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Abstract

Data pre-processing is a key research topic in data mining because it plays a
crucial role in improving the accuracy of any data mining algorithm. In most
real world cases, a significant amount of the recorded data is found missing
due to most diverse errors. This loss of data is nearly always unavoidable.
Recovery of missing data plays a vital role in avoiding inaccurate data
mining decisions. Most multivariate imputation methods are not compatible
to univariate datasets and the traditional univariate imputation techniques
become highly biased as the missing data gap increases. The current
technological advancements enable generation of abundant data every
second. Hence, we intend to develop a new algorithm that enables maximum
utilization of the available big datasets for imputation. In this paper, we
present a Seasonal and Trend decomposition using Loess (STL) based
Seasonal Moving Window Algorithm, which is capable of handling patterns
with trend as well as cyclic characteristics. We show that the algorithm is
highly suitable for pre-processing of large datasets.

1 Introduction

Data pre-processing involves removal of noise and outliers from a dataset,
handling of missing values, data redundancy and data inconsistency. One
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of the most challenging task among them is to impute the missing values
with entries that reasonably complete the datasets. The loss of data may be
due to sensor errors, transmission errors, errors of the operator and many
others. Recovery of these missing values heavily affects the performance
of the data mining models. The accuracy of forecasting, classification,
estimation, and pattern detection of any data mining algorithm depends
significantly on the accuracy of data used in modeling. Thus, inaccurate
training and testing data may introduce bias into the models and provide
misleading conclusions [14]. In reality, datasets may be univariate or
multivariate datasets may lack correlation. Need for univariate time series
analysis is prevalent in many fields, for example, online data monitoring
and pattern detection in intensive care units [1], forecasting in hydrology
and environmental management fields [2], functional magnetic resonance
imaging statistical analysis [3], forecasting intra day arrivals at a call
center [4], forecasting electricity spot-prices [5], forecasting macroeconomic
time series [6].

With univariate time series data, the complexity of replacing these missing
value increases as it involves no other correlated variables except time.
Almost all of the well known standard techniques fail to handle univariate
time series data as their scheme is based on the inter-attribute correlations
in estimating the values for the missing data. Also, the existing multivariate
algorithms either cannot be applied or perform poorly. Furthermore, some
traditional imputation techniques perform well with trend datasets, while
some techniques perform well only if the dataset is seasonal. There exists
no single univariate imputation technique that suits for all types of data
patterns [7]. This is owing to the reason that most of the existing algorithms
are designed extensively to handle either seasonality or trend and not
both.

The major motivation for this algorithm formulation is the GECCO In-
dustrial Challenge 2015. The task was to recover the missing data in
heating systems (http://www.spotseven.de/gecco/gecco-challenge/
gecco-challenge-2015/). The data provided contains 606,837 observa-
tions of four parameters sampled every minute from real industrial heating
systems. The most challenging aspect of this task is to impute the missing
data for a large interval with the data of all four parameters missing. This
is a commonly occurring scenario in industries, when there is some data
transmission failure, file over writing or data saving issue requiring univari-
ate imputation. Also, such scenarios lead to large intervals of missing data
for which the standard imputation techniques perform poorly.
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The remainder of this paper is organized as follows. Section 2 focuses on
the proposed imputation technique. Section 3 illustrates the experimental
study and performance comparisons among various imputation schemes.
Section 4 presents our concluding remarks.

2 Proposed Algorithm

The new algorithm entitled Seasonal Moving Window Algorithm (SMWA)
is proposed mainly for large intervals of missing data, especially seasonal
and cyclic data. The key aspect of our algorithm is that though strong
seasonality exists in almost all practical applications, this seasonal behavior
has to be considered as cyclic. There is no guarantee that the behavior
of a system at a specific time is identical on two different days. But it
is very likely that the system behavior will be similar, regardless of the
exact time. SMWA uses Seasonal and Trend decomposition using Loess
(STL) [10] to decompose the data. Although there exists another STL based
imputation technique as in [8], our proposed approach differs in how we
handle imputation after performing STL decomposition. The decomposed
trend component is linearly interpolated. The seasonal and remainder
component is fitted with best pattern identified from the past available
data. Then, the imputed decomposed data is recomposed to form the
complete dataset.

