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Abstract. A new approach for the determination of the parameters of
the Particle Swarm Optimization algorithm, by using regression trees,
is proposed, and applied to a complex real-world optimization problem,
namely the optimization of an elevator group controller, as well as to
two well-known benchmark problems. The results support the claim that
the proposed technique can enhance the performance of the algorithm
and provide proper parameter values. Advantages and drawbacks are
discussed and conclusions are derived.

1 Introduction

Modern search heuristics have proved to be very useful for solving complex real—
world optimization problems that cannot be tackled through classical optimiza-
tion techniques [1]. Many of these search heuristics involve a set of exogenous
parameters that affect their convergence properties. An optimal parameter set-
ting depends on the problem at hand, as well as on the restrictions posed by the
environment (i.e. time and hardware constraints).

Particle Swarm Optimization (PSO) is a swarm intelligence optimization
algorithm [2]. The main inspiration for its development was the flocking behavior
of swarms and fish schools. PSO has proved to be very efficient in numerous
applications in science and engineering [3—7]. PSO’s convergence is controlled
through a set of parameters that are usually determined empirically, or they are
set equal to widely used default values.

We suggest an approach for determining the values of these parameters, tai-
lored for the optimization problem at hand. The proposed technique is based on
statistical experimental design and it is applicable to all PSO variants. It can
be also applied to any parameterizable search algorithm, such as evolutionary
algorithms (EA). To justify the usefulness of our approach, we analyze the prop-
erties of PSO algorithms from the viewpoint of an optimization practitioner, in
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the context of a real-world optimization problem, namely the optimization of
an elevator group controller, as well as to two well-known test functions, ex-
tending the approach proposed in [8], which was based on statistical design of
experiments and classical regression analysis.

This article is organized as follows: the elevator group control problem, the
PSO algorithm, as well as the goals of this optimization problem are introduced
in Section 2. Section 3 is devoted to the description of the proposed approach
for the specific control problem. Experimental results are reported in Section 4
and discussed in Section 5. A summary and an outlook are given in Section 6.

2 Problem, Algorithm and Environment

Experimental analysis of algorithms deals with the analysis of interactions among
problems, algorithms, and environments, based on experiments. To illustrate the
usefulness of this approach, we consider an elevator group controller (problem),
PSO (algorithm), and restrictions, such as the number of fitness function eval-
uations, as well as the number of available processors, that appear in real-life
applications (environment).

2.1 The Elevator Control Problem

Almost all new office buildings in modern cities are high rise buildings and re-
quire efficient elevator systems. The elevator group controller assigns elevators to
customer service calls, based on a specific policy. This policy should be optimal
with respect to the overall throughput, waiting times, energy consumption, and
other different goals. Different building types and traffic situations make con-
trollers and related policies incomparable. This motivated the development of a
simplified elevator group control model, the Sequential Ring (S—ring). It can be
reproduced easily and is well suited as a benchmark problem for elevator group
controllers [9].

When passengers give a hall call, they simply press a button. Therefore, only
one bit of information for each floor is sent to the group controller and the
whole state of the system is mapped to a binary string. The system’s dynamic
can be represented by a state transition table and it is controlled according to a
policy. The S—ring has only a few parameters: the number of elevator cars, m; the
number of queues, n; and the passenger arrival rate, p [10]. A 2-bit state (s;, ¢;)
is associated with each site, where s; is the server bit, while ¢; is the customer
bit. The server bit is set to 1 if a server is present on the i—th floor, and 0
otherwise, while the customer bit is set to 0, or 1 if there is no waiting passenger
or at least one waiting passenger, respectively. Fig. 1 illustrates a typical S—ring
configuration. The state of the system at time ¢ is given as

z(t) = (so(t), co(t), ..., sn1(t),cn1(t)) € B>, (1)

where IB = {0, 1}. The sites are numbered from 0 to n — 1.
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Fig. 1. The S-ring as an elevator system.

