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Abstract. Cyclone Dust Separators are devices often used to filter solid particles
from flue gas. Such cyclones are supposed to filter as much solid particles from
the carrying gas as possible. At the same time, they should only introduce a mini-
mal pressure loss to the system. Hence, collection efficiency has to be maximized
and pressure loss minimized. Both the collection efficiency and pressure loss are
heavily influenced by the cyclones geometry. In this paper, we optimize seven
geometrical parameters of an analytical cyclone model. Furthermore, noise vari-
ables are introduced to the model, representing the non-deterministic structure of
the real-world problem. This is used to investigate robustness and sensitivity of
solutions. Both the deterministic as well as the stochastic model are optimized
with an SMS-EMOA. The SMS-EMOA is compared to a single objective opti-
mization algorithm. For the harder, stochastic optimization problem, a surrogate-
model-supported SMS-EMOA is compared against the model-free SMS-EMOA.
The model supported approach yields better solutions with the same run-time
budget.

1 Introduction

The reduction of emissions from coal-fired power plants is a demanding task. Cyclone
separators are frequently used devices for filtering the flue gas of such plants. They re-
move dispersed particles from gas. Their advantages are simple structure, low costs and
ease of operation. Collection efficiency and pressure loss are the two most important
performance parameters. They are heavily influenced by the choice of several geomet-
rical design parameters, like height or diameter. This results into a Multi-Objective Op-
timization (MOO) problem, the so called Cyclone Optimization Problem (COP). This
study shows how a COP can be solved and analyzed, based on an analytical, deter-
ministic model. Furthermore, the analytical model is extended by adding several noise
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variables. These enable to evaluate robustness of solutions, and yield a better estimate
of how noisy real-world circumstances affect the problem. Techniques like a classical
as well as a model-supported SMS-EMOA are used to handle the MOO problem.

The remainder of the paper is structured as follows. Section 2 provides an overview on
previous research and methods w.r.t. the modeling and the COP in particular as well
as MOO. This section is followed by a short summary of the research questions and
goals in Section 3. Section 4 describes the problem setup, introducing parameterizations
for the COP. A sensitivity analysis of the problem is depicted in Section 5, which is
followed by the description of the performed optimization experiments and their results
in Section 6. A short summary and a discussion of the findings is given in Section 7.
The paper closes with an outlook on future research in Section 8.

2 Previous Research and Methods

2.1 Cyclone Optimization
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Fig. 1: Schematic representation of a cyclone dust separator.

Cyclones exist in different shapes but the reverse flow cyclone represented in Fig. 1 is
the most common design in industry. The principle of cyclone separation is simple: the
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gas-solid mixture enters at the top section tangentially. The cylindrical body induces a
spinning, vortexed flow pattern to the gas-dustmixture. Centrifugal force separates the
dust from the gas stream: the dust is moved to the walls of the cylinder and down the
conical section to the dust outlet while the gas exits through the outlet pipe.

Significant parameters of a cyclone Several characteristics constitute a COP.

1. Geometric shape
Seven geometric parameters allow to describe the cyclone as shown in Fig. 1.

2. Fluid/Gas properties
Parameters like viscosity or density describe the carrier substance.

3. Particle Properties
Density, concentration and distribution of particle sizes describe the particle com-
position.

4. Collection efficiency (CE)
The overall CE of the cyclone describes the amount of particles filtered from the
gas.

5. Pressure Loss (PL)
The Pressure Loss is the difference in pressure between inlet and outlet.

These different characteristics are summarized in Table 1. Pressure loss and collection
efficiency are the main criteria used to evaluate cyclone performance. Both are func-
tions of the cyclone dimensions. Normally, the goal of cyclone design is to maximize
collection efficiency and to minimize pressure loss by adjusting the geometric parame-
ters.

Previous Optimization Studies A first multi objective optimization of cyclone sepa-
rators was performed by Ravi et al. [2]. They used the Non Dominated Sorting Genetic
Algorithm NSGA II to optimize an analytical model by Mothes and Löffler [1], min-
imizing pressure loss and maximizing total collection efficiency for eight geometrical
parameters. Elsayed and Lacor [3] optimized four geometrical parameters using compu-
tational fluid dynamics CFD models and the a model based on work by Barth [4]. They
minimized pressure loss only, using the response surface methodology. Pishbin and
Moghiman [5] optimized seven geometry parameters with a genetic algorithm, mini-
mizing pressure loss and maximizing efficiency. They used a CFD model to construct
the fitness function. The bi-objective problem was transferred to a single-objective prob-
lem using weights. Elsayed and Lacor [6] minimized pressure drop and cut-off diame-
ter. They used a Pareto optimization approach, utilizing a Radial Basis Function Neural
Network RBFNN. The RBFNN was trained with data from literature. A similar ap-
proach was taken by Safikhani et al. [7], where the data for trained neural network
stemmed from CFD simulations.