SMWA initially identifies the missing interval as missing data. Then it
selects a finite set of data before the missing interval as head and in a
similar fashion chooses a finite set of data after the missing interval as tail.
The combination of head, missing data, and tail forms the window as shown
in Figure 1. This window then slides through the past data and the past
window with the minimum root mean square error (RMSE) is imputed in
the missing data.

The data preparation for SMWA imputation is explained in Algorithm 1.
A univariate time series 𝑡𝑠 is given as the input dataset. The input time
series is first validated for the presence of missing values. Then, the indexes
of the missing data are identified.

To implement the algorithm, we first perform seasonal decomposition with
stl [10]. As we require a complete dataset for stl, linear interpolation is
performed as described in [11]. After the data is decomposed into seasonal,
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Figure 1: Pictorial representation of the SMWA Technique

trend, and irregular components, the trend component is separated. Then,
SMWA is applied to the remaining component (i.e., seasonal and irregular)
denoted as SMWAInput. In the separated trend component, missing values
are filled in again using linear interpolation as in [11]. Since trend represents
the long term rise or drop in data, simple interpolation is sufficient to fit
the missing data in the trend component.

The SMWA imputation is explained in Algorithm 2. It uses SMWAInput
obtained from Algorithm 1. Based on the length of data and the missing
values, 𝑙 (𝑙=head=tail) which represents the common size of dataset for
both head and tail has to be provided. The minimum length of number
of missing data samples 𝑔 for which the imputation has to be done is
to be provided. For smaller missing intervals, i.e., less than 𝑔 missing
samples, linear interpolation is performed. The user is also free to choose
the maximum length of past window 𝑤 to be considered for evaluation.
The default suggestions based on preliminary experiments are past window
size 𝑤 of 𝑛

3 and 𝑙 of 𝑤
12 for smaller datasets, where 𝑛 represents the length

of the dataset.

Let freq(𝑡𝑠) denote the frequency of the dataset. For larger datasets, e.g,
𝑛 > 100, 000, default suggestions are past window 𝑤 of 𝑛

30 and 𝑙 of 𝑛
(freq(𝑡𝑠))
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Algorithm 1.: Data preparation for the Seasonal Moving Window Algorithm
(SMWA)
Input: univariate Time Series 𝑡𝑠

1: Validate the input data
2: Determine the indexes of missing samples: index
3: Perform linear interpolation on 𝑡𝑠
4: Decompose interpolated 𝑡𝑠 into 𝑆𝑒𝑎𝑠, 𝑇 𝑟𝑒𝑛𝑑, 𝐼𝑟𝑟𝑒𝑔 components with 𝑠𝑡𝑙
5: Separate the 𝑇 𝑟𝑒𝑛𝑑, fill in NA again in index, perform linear interpolation
6: Add 𝑆𝑒𝑎𝑠, 𝐼𝑟𝑟𝑒𝑔 as SMWAInput

Output: SMWAInput, 𝑇 𝑟𝑒𝑛𝑑,

Algorithm 2.: Seasonal Moving Window Algorithm (SMWA)
Input:

univariate Time Series 𝑡𝑠
𝑙 ◁ size of dataset for head and tail
𝑔 ◁ minimum length of missing gap to be imputed
𝑤 ◁ maximum length of past window
𝑜𝑝𝑡𝑖𝑜𝑛 ◁ accepts string head, tail, both
SMWAInput and Trend from Algorithm 1

1: Calculate 𝑛 as length of 𝑡𝑠
2: for 𝑖 in 1:𝑛 do
3: Identify the 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 with missing intervals ≥ 𝑔 in 𝑡𝑠