The state evolution is sequential, scanning the sites from n — 1 down to
0, and then again around from n — 1. The up and down elevator movements
can be regarded as a loop. This motivates the ring structure. At each time
step, one of the floor queues is considered, where passengers may arrive with
probability p. Therefore, the triple £(t) = (ck(t), sk (t), sx (t)), k € {0,...,n—1},
and k' = (k+1) mod n, is updated as follows: if the queue has both a customer
and a server present, the server makes a decision to “take” (that corresponds
to the bit 1) or “pass” (that corresponds to the bit 0) the customer, according
to a policy 7. In case of a “take” decision, the customer enters the car, and the
server stays there; in the case of “pass”, or if there is no customer, the server
steps to the next site. As the rules of operation are very simple this model is
easily reproducible and suitable for benchmark testing, since it can be easily
modeled as a minimization problem?.

A look—up table, such as Table 1, can be used to represent the dynamic of
the system in a compact manner. The triplet £(¢), in the first column of the
table, represents the state of the actual site: customer waiting, server present,
and server present on the next floor. The probability of a state change to the
state in the fourth column is given in the second column. Columns three and five
denote the decision and the reward respectively. The reward is defined as the
change in the number of floors with waiting customers. For example, consider
the situation in the 7-th row (110). In this case, there is a customer waiting

3 A reference implementation of the S—ring model can be requested from the authors:
thomas.bartz-beielstein@udo.edu.
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Table 1. The S-ring lookup table.

£(t)|Prob|r(z)[£(t + 1) Ar

000[T—p 000 | 0
) 100 |—-1

100] 1 100 | 0
010[1 —p 001 | 0
p | 0| 101 |-1

T[] 010 | 0

110 1 | 0] 101 | 0O
T | 010 |+1

001[1—p 001 | 0
P 01 |-1

101] 1 101 | 0
011 1 011 | 0
1] 1 011 |+1

(1zz) and the server has to make a decision (“take” or “pass” the customer).
There is a server present on the same floor (11z) but no server on the next floor
(110). In case of a “pass” decision, w(z) = 0, the situation 101 (customer still
waiting, no server present, server on the next floor) occurs. A “take” decision
leads to the situation (no customer present, server is still on the floor, and no
server is on the next floor), that is 010. As the number of sites with passengers
is reduced in the latter case, the reward is +1, whereas no reward is given in the
former case.

Despite the model’s simplicity, it is hard to find an optimal policy 7*, even
for a small S—ring, since its difference from heuristic suboptimal policies is non—
trivial. The most obvious heuristic policy is the greedy one, i.e. when given the
choice, always serve the customer. However, this policy is not optimal, except in
the case of heavy traffic (p > 0.5). This means that a good policy must bypass
some customers occasionally to avoid the “bunching” effect: many elevator cars
are positioned in close proximity to another. The performance of the system is
poor when bunching occurs. The S—ring is a well suited model to simulate and
analyze bunching problems [11].

Let 6 : R — IB, be the Heaviside function, 6(z) = 0,if z < 0, and 0(z) =
1,if z >0, and let = z(t) be the state at time ¢, see Eq. (1). Let also y € IR*"
be a weight vector. A linear discriminator, or perceptron, can be used to present
the policy in a compact manner. The basic optimal control problem is to find a
weight vector y, that represents a policy 7* for the given S—ring configuration,
such that, the expected number of sites with waiting passengers in the system
is minimized [10, 12].
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2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) belongs to the class of stochastic, population
based optimization algorithms. The ideas that underlie PSO are inspired by the
social behavior of flocking organisms, such as swarms of birds and fish schools,
whose behavior appears to adhere to some fundamental rules such as nearest—
neighbor velocity matching and acceleration by distance [13].

PSO exploits a population of individuals to probe the search space. In this
context, the population is called a swarm and the individuals are called particles.
Each particle moves with an adaptable velocity within the search space, and it
keeps in memory the best position it has ever attained. In the global variant
of PSO, the best position ever achieved by the swarm is communicated to all
the particles. In the local variant, each particle is assigned a neighborhood that
consists of prespecified particles. In this case, the best position ever attained by
the particles that comprise the neighborhood is communicated among them [13].