The herein presented work uses the analytical model based on work by Barth [4] and
Muschelknautz [8]. In contrast to previous approaches, we introduce a stochastic sim-
ulation based on the analytical model, where several parameters are assumed to be



4 Breiderhoff et al.

Table 1: Table of fluid, particle and geometrical parameters used in the experiments. Most values
are taken from an example by Löffler [1].

Parameter Symbol Default Unit

Geometry Cyclone diameter Da 1260 mm
Cyclone height H 2500 mm
Outlet pipe diameter Dt 420 mm
Outlet pipe immersion Ht 640 mm
Cyclone cone angle ε 13.134 ◦

Inlet height He 600 mm
Inlet width Be 200 mm

Fluid Viscosity µ 18.5 · 10−6 Pa · s
Flow Rate Vp 5000 m3

h

Gas density ρf 1.86 kg
l

Particle Particle density ρp 2 kg
l

Particle concentration ce 50 g
m3

Output Pressure Loss PL 2564 Pa
Collection Efficiency CE 0.89 (without unit)

noisy. This allows to investigate robustness of solutions. Furthermore the more recent
SMS-EMOA is used to solve the multi-objective COP. In case of the stochastic cyclone
simulation, the model-free SMS-EMOA compared to a model-supported SMS-EMOA,
using a Kriging surrogate model.

2.2 Analytical Models for Dust Separation

Barth [4] and Muschelknautz [8] proposed a simple model based on a force balance,
as presented by Löffler [1]. This model enables to obtain the collection efficiency and
pressure loss. The principle of calculation is based on the fact that a particle carried by
the vortex is influenced by two forces: a centrifugal force and a flow resistance. They
are expressed at the outlet pipe radius ri where the highest tangential velocity occurs.
The model represents a reverse flow cyclone with a tangential rectangular inlet. This
is a simple and still useful model, by which friction was first introduced in cyclone
modeling.

Collection Efficiency The cyclone geometry, together with flow rate, defines the cut-
size of the cyclone. Cut-size defines the particle size that will be collected with 50%
efficiency. Smaller particles are collected with lower efficiency, larger with higher effi-
ciency. Barth [4] developed a mathematical model for the cut-size as follows:

xGr =

√
18µvrri

(%p − %)v2φi
(1)
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where ri is the outlet pipe radius, vr is the radial gas velocity on the outlet pipe and vφi
is the cyclone inlet velocity.

The fractional efficiency curve assigns an efficiency to the particle diameter as shown
in Fig. 2. Larger particles are collected more efficiently than smaller particles. The
fractional efficiency curve is described by:

T (x) =

(
1 +

2
x
xGr

3,564

)−1.235

(2)

where x is the particle size and xGr equals to Eq. (1). The overall collection efficiency
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Fig. 2: Fractional efficiency curve.

is predicted according to:

E =

∫ xmax

xmin

T (x)qe(x)dx =

xmax∑
xmin

T (x̃i)∆Qe(xi) (3)

where xmin is the lower bound of the particle size, xmax is the upper bound of the
particle size, x̃i is the mean particle size, ∆Qe(xi) is the change in distribution of
particle sizes and qe(x) =

∆Qe(xi)
∆xi

.