4: for 𝑒𝑎𝑐ℎ𝑖𝑛𝑑𝑒𝑥 in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 do
5: Identify the actual 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 in 𝑡𝑠
6: Formulate window as ℎ𝑒𝑎𝑑 + 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 + 𝑡𝑎𝑖𝑙 ◁ as per specifications

in 𝑜𝑝𝑡𝑖𝑜𝑛
7: for 𝑗 in 1:𝑤 do
8: Try{ ◁ try-catch to ensure if past window of specified length ’𝑤’ exist

before missing data
9: Slide the window in the past by 𝑗 in 𝑡𝑠 and calculate the RMSE for

head and tail}
10: Catch{
11: Notify error }
12: Find the best fitting past window with least RMSE for head and tail

return The best fitting window
13: SMWAImputed← Impute the values from the best fitting window in the

missing data in 𝑡𝑠

Output: SMWAResult← Trend +SMWAImputed ◁ Final SMWA imputed
time series
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for minutely data, for hourly data 𝑙 of 𝑛
(60×freq(𝑡𝑠)) , and for other frequencies

𝑙 of 𝑤
10 .

Considering the computational time, we recommend this algorithm for
fairly large 𝑔. This algorithm can be computed with either head only or
tail only, or both. The performance of the method depends on the choice of
tuning parameters 𝑙, 𝑔 and 𝑤. The value of the input parameters depends
on the length of the dataset and the percentage of the missing values and
hence it might vary for each dataset. The window is formed with head,
missing data, and tail for each of the missing intervals greater than 𝑔. Then
we slide this window through past data, but no earlier than 𝑤 steps before
the window. The best matching past window with least root mean squared
error (RMSE) is identified and the values of this best match are imputed
into the gap. Finally, the trend component is added back into the imputed
dataset.

3 Experimental Study

In all our datasets, as the probability of missing data does not depend upon
the observed or the unobserved data these data are missing completely
at random (MCAR) [9]. As this algorithm is proposed mainly for large
intervals of missing data, we examine this feature by removing relatively
large data intervals. As the performance of the algorithms may depend on
the position of missing values, the missing intervals were chosen randomly
each time based on 30 different random seeds. The performance of the
algorithm is evaluated with various test scenarios. For each test scenario
the following steps are performed:

1. Load a complete time series tsComplete

2. Randomly remove values in tsComplete as per each scenario require-
ments and obtain tswithNAs

3. Apply an Imputation algorithms to tswithNAs to get tsImputed

4. Compare tsComplete and tsImputed by using a suitable accuracy or
error measure
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3.1 Comparison Framework

To analyze the efficiency of the SMWA algorithm, its performance is
compared with several state of the art imputation techniques which were
implemented in the statistical programming language R. The RMSE was
chosen as a performance measure, i.e.,

𝑅𝑀𝑆𝐸(𝑧, 𝑧imp) =
√︂∑︀𝑛

𝑡=1(𝑧 − 𝑧imp)2

𝑛
(1)

where 𝑧imp is the imputed value and 𝑧 denotes the actual value of the time
series. Mainly, methods from imputeTS [12], zoo [11], and forecast [8]
packages in R are used for experiments as below:

∙ Spline interpolation: This method from the imputeTS package
uses na.interpolation to implement the spline interpolation of
missing values.

∙ Seasonal decomposition: Also from the imputeTS package. It
initially separates the seasonal component from the time series, then
performs imputation on the trend and irregular components and
finally adds the seasonal component again. The method used is
na.seadec. The algorithm internally uses mean imputation for non-
seasonal series.

∙ Seasonal split: This is the third method from the imputeTS package.
It splits the times series into seasons and then performs imputation
separately for each of the season. The algorithm used is na.seasplit.
The algorithm internally uses mean imputation for non seasonal series.

∙ LOCF: LOCF stands for last observation carried forward. A method
from the zoo package. It replaces each missing value with the most
recent non missing value prior to it. The algorithm used is na.locf.

∙ Mean Imputation: Also from the zoo package. It fills the missing
values with mean value of a time series using na.aggregate.

∙ Linear interpolation: Again from the zoo package. It replaces the
missing values with interpolated values using na.approx.