Let S ¢ R be a D-dimensional search space, and P be the number
of particles of the swarm. Then, the i—th particle is a D—dimensional vec-
tor X; = (z1,%2,...,2;p) | € S. Its velocity is also a D-dimensional vector
Vi = (vi1,vi2,...,v;p) | € S. The best position ever visited by the i—th particle
is a point in S, denoted as P; = (ps1,pi2,...,pip) . If g is the index of the
particle with the best position ever detected by the swarm, and ¢ is the iteration
counter (number of fitness function evaluations), then the resulting equations
for the manipulation of the swarm are [14]

Vi(t +1) = wVi(t) + ear (Pi(t) = Xi(1)) + cara (P () — Xi(1)),  (2)
Xi(t+1) = X;(t) + Vi(t + 1), (3)

where i = 1,2,..., N; w is a parameter called the inertia weight; ¢; and cy are
positive constants, called the cognitive and social parameter, respectively; and
r1, 72 are random numbers, uniformly distributed in [0, 1].

Alternatively, a different version, which incorporates a parameter called con-
striction factor has been proposed [15]. In this version the swarm is manipulated
according to the equations:

Vit + 1) = x[Vilt) + ears (PA(1) = Xi(t) +eoma (B (0 - Xi®) |, (&)
Xi(t+1) = X;(t) + Vi(t + 1), (5)

where y is the constriction factor.

Both the constriction factor and the inertia weight are used to control the
magnitude of the velocities. However, their values are determined in different
ways. The value of the constriction factor is determined through a formula [15].
On the other hand, the inertia weight, w, is empirically determined. Experimen-
tal results indicate that it is preferable to initialize the inertia weight to a large
value, in order to promote global exploration of the search space, and gradually
decrease it to get more refined solutions. Thus, an initial value around 1 and a
gradual decline towards 0 is considered a proper choice for w.
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Fig. 2. Scaling of the inertia weight.

Proper fine—tuning of the parameters may result in faster convergence and
alleviation of local minima [14]. The swarm and the velocities are usually initial-
ized randomly and uniformly in the search space, although more sophisticated
initialization techniques may enhance the performance of the algorithm [16].
Since variance reducing techniques were considered in our analysis, the positions
of particles were initialized deterministically based on a scheme proposed in [17]:

X;=(-1)!/¥D, Vielo,1], i=1,...,D.

Regarding the inertia weight, two parameters, wscale € [0, 1], and witerscale €
[0, 1], were used. The inertia weight is linear decreasing from w to w - wgcale, OVer
Gmax * WiterScale, iterations. Then, for the last Gmax * (1 — Witerscale) iterations, it
has a constant value w - wgcale- Figure 2 depicts the scaling procedure.

2.3 Environment
Eiben distinguishes three main types of problems [18]:

1. Design problems that require algorithms that find one excellent solution at
least once.

2. Repetitive problems, where good solutions must be found quickly and for
different instances of the problem.

3. On-line control problems that are repetitive problems with tight time con-
straints.

Elevator group control, as considered here, belongs to the 2nd category. In the
near future, when the elevator controllers will be capable of learning during their
operation, the controllers should be able to adapt their policy on-line, and the
problem will belong to the 3rd category.

PSO is a stochastic algorithm, thus it requires random number seeds. An op-
timization practitioner is interested in robust solutions, i.e. solutions that do not
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Table 2. Fractional factorial 25,,? design for PSO. This design can be used to screen
out important factors. It was used in the first phase of the experimental analysis.

P Wmax €1 €2 |Wscale WiterScale

15 05 0.10.1] 0.0 0.8
2|40 0.5 0.10.1 0.2 0.8
3|5 1.5 0.10.1 0.2 1.0
4140 1.5 0.10.1| 0.0 1.0
5/5 0.5 2.50.1| 0.2 1.0
6{40 0.5 2.50.1| 0.0 1.0
715 1.5 2.50.1 0.0 0.8
8|40 1.5 2.50.1| 0.2 0.8
915 0.5 0.12.5| 0.0 1.0
10/40 0.5 0.1 2.5 0.2 1.0
115 1.5 0.1 2.5] 0.2 0.8
12(40 1.5 0.1 2.5{ 0.0 0.8
1315 0.5 2.52.5| 0.2 0.8
14140 0.5 2.5 2.5 0.0 0.8
15|15 1.5 2.52.5| 0.0 1.0
16|40 1.5 2.5 2.5 0.2 1.0

depend on the random seeds that are used to generate the random streams. The
statistical methodology presented here proposes guidelines to design robust PSO
algorithms under restrictions, such as a limited number of function evaluations
and just a few processors. These restrictions can be modeled if we consider the
performance of an algorithm as the (expected) best fitness function value for a
limited number of fitness function evaluations.