Pressure Loss Pressure loss is defined as the difference in pressure between two points
of a fluid carrying body. It occurs with frictional forces. It relates directly to operation
cost. Therefore an exact prediction is very important. Total pressure loss equals to:

∆p =
ρ

2
v2i (ξe−a + ξa−i + ξi−m) (4)

where ξe−a is the friction coefficient for the loss within the inlet (equals zero because
of the tangential rectangular inlet) , ξa−i is the friction coefficient for the loss within
the cyclone body, ξi−m is the friction coefficient for the loss within the outlet pipe and
ρ
2v

2
i is the relationship between pressure and velocity.
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2.3 Model Alternatives

The above described analytical model is used as a predictor for collection efficiency
and pressure loss. Several other analytical models of the cyclone separator exist [9].
Although all these methods have had a remarkable success, more advanced ideas are
needed to model cyclones. Unsteadiness and asymmetry are for example two features
not considered in classical cyclone theory that may affect the velocity distribution to a
great extent, thus changing the model of the separation mechanism. On the other hand,
as in many other fields, CFD currently emerges as a potentially accurate modeling tech-
nique.
Still, analytical models provide a good starting point for first investigations. Such mod-
els usually are not as precise as the more complex CFD models, but are much faster
with respect to calculation time and other resources.

2.4 Multi Objective Optimization

In classical optimization methods only one objective is investigated. This is different in
Multi Objective Optimization (MOO) where more than one objective can be optimized
in parallel. However, new concepts had to be developed because these objectives are
often conflicting, i.e. an improvement in one objective automatically leads to a deteri-
oration in other objectives. Here, the concept of Pareto dominance comes into play. It
says that solution a dominates solution b if a is not worse in any objective and better
than b in at least one objective. Formally, in case of minimization it reads

a dominates b⇔ ∀i : fi(a) ≤ fi(b) ∧ ∃j : fj(a) < fj(b)

for a fitness function f of multiple objectives, f(x) := (f1(x), f2(x), . . . ) Based on
this concept, an optimization process searches for solutions that are not dominated by
any other solution. This results into a set of non-dominated solutions, called the Pareto
front. The performance of an optimization process can therefore only be expressed in
relation to a set of solution, rather than the quality of a single best solution.
Evolutionary Algorithms (EA) have become a standard tool for solving MOO problems.
These algorithms are based on sets of solutions. This coincides well with the challenge
of finding a set of solutions in MOO problems. Optimization Algorithms (EMOA) are
modern MOO techniques that optimize the space that is covered by a Pareto front with
respect to a predefined reference point. Maximizing this space, also called the hypervol-
ume, pushes solutions more and more towards the desired objective values. Moreover,
the hypervolume rewards a high diversity of solutions, i.e. a wide spread, and a smooth
distribution of solutions along the border to the non-dominated area. All these prop-
erties are highly appreciated in MOO. One of the techniques employing hypervolume
maximization is the SMS-EMOA (cf. Beume et al. [10]), which is also employed here.

2.5 Expensive Optimization Problems

In general, industrial design tasks can not be optimized by manufacturing multiple de-
sign instances and deciding for the best alternative afterwards. In almost all cases, this
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procedure would simply be too expensive. As a consequence, models are considered
to estimate the performance of different designs before the actual manufacturing pro-
cess. These simulations or models themselves can become time-consuming to evaluate.
Developing surrogate approaches is the most important solution to that issue. In such
approaches, the optimization problem (e.g. the cyclone model) is replaced by a cheaper,
or easier to optimize surrogate model. A comprehensive survey of surrogate modeling
in optimization was provided by Jin [11].
A methodical framework for surrogate model based optimization of noisy and deter-
ministic problems is Sequential Parameter Optimization (SPO) introduced by Bartz-
Beielstein et al. [12]. SPO has been developed for solving expensive algorithm tuning
problems but can be directly employed for solving real world engineering problems as
well.
One of the most often used surrogate-models is Kriging. This is partly due to the fact
that it poses an excellent predictor of smooth, continuous problem landscapes. More-
over, it provides an uncertainty estimate of its own prediction, which can be used to cal-
culate the Expected Improvement (EI) of a solution. This was used in Efficient Global
Optimization by Jones et al. [13] to balance exploitation and exploration in the opti-
mization process.
In MOO, several approaches employ surrogate modeling. An overview of surrogate
modeling in MCO is given by Knowles and Nakayama [14]. EGO has also been ex-
tended for MOO problems, as in the ParEGO Algorithm by Knowles [15] or the SMS-
EGO approach suggested by Ponweiser et al. [16]. Emmerich et al. [17] show how the
EI in hypervolume can be calculated exactly.