∙ Structural time series model: Also from the zoo package. It fills
missing values using seasonal Kalman filter using na.StructTS.
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∙ STL based interpolation: A method from the forecast package,
which uses linear interpolation for non-seasonal series and a peri-
odic STL decomposition with seasonal series. The method used is
na.interp.

∙ Kalman smoothing: A method from the imputeTS package. It
performs Kalman smoothing using the state space representation of
an ARIMA model for imputation. The method used is na.kalman
with auto.arima model.

3.2 Case I: Large real-world data set

The proposed SMWA technique was evaluated for the Return Temperature
dataset from GECCO Industrial Challenge 2015 which consists of 606,837
observations. The challenge already contains separate missing and complete
datasets as those provided by the organization committee. The algorithm
is implemented for a minimum gap of 𝑔 = 200. For the rest of the missing
data linear interpolation is performed. The preceding 400 values form the
head and after the missing gap and succeeding 400 values form the tail
(𝑙 = 400). This window formed with ℎ𝑒𝑎𝑑 + 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 + 𝑡𝑎𝑖𝑙 is moved
through the previous 𝑤 = 50, 000 values and the window with the best
match according to RMSE is chosen.

The results for various algorithms tested are tabulated in Table 1. The
RMSE of 5.56 was achieved by SMWA when compared to the original
test dataset. Though little improvement in RMSE was obtained for the
proposed scheme when compared with linear interpolation, a closer look
into the imputed intervals reveals the improvement made.

The best performing algorithms are visualized at some large missing in-
tervals. Figures 2 and 3 show the improvement achieved with SMWA
imputation. From the plots it can be seen that SMWA outperforms other
competing algorithms for large intervals of missing data. It also reveals
the ability of SMWA in determining the best similar pattern as in original
underlying test dataset. By visual analysis, it can be seen that SMWA
is often (but not always) able to reproduce the more complex patterns
observed in the data. The competing methods mostly fail to do so. Still,
such an imputed pattern will often be shifted forward or backward. Thus,
the evaluation by RMSE may fail to give proper credit to the SMWA. In
practice the pattern is more desirable to be reproduced than the exact
value of RMSE, we therefore propose to use a more adequate error measure.
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Table 1: Comparison of RMSE and computation time. Results on the return
temperature (GECCO challenge) dataset for various imputation
techniques are shown. Smaller values are better. The structural time
series model algorithm failed to complete the imputation process. Best
values are shown in boldface.

Imputation Method RMSE Computation time (s)
Mean Imputation 15.59 0.33
Seasonal split 13.83 16.69
Seasonal decomposition 13.32 576.98
Spline interpolation 13.25 561.27
LOCF 8.81 11.28
STL based interpolation 6.74 72.02
Linear interpolation 5.60 11.55
SMWA imputation 5.56 143.89
Kalman smoothing 5.58 9134.15
Structural time series model NA NA

For instance, an alignment-based error measure like the Dynamic Time
Warping distance might be more adequate in these situtions [15].

Table 1 also shows that conventional imputation schemes like mean or
locf imputation require less time for computation, but their RMSE is very
high. The Kalman smoothing achieved the second best algorithm. But
Kalman smoothing is computationally demanding (a factor of 60 compared
to SMWA imputation). The structural time series model algorithm failed
to complete the imputation process for the given data for more than 12
hours and hence the scheme was suspended and the result using this scheme
is not discussed.

3.3 Case II: Selected smaller data sets

The algorithm is tested for its adaptability to various kinds of data pat-
terns. Three different datasets that exhibit specific data patterns are
considered. The SP dataset [13] (with trend but no seasonality), the Beer-
sales dataset [13] (no trend but with seasonality), and the Air Passengers
dataset [13] (with trend and seasonality).
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Figure 2: Comparison of the best performing algorithms for the Return
Temperature dataset. The RMSE[298000:298425] for SMWA is 3.64,
Kalman smoothing is 5.17, STL based interpolation is 4.12

Since the size of these datasets is very small, 10% of the datasets is removed
in a single interval. This missing interval is determined randomly for 30
repeated experiments. The SMWA parameters 𝑙 and 𝑤 for three datasets
are chosen as per default suggestions for smaller datasets.

