Many of these search heuristics
involve a set of exogenous parameters that affect their convergence properties. An optimal parameter set-
ting depends on the problem at hand as well as on the restrictions posed by the environment (i.e., time and
hardware constraints).
Particle Swarm Optimization (PSO) is a swarm intelligence optimization algorithm [2]. The main in-

spiration behind PSO was the flocking behavior of swarms and fish schools. PSO has proved to be very
efficient in numerous applications in science and engineering [3, 4, 5, 6]. PSO’s convergence is controlled
by a set of parameters that are usually either determined empirically or set equal to widely used default
values.
We suggest an approach for determining the PSO parameters, tailored for the optimization problem at

hand (we consider only minimization cases, although the technique can be straightforwardly applied in
maximization problems). The proposed approach employs techniques from computational statistics and
statistical experimental design, and it is applicable on all PSO variants. It can be also applied to any
parameterizable search algorithm, such as evolutionary algorithms (EA) or other direct search methods.
To justify the usefulness of our approach, we analyze the properties of PSO from the viewpoint of an
optimization practitioner in the context of a real–world optimization problems. More specifically, we
consider the optimization of an elevator group controller as well as well–known test functions, extending
the approaches proposed in [7] and [8].
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2 Problem, Algorithm and Environment
Almost all new office buildings in modern cities are high rise buildings and require efficient elevator sys-
tems. The elevator group controller assigns elevators to customer service calls, based on a specific policy.
This policy should be optimal with respect to different goals, such as the overall throughput, waiting times,
energy consumption etc. Different building types and traffic situations make controllers and the related
policies incomparable. This was the main motivation for the development of a simplified elevator group
control model, which is called the Sequential Ring (S–ring). The state of the system at time t is mapped to
a binary vector. Since the S–ring has only a few parameters, it can be used as a test problem generator for
benchmark testing of algorithms1 [9, 10]. The S–ring constitutes also a well suited model to simulate and
analyze bunching problems [11].
PSO belongs to the class of stochastic, population–based optimization algorithms [12]. It exploits a

population of individuals to probe the search space. In this context, the population is called a swarm
and the individuals are called particles. Each particle moves with an adaptable velocity within the search
space, and it retains the best position it has ever visited. PSO is a stochastic algorithm, and, therefore, it
requires random number seeds. An optimization practitioner is interested in robust solutions, i.e., solutions
independent from the random seeds that are used to generate the random numbers. The proposed statistical
methodology provides guidelines to design robust PSO algorithms under restrictions, such as a limited
number of function evaluations and processing units. These restrictions can be modeled by considering the
performance of the algorithm in terms of the (expected) best function value for a limited number of fitness
function evaluations. A discussion on different problem classes for real–world optimization problems is
provided in [13].

3 Computational Statistics
Statistical methods, such as experimental design techniques and regression analysis, can be used to analyze
the experimental setting introduced in the previous section. Breiman et al. introduced regression trees as
a “flexible non–parametric tool to the data analyst’s arsenal” [14]. Regression trees are used for screening
variables and checking the adequacy of regression models [15]. The construction of classification and
regression trees (CART) can be seen as a type of variable selection, which is similar to the stepwise
regression techniques in classical regression analysis [16]. Compared to linear models, tree–based models
are easier to interpret when qualitative and quantitative predictors appear in the model.
A fractional factorial design was considered to perform the regression tree based screening experiments

with PSO [17]. We considered a sequential approach that combines existing as well as new results, and
enables a step–wise increase in the regression model complexity. Starting with a simple linear model, the
final model can be analyzed with response surface methods (RSM). Furthermore, design and analysis of
computer experiments (DACE) methods for the analysis of optimization algorithms, as proposed in [18],
have been used. Santner et al. [19] presented a heuristic algorithm for unconstrained global optimization
problems, which is based on the expected improvement [20]. The discussion in [19] leads to the conclusion
that new designs are attractive if either there is a hight probability that their predicted output is below the
current observed minimum and/or there is a large uncertainty in the predicted output. This result comes
in line with the experimenters’ intention to avoid sites that guarantee worse results, and constituted the
motivation for the following heuristic [18]:

1. Choose an initial designDn with n points.

2. Run the algorithm at x⃗i ∈ Dn, i = 1, . . . , n, to obtain the vector of output values y⃗(x⃗).

3. Check the termination criterion.

1 A reference implementation of S–ring model can be requested from the authors: thomas.bartz-beielstein@udo.edu.
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Table 1 Tuning of the PSO parameters on the S–ring with DACE. First, second and third design with corresponding
fitness values Y .

Y P c1 c2 wmax wScale wIterScale Vmax

2.4626 8 1.74419 2.11749 0.842983 0.444293 0.951067 36.7564
2.4237 6 2.24586 2.44838 0.897144 0.606148 0.812619 118.051
2.4167 6 2.2722 1.71572 0.937604 0.561817 0.64614 138.371
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Fig. 1 DACE fit. PSO optimizing the S–ring model.
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Fig. 2 Regression tree showing the parameterization
of the PSO optimizing the S–ring model.

4. Select a new point x⃗n+1 that maximizes the expected improvement (cf. [20]).

5. Run the algorithm at x⃗n+1 to obtain the output y(x⃗n+1).

6. Set Dn+1 = Dn ∪ {x⃗n+1}, n = n + 1, and go to 3.

4 Experimental Results
We first investigated simple well–known test functions [21] to gain an intuition regarding the workings of
the proposed technique. For example, for the 10–dimensional Rosenbrock function and the parameteriza-
tions provided in [21], we obtained an improved PSO parameterization that consists of a population size
P = 44, c1 = 1.60379, c2 = 2.19376,wmax = 0.825048,wScale = 0.312031,wIterScale = 0.932467, and
Vmax = 102.235. The mean best function value was 9.8118 (with a minimum value equal to 0.0037649),
while, in [21], the mean best function value was equal to 96.1715.
In the next step of our analysis, the S–ring model was considered. The improved parameterization

using DACE was P = 6, c1 = 2.2722, c2 = 1.71572,wmax = 0.937604,wScale = 0.561817,wIterScale =
0.64614, and Vmax = 138.371, and the best function value was 2.4167. Furthermore, small swarms proved
to perform better than large ones. The DACE and CART techniques provided similar configurations of the
PSO parameters, as depicted in Figs. 1 and 2.

5 Synopsis
CART and DACE provide effective and efficient means to improve PSO performance, significantly. Only
a few tree growing phases and DACE iterations (less than 5) were needed to find better PSO parame-
terizations. Regression trees have shown their ability to model the dependencies between different PSO
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parameterizations in a very intuitive manner. Although they are more conservative than the classical re-
gression techniques, their results are reliable and similar to the results obtained from classical regression
analysis and DACE. Moreover, classical regression models, which are much more complicated and require
assumptions on the underlying distribution, can be alleviated. On the other hand, DACE are restricted to
quantitative factors, but provide a more detailed insight into the influence of different factors on the algo-
rithm’s performance. A drawback of the proposed approach, which is common to all statistical methods in
this field, is the determination of a good starting design.
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