3 Questions and Goals

Real-world industrial multi-objective test cases are highly appreciated by the MOO re-
search community because these allow for a comparison of methods apart from artificial
test cases. The latter are usually used in the community but do not yield the complexity
or significance of real-world applications. The COP is presented as a MOO test case and
first results are presented. Moreover, the MOO results are compared to results from a
single objective optimization approach to determine a possible lack of performance due
to involving multiple objectives in parallel. Therefore, the single objective optimization
results are compared to the extreme Pareto non-dominant solutions.
The cyclone model assumes a certain distribution of particle sizes as well as fixed,
undisturbed settings of all other relevant variables. In practice, variables like the inflow
speed or particle sizes will be noisy. That noise can be simulated by repeated sampling
from random distributions, each sample leading to a new evaluation of the cyclone
model. The repeated evaluation with different samples leads to a more time consuming
target function for the optimization algorithm. To alleviate this issue, surrogate models
can be introduced to support the optimization process. Therefore, the goals of this study
are to:

– test the deterministic COP as a MOO problem.
– compare a single-objective and a multi-objective approach.
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– analyze the influence of noise on the solution quality.
– determine influence of geometry, fluid and particle parameters.
– compare a model-free and a model-supported SMS-EMOA in case of optimizing a

stochastic cyclone simulation.

4 Problem Setup

4.1 Parameters of the Deterministic Cyclone Model

The herein described experiments are based on an example by Löffler [1]. This exam-
ple uses the geometrical, fluid-specific, and particle-specific parameters summarized in
Table 1. The geometrical parameters to be optimized are varied in fixed boundaries,
which are ±10 % of the default values from Table 1. Geometrical parameters could be
varied in a much wider range, however, this range would not necessarily be fitting to
the given fluid and particle parameters. Therefore, the 10% deviation was chosen as a
typical experimental setup. A two-dimensional case (with Da and H only) as well as a
seven dimensional case with all seven parameters are investigated.

4.2 Stochastic Cyclone Simulation

In addition to the parameters from the deterministic model, three noise sources are
introduced. That is, flow rate Vp, particle density ρp, and the particle sizes xi used in
the collection efficiency calculation can be subject to noise. The flow rate is allowed to
vary in between ±10% of the default value, while particle density varies within ±5%.
In both cases, a uniform distribution is used. For the collection efficiency calculation,
one sample is drawn in each of the intervals from Table 2, instead of simply using the
midst of each interval. That is, the particle size in each interval is determined randomly
with a uniform distribution. These values are then inserted in Eq. (3), to calculate the
overall collection efficiency.
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Table 2: Particle size distribution table. Values are derived from an example presented by Löf-
fler [1].

Intervall [µm] Mean [µm] Density Cumulative

0-2 1 0 0
2-4 3 0.02 0.02
4-6 5 0.03 0.05
6-8 7 0.05 0.1

8-10 9 0.1 0.2
10-14 12.5 0.3 0.5
15-20 17.5 0.3 0.8
20-30 25 0.2 1

5 Search-Space and Sensitivity Analysis

5.1 Deterministic Cyclone model

The objective landscape of the two-dimensional decision space is depicted in Fig. 3.
The surface of the landscape is plotted based on a 100 × 100 point grid. Based on this
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Fig. 3: Surface of the deterministic objectives landscape. CE is left, PL is right. The Pareto set
resides as white dots on the upper boundary of the plot. The extreme points (found by single
objective optimization) reside in the upper corners. CE is negative, since all objectives are mini-
mized.

sweep, the following classical analysis was performed.

1. Model fitting: for each objective, a regression model was fitted separately.
2. Desirability: define desirability for each objective.
3. Optimization: maximize the overall desirability.

The model fitting step involves the standard techniques from regression analysis, i.e.,
model specification, stepwise regression, and validation (considering residual plots etc.).
The definition of desirability is elementary in this case: we defined a linear desirability
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function, which maps the interval of the CE and PL values to the intervals from zero
to one. Since we are considering a minimization problem, the maximum CE and PL
values are mapped to zero, whereas their minimum counterparts are mapped to one. Us-
ing classical optimization techniques, the geometrical mean of the two desirabilities is
maximized. The following setting is considered optimal: Da = 1134, H = 2750, Dt =
462, Ht = 640, ε = 13.13, He = 659, and Be = 219. The outlet pipe immersion Ht

and the cyclone cone angle ε are set to their default values, because the analysis reveals
that their effects are negligible. The classical approach results in a pressure loss value
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Fig. 4: Search-space analysis of the deterministic landscape

of PL = 1385.35 and a collection efficiency of CE = −0.88. The design based on the
default values has an associated hypervolume of 2172.28, whereas the hypervolume,
which is based on the desirability analysis is 3189.60. The reference point for the hy-
pervolume calculation is 5000 PL and 0 CE. Before presenting a comparison of these
rather simple results with state-of-art optimization techniques in Sect. 6, a sensitivity
analysis of the stochastic cyclone simulation is presented in Sect. 5.2.