3.3.1 Air Passengers dataset

The Air Passengers dataset contains 144 observations with the frequency
of time series as 12. Table 2 reveals the mean performance metrics and
computational time for the Air Passengers dataset. The box plot of RMSE
obtained with 30 repeated experiments for various imputation techniques
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Figure 3: Comparison of the best performing algorithms for the Return
Temperature dataset. The RMSE[468000:468370] for SMWA is 7.63,
Kalman smoothing is 12.97, STL based interpolation is 13.95

is shown in Figure 4. In the box plot each algorithm is represented with
their abbreviated method names as explained in Section 3.1.

The algorithm Kalman smoothing turns out to be the best followed by
STL based interpolation and SMWA. Though SMWA ranks in the third
position, it is interesting to note that variance in mean RMSE as shown in
the box plot in Figure 4 is less than for the STL based interpolation and
Kalman smoothing.

Though the dataset exhibits both trend and seasonality patterns, seasonal
decomposition and seasonal split algorithms were able to secure fourth
and fifth positions only. The remaining algorithms fail to perform well
with relatively continuous missing data. The Spline interpolation performs
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Table 2: Comparison of RMSE (mean) & Computation time (mean) - Air
Passengers dataset for various imputation techniques for 10% of missing
data at random locations based on 30 different seeds. Smaller values
are better. Best values are shown in boldface.

Imputation Method RMSE Computation time (s)
Mean Imputation 52.66 0.002
Seasonal split 40.50 0.01
Seasonal decomposition 39.59 0.02
Spline interpolation 99.18 0.008
LOCF 54.38 0.007
STL based interpolation 13.24 0.03
Linear interpolation 47.09 0.03
SMWA imputation 19.11 0.32
Structural time series model 60.82 0.55
Kalman smoothing 9.75 2.42

badly with very high mean RMSE and also with a very large outlier. The
fastest running algorithm is simple the mean imputation and the Kalman
smoothing takes the highest computational time.

3.3.2 Beersales dataset

The Beersales dataset contains 192 observations with the frequency of time
series as 12. Since the Beersales dataset possesses very high seasonality,
it is obvious that seasonal based algorithms like STL based interpolation,
seasonal split, and seasonal decomposition would top the performance.

Table 3 shows the mean performance metrics and computational time for
the Beersales dataset. The algorithm Kalman smoothing and STL based
interpolation both perform the best, followed by seasonal split and seasonal
decomposition. Though SMWA ranks in the middle, the performance is
very close to that of the best algorithms. The box plot in Figure 5 shows
that all these five algorithms perform better. The Spline interpolation
again turns out to be the bad performing one with very high mean RMSE
and also with a very large outlier. The fastest running algorithm is simple
mean imputation and Kalman smoothing takes the highest computational
time.
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Figure 4: Imputation result for the Air Passengers dataset with 10% of missing
data at random locations based on 30 different seeds

3.3.3 SP dataset

The SP dataset contains 168 quarterly observations. For the SP dataset,
which is the series with just trend and no seasonality, the linear interpolation
algorithm would do a good job. Table 4 lists the mean performance metrics
and computational time for the SP dataset. The algorithms Kalman
smoothing, STL based interpolation, linear interpolation, SMWA, and
structural time series model turn out to be the best performing ones.

It is interesting to note that variance in mean RMSE for the SMWA
algorithm is found to be the lowest among other algorithms as shown
in the box plot in Figure 6. Since there is no seasonality in SP dataset,
the seasonal split and seasonal decomposition algorithms perform just the
mean imputation. All other algorithms fail to perform well with relatively
continuous missing data. The locf imputation performs badly with very
high mean RMSE and also the spline interpolation has a very large outlier.
The fastest running algorithms are mean imputation and seasonal split and
Kalman smoothing takes the highest computational time.
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Table 3: Comparison of RMSE (mean) & Computation time (mean)- Beersales
dataset for various imputation techniques for 10% of missing data at
random locations based on 30 different seeds. Smaller values are better.
Best values are shown in boldface.