3 Design of Experiments and Regression Trees

Statistical methods, such as experimental design techniques and regression anal-
ysis, can be used to analyze the experimental setting introduced in the previous
section. The classical regression analysis approach can be enhanced by using
tree-based regression methods. Regression trees appear well suited to screen out
important factor settings.

A 2?‘72 fractional factorial design was considered to perform the screening
experiments with PSO [19]. The corresponding factor settings are reported in
Table 2. We considered a sequential approach that combines existing and new
results and enables a step—wise increase in the regression model complexity.
Starting with a simple linear model, the final model can be analyzed with re-
sponse surface methods (RSM). The main focus of this paper lies on the screening
phase, while RSM and other approaches like spatial regression techniques will
be discussed in a forthcoming paper.

The most popular modeling methods is linear regression. It fits a straight
line to a set of data values. The form of the function fitted by linear regression
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Table 3. Comparison of the first with the improved designs. The first setting refers
to the values from Table 2. Gmax = 5,000 function evaluations were used. N denotes
the number of performed experiments (repeats with different random seeds) for each
scenario.

Function Configuration| median mean fitness variance N
Sphere 1st setting| 0.0320 0.1818 0.0473 160
Sphere improved|1.7040e-70 3.1153e-64 9.5433e-127 10

Rosenbrock 1st setting| 0.6092 2.0006 8.2762 160
Rosenbrock improved| 0.0051 0.0297 0.0032 100
S-ring  (see Sec.4)| 5.9331 5.9825 0.4204 192
S-ring improved| 5.5768 5.6285 0.2339 10

is y = X, where 3 is a parameter vector whose values are determined so the
function best fits the data. Linear regression is appropriate only if the data can
be modeled by a straight line function, which is often not the case.

Breiman et al. introduced regression trees as a “flexible non—parametric tool
to the data analyst’s arsenal” [20]. They are used for screening variables and for
checking the adequacy of regression models [21]. The construction of regression
trees can be seen as a type of variable selection similar to the stepwise regres-
sion techniques in classical regression analysis [22]. Consider a set of predictor
variables X and a quantitative response variable Y. A regression tree is a col-
lection of rules such as “if ; < 5 and x4 € {4, C}, then the predicted value of
Y is 14.27, that are arranged in a form of a binary tree. Recursively splitting
the data in each node, builds up a binary tree. The partitioning algorithm stops
when the node is homogeneous or the node contains too few observations. The
endpoint for a tree is a partition of the space of possible observations. Compared
to linear models, tree—based models are easier to interpret when qualitative and
quantitative predictors are in the model.

4 Experimental Results

We first investigated the performance of the regression trees approach, on sim-
ple well-known test functions, to gain an intuition regarding the algorithm’s
workings. For this purpose, the test functions described below were used, where
PSO’s parameters were tuned through the regression tree approach. In all cases,
a maximum value of Gax = 5000 function evaluations appears to be appropri-
ate.

Test Function 1 (Sphere). This is a unimodal function, F(z) = Zfil z7, with
a single minimum at X, = 0, with F(X,p,) = 0. We considered D = 36 in our
experiments. The values that were chosen for the first run parameterization, are
reported in Table 2 . After two additional steps, the tuned setting reads: P = 7,
Wmax = 0.2, ¢ = 0.4, ¢5 = 0.7, wscare = 0.025, and wiger = 0.5. The mean of the
first and the improved fitness value are 0.1818 and 3.1153e — 64, respectively.
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Mean = 2.0006
Std. dev. = 2.87683

N =20
Mean = 6.7239
Std. dev. = 3.18717

Fig. 3. Results for the Rosenbrock function. Regression tree for the first configuration
from Table 2. The root node shows the overall mean p = 2.0006 and standard deviation
2.88 for N¢zp = 160 experiments. Following the left branch to the next node (labeled
(2 < 1.3), and taking the right branch, we can see that the mean fitness value reads
0.006. Therefore, a c; smaller than 1.3, and ¢ larger than 1.3, might lead to an improved
performance. The performance is worse, if we chose ¢1 > 1.3, P < 22.5, and wmax > 1.0.
The solid lines show the pruned tree.