5.2 Stochastic Cyclone Simulation

First experiments where only Da and H were varied showed that the noise level is
high enough to make it hard to identify any structure in the problem landscape. Further
experiments with repeated evaluations showed that structure seen in the deterministic
model resurfaces for the expected value. The introduced noise is multiplicative, both
for CE and PL. Variance is lowest for solutions with good CE and PL values.
The sensitivity analysis of the stochastic simulation is based on 100,000 data points,
that were generated via Latin Hypercube Sampling (LHS). Each design point was eval-
uated ten times. The LHS intervals were determined as default value ±10%. Default
values were introduced in Table 1. Based on these modifications of seven geometrical
parameters, the simulated output values are obtained, namely pressure loss and collec-
tion efficiency. Since both output values are minimized, CE has to receive a negative
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sign. Noise variables, i.e., flow rate Vp, particle density ρp, and particle sizes xi were
added to the analysis.
The distribution of the CE variable has a long tail, see Fig. 5. Values from the upper
ten percent quantile are labeled. The histograms shown that Vp has no effect on CE,
whereas ρp has a significant impact:

– Small ρp values result in worse CE, and vice versa.
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Furthermore, we can conclude that CE is dominated by the noise factor ρp. This can
be seen from the regression tree analysis, which was performed to discover the driving
forces. This simple analysis, visualized in Fig. 6, reveals that

– regarding collection efficiency, about two-third of the variance can be explained by
the noise variable particle density ρp

– regarding pressure loss, it can be seen that a large amount of the variance can be
explained by the outlet pipe diameter Dt and the noise variable particle density ρp.

As can be seen, Vp is the only noise variable that has influence on PL, which is to be
expected because it is the only of the three sources to be related to PL in the model
formulas. Vp is also the only noise source that does not influence CE. For CE, ρp has
the strongest influence. Figure 7 illustrates the effects of the design variables on PL.
Fig. 8 shows the results from a sensitivity analysis, which is based on a regression
model. Only a model for PL could be obtained, because CE is determined by the noise
variable ρp. Best configurations used settings at the border of the region of interest. The
expected pressure loss of this setting is 1353.95 .
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6 Optimization

6.1 Optimization of the Deterministic Cyclone Simulation

Setup Two optimization-cases are tested:
Two-dimensional case: For a first impression, only two parameters are varied, the cy-
clones diameter and height. All other parameters are kept constant at their default value.
Both pressure loss (PL) and collection efficiency (CE) are optimized by a simple steady-
state SMS-EMOA (cf. Beume et al. [10]), with a population size of 100. The employed
implementation of the SMS-EMOA is part of the SPOT R-package1. As a comparison,
the single objective Nelder-Mead [18] algorithm for box-constrained [19] problems is
used to optimize both objectives separately. The SMS-EMOA receives a function eval-
uation budget of 100,000. The Nelder-Mead algorithm receives the same budget, but is
expected to converge in a small fraction of that budget.
Seven-dimensional case: The complete set of seven geometrical parameters is opti-
mized in the same way. Due to the larger search space dimension, both the function
evaluation budget and the population size of the SMS-EMOA were multiplied by a fac-
tor of 3.5.
These first and very simple optimization experiments are not repeated but simply run
once, to give a first impression of the found Pareto fronts.

Results from the Deterministic Optimization Runs The results of the first optimiza-
tion experiments is depicted in Fig. 9. From the results of the optimization, and the
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Fig. 9: Pareto front (black dots) estimated by SMS-EMOA for the deterministic, bi-objective prob-
lem. Crossed circles show the results of the single objective Nelder-Mead optimizer. Left: two-
dimensional case, only diameter and height are optimized. Right: Optimization of all seven ge-
ometrical parameters. The grey dots on the right side show, again, the two-dimensional case
front.

shape of the two-dimensional objective landscape shown in Fig. 3, it is clear that the
1 SPOT is available at www.cran.r-project.org/package=SPOT



14 Breiderhoff et al.

true Pareto front resides on the upper boundary of the cyclone height. That is, when
the height is chosen to be maximal any value of the diameter leads to Pareto optimal
solutions.
In the two-dimensional case, the hypervolume of the Pareto front estimate is 2539,
whereas in the seven-dimensional case 3341 is reached. This is based on the same ref-
erence point with 5000 PL and 0 CE as used in Section 5.1. The Pareto fronts of the
two-dimensional and seven-dimensional decision space lead to different Pareto front
shapes. The former is continuous, whereas the latter seems to have a discontinuity at
the knee of the front. The larger search space of the seven-dimensional problem allows
to find better solutions, which all dominate solutions found for the two-dimensional
case. Furthermore, the single objective optima reside on the extreme points of the two-
dimensional decision space front. In case of the seven-dimensional decision space, the
optimum found by Nelder-Mead for the PL is separate from the corresponding extreme
point. While both have nearly identical PL values, the collection efficiency is much
worse for the single objective optimizer.
A scatter-plot analysis reveals that the ε parameter shows the least structure, thus hav-
ing little influence on solution qualities. Many of the Pareto optimal points reside on
the boundaries of several parameters. The discontinuity in the Pareto front seems to be
caused by certain Parameters (e.g. Be, He or Dt) hitting a boundary.

6.2 Optimization of the Stochastic Cyclone Simulation

Setup In this optimization study, a model-free SMS-EMOA as well as a surrogate
model supported SMS-EMOA are compared. A fixed budget of 1 million function eval-
uations is given for each model-free SMS-EMOA run. The budget is 10 times larger
than the budget used in the deterministic example, due to the difficulties created by
the high noise level. Results are compared for 1, 10, 100 and 1000 evaluations of each
individual. Larger numbers of repeated evaluations lead to a corresponding decrease
in the number of generations. Mean values of these repeated evaluations are used as
approximations of the true fitness. With these settings, each SMS-EMOA run takes ap-
proximately 210 seconds2.
The Sequential Parameter Optimization Toolbox (SPOT) is used for the model-supported
run. The chosen model type is Kriging. The Kriging implementation is based on work
by Forrester et al. [20]. Since Kriging is expensive to build, the model should not be
build too often. This is especially true for this study, since the target function is not very
expensive. Therefore, the initial design (or population) of the model-supported run is
chosen to contain 35 points, that is 5 for each decision space dimension. Each point
is simulated 1000 times. More complex noise handling (e.g., Multi-Objective Optimal
Computing Budget Allocation MOCBA [21] or similar approaches) are not employed
here since only one surrogate optimization step is performed. That means, the Kriging
model is trained only once. The SMS-EMOA is employed to optimize the surrogate
model. It receives a budget of 77,000 evaluations of the Kriging surrogate, thus find-
ing a 100 point Pareto front estimation. No EI criterion is employed, since the harsh

2 The experiments, including runtime estimation, have been performed on a System with 3.40
GHz Intel Core i5, 8GB RAM, Windows 64.
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time restriction makes pure exploitation the more desirable choice. This result into a
run-time of roughly 210 seconds, consistent with the model-free run-time. Here, the
main contributors to run-time are the training of the Kriging model, and the subsequent
optimization on the Kriging model.
Both the SMS-EMOA and the Kriging-supported SMS-EMOA are run 20 times. The
quality of each point in the resulting Pareto front estimates are validated by 10,000
runs of the stochastic simulation. To compare, the hypervolume indicator is used with a
reference point of 5000 PL and zero CE.

Results from Stochastic Optimization Runs The optimization results are summa-
rized in Fig. 10. For the model-free SMS-EMOA, increasing the number of evaluations
per point seems to yield no improvement. Exploring more points is at least as profitable
as estimating the quality of each point more accurately. Still, it can be seen, that the
model supported SMS-EMOA clearly outperforms the model-free SMS-EMOA. This
is despite of the fact, that the model uses a much smaller budget than the SMS-EMOA.
The run-time of both approaches is about equal. The Kriging model seems to deal well
with the remaining noise in the objective function, yielding a more easy to optimize
surrogate. This is especially interesting since the target-function is not exactly expen-
sive, which would be the usual case where Kriging surrogates work well. Still, 1000
evaluations of each point make this a semi-expensive problem. One explanation for the