Test Function 2 (Rosenbrock). This function is defined as,

D1
F(z) = Z [100(z? — z41)* + (1 — 2)%],
i=1
with its sole minimum at X, = (1,...,1), with F(z,p) = 0. We considered

D = 2. The improved parameterization reads P = 40, w = 1.5, ¢ = 0.1,
c2 = 2.5, Wscale = 0, and Wigerscale = 0.8.

In the next step of our analysis, the S—ring model was considered, with n =
18, m = 6, p = 0.1. Surprisingly, the method that has been applied successfully
to the classical test functions, failed. The regression tree collapsed: it consisted
of one node only, and no conclusions could be drawn on how to improve the
PSO parameterization. Further investigation revealed the cause of this failure:
the levels chosen in Table 2 were too extreme for this problem. A swarm size,
P, of 5 particles leads to a performance that is as worse as the performance of a
swarm that has 40 particles. Therefore, a new design, which is more conservative
than the former, was chosen: P € {10,20}, wmax € {0.8,1.2}, ¢; € {1.5,2.0},
co € {1.5,2.0}, wscate € {0,0.1}, and witerscale € {0.9,1.0}. Based on this design,
the tree based approach was able to find an improved parameter setting: P = 25,
Wmax = 0.7, ¢c1 = 1.2, c5 = 2.5, Wscale = 0.15, and wjigerscale = 0.75. A comparison
between the initial and the improved values is reported in Table 3. Finally a t—test
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Fig. 4. S-ring. Complexity plot to determine the “best” tree size. The best tree is
estimated by cross validation. It is the one that has a residual variance that is no
more than one standard error above the minimum value along the cross validation line
(upper line). The monotonically decreasing resubstitution error is shown in the lower
line. The optimal tree has 4 terminal nodes.

showed, that the hypothesis, the means of the first and the improved parameter
setting are equal, has to be rejected.

5 Discussion

Table 3 shows that regression trees provide effective and efficient means to im-
prove the PSO performance significantly. Only a few tree growing phases (< 5)
were needed to find better parameterizations. Modern statistic software pack-
ages like R provide powerful tools to perform this tuning [23]. Additionally to
R, MATLAB was used. In addition to the regression tree based analysis, a classi-
cal regression analysis was performed, i.e. a stepwise model selection by exact
AIC was applied to screen out important factors. Regression trees have shown
their ability to model the dependencies between different PSO parameteriza-
tions in a very intuitive manner. They are more conservative than the classical
regression techniques. Their results are reliable, as we obtained similar results
from regression analysis. There were no conflicts of the two approaches during
the optimization process. The corresponding regression model are much more
complicated and require assumptions on the underlying distribution. Even hard
real-world optimization problems can benefit from this approach. A drawback
of the proposed approach, is the determination of a good starting design. This
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problem is common to all statistical methods in this field: as a good parameter-
ization depends on the problem and the environment (we might have obtained
different results if our analysis has been based on 100000 fitness function evalua-
tions or a completely different termination criterion), a good initial design cannot
be known a priori for new optimization problems (e.g. the S—ring). Generally, we
can recommend a sequential design that is extended during the tuning procedure
and leads to more and more complex trees and corresponding regression models.

6 Summary and Outlook

A framework to design particle swarm algorithms with regression trees has been
proposed. Regression trees have been shown as valuable tools to model the in-
teractions between the algorithm, the problem, and the problem environment.
The exogenous parameters of PSO was tuned and therefore the performance of
the algorithm was improved significantly. Tuning did not only result in an im-
proved fitness value, but it also improved the robustness of the parameterization:
small parameter changes for tuned algorithms did not cause big differences in
performance.

Regression trees are easily to interpret, they complement traditional regres-
sion techniques and do not make any assumptions on the underlying distribution.
Furthermore, they are applicable for both quantitative and qualitative data. The
latter are necessary to compare different PSO variants or PSO with different op-
erators.

As the examples in this paper demonstrate, it might be a good practice to
compare only tuned algorithms (and to report the extra costs for the tuning
process).
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