●●

●●

● ●●

SMS−EMOA, 1 evaluation
SMS−EMOA, 10 evaluations

SMS−EMOA, 100 evaluations
SMS−EMOA, 1000 evaluations

Krig+SMS−EMOA, 1000 evaluations

3120 3140 3160 3180 3200 3220 3240

Hypervolume

Fig. 10: Boxplots for the optimization experiments with the stochastic simulation. The x-axis
shows hypervolume of the estimated fronts, validated by 10,000 runs for each point. Higher val-
ues are better. Evaluation numbers refer to the repeated evaluation of each point.

excellent performance of the model-based SMS-EMOA, besides its ability to smoothen
the noisy landscape, may be, that even in the seven-dimensional case, the true front is
spread along several boundaries of the decision space. This could already be observed
for the deterministic model, and holds here as well. That may lead to a situation, where
the surrogate model does not have to have high accuracy over the whole search space
because it suffices to predict decreasing values towards the boundaries.

7 Summary and Discussion

This paper presents a multi objective optimization problem, based on a deterministic,
analytical model of a cyclone dust separator. Noise influence was added, thus generating



16 Breiderhoff et al.

a stochastic simulation model. This allowed not only to optimize, but also to investigate
robustness of solutions, against uncertainty in the noisy variables.
In case of the deterministic model, users can choose preferable results from the Pareto
front, depending on their preference of CE and PL combinations. Preferred design
points can be further analyzed with the stochastic simulation model. For instance, a
user might choose the knee of the Pareto front (see right plot in Fig. 9) and an extreme
point on the upper left part of the Pareto front, as summarized in Table 3. Those settings
could be reevaluated with the stochastic model, yielding resulting variance estimates
as depicted in Fig. 11. In practice, it may occur, that a user would prefer the extreme
solution. While this solution has a worse expected value for CE, there is strong overlap
between both solutions. On the other hand, the PL values show clearly a significant dif-
ference, thus leading to the potential preference of the extreme point.
It was also shown, that the stochastic simulation can be optimized directly. While the

Table 3: Two Points from the Pareto front found by SMS-EMOA on the deterministic model, with
all seven geometrical parameters considered. The whole front is shown in Fig. 9 on the right.

Parameter Point 1 (knee) Point 2 (extreme)

Da 1134 1134
H 2750 2750
Dt 462 462
Ht 576 576
ε 13.92 12.81

He 540 660
Be 180 220

PL 2103.87 1375.90
CE -0.921 -0.86

high noise level makes this more costly for a simple SMS-EMOA, a surrogate model
based approach seems to handle the issue more efficiently.
The classical, single objective Nelder-Mead is able to identify the optima of the deter-
ministic objective, but fails in case of the noisy simulation.
The presented cyclone model representations are of comparativly simple structure, and
thus are good candidates for real-world based multi objective test problems.
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Fig. 11: Boxplots for the knee, and an extreme point of the Pareto front found for the deterministic
model. Corresponding to the parameters in Table 3, reevaluated 1000 times with the stochastic
simulation. Lower values are better.

8 Outlook

While the analytical cyclone model does pose an interesting MOO problem, it lacks any
information about quality of non-standard problems and solutions. That means, when-
ever particle, fluid or geometry attributes stray to far from the standard, the models
quality deteriorates. For instance, the model is unable to represent non-centric posi-
tions of the outlet or slanted inlets. Still, such changes to geometry are of high interest
to practitioners in industry. To get a better quality estimate of these geometries, CFD
models are used.
CFD models offer a wide variety to model the dynamics of particles in any kind of flow.
However, such models need different preliminaries like the discretization of the consid-
ered space (meshing) and a solver for the resulting set of (partial) differential equations.
This results in rather time-consuming and thus expensive simulations for each design
alternative. However, such simulations can be very precise, mapping the real process
with a very high accuracy and thus might be worth the effort.
To support the optimization of such time consuming simulations, the analytical model
may still be of use. It can be used for multi-fidelity optimization of such CFD models,
using techniques like Co-Kriging [20]. While they represent only a part of the possi-
ble number of geometrical parameters, they can still be used to improve the quality of
such a Co-Kriging model, which would otherwise have to rely on accurate, but sparse,
CFD simulations only. Furthermore, the optima or Pareto fronts found on the analytical
model can be used to generate starting points for the optimization of the more complex
CFD models.
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Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe ”CIplus”. Alle
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