Imputation Method RMSE Computation time (s)
Mean Imputation 1.88 0.001
Seasonal split 0.69 0.01
Seasonal decomposition 0.72 0.03
Spline interpolation 3.85 0.009
LOCF 2.61 0.008
STL based interpolation 0.55 0.05
Linear interpolation 2.33 0.012
SMWA imputation 0.93 0.42
Structural time series model 2.37 1.17
Kalman smoothing 0.55 4.61

Table 4: Comparison of RMSE (mean) & Computation time (mean) - SP
dataset for various imputation techniques for 10% of missing data at
random locations based on 30 different seeds. Smaller values are better.
Best values are shown in boldface.

Imputation Method RMSE Computation time (s)
Mean Imputation 124.16 0.001
Seasonal split 124.36 0.001
Seasonal decomposition 124.17 0.02
Spline interpolation 106.45 0.008
LOCF 129.55 0.009
STL based interpolation 59.76 0.03
Linear interpolation 59.89 0.01
SMWA imputation 60.40 0.34
Structural time series model 60.42 0.22
Kalman smoothing 49.78 1.01
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Case 3: Imputation results for the Return Temperature dataset

Figure 7: Imputation result for Return Temperature dataset with missing gap of
size 100 at 10 random locations based on 30 different seeds

3.4 Case III: Large real-world data set with increased data gaps

In this test case, the complete Return Temperature dataset from the GECCO
Industrial challenge is taken and 100 continuous data are removed randomly
at 10 different locations for 30 runs. This particular scenario occurs in
industries when data transmission or a sensor fails. The parameter settings
for SMWA are 𝑙 = 100, 𝑔 = 100, and 𝑤 = 20, 000. Then SMWA is used to
impute these large missing gaps along with other algorithms. The metrics
in Table 5 clearly show the importance and performance of SMWA for
very large industrial datasets. The SMWA bags the first position with a
very low mean RMSE of 6.8 as in Figure 7. The Kalman Smoothing which
served best in smaller data sets cannot perform well with larger intervals
of missing data although it took very high computational time. Also, STL
based interpolation, which showed better performance in smaller datasets
ranks in second position following SMWA. It is to be noted that structural
time series model is not evaluated with such large datasets for multiple runs
as it takes very large processing time. In general, the performance of linear
interpolation, STL based interpolation and SMWA are highly convincing
in terms of RMSE with such large intervals of missing data. Though
linear interpolation gives similar RMSE values compared to SMWA, they
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Table 5: Comparison of RMSE (mean) & Computation time (mean) - Return
Temperature dataset for various imputation techniques with missing
gap of size 100 at 10 random locations based on 30 different seeds.
Smaller values are better. Best values are shown in boldface.

Imputation Method RMSE Computation time (s)
Mean Imputation 10.25 0.02
Seasonal split 9.02 1.45
Seasonal decomposition 9.97 3.25
Spline interpolation 13.47 1.49
LOCF 9.73 0.45
STL based interpolation 7.53 3.63
Linear interpolation 7.35 0.46
SMWA imputation 6.8 68.28
Kalman smoothing 13.87 4110.01
Structural time series model NA NA

replace long gaps with a straight line, while SMWA tries to reproduce the
similar complex pattern as in underlying real data. This pattern recovery
combined with better accuracy and relatively less computational time
makes the SMWA technique suitable for real time industrial data.

4 Conclusion

The SMWA is specially proposed for large intervals of missing data, which is
a frequently occurring scenario in real industrial applications. The proposed
SMWA combines good imputation accuracy with quick computational time.
It focuses on extracting the best possible patterns from the largely available
past data and utilizing it in filling the missing interval. The additional
positive effect of using SMWA technique is that, the ability of the algorithm
in preserving the underlying real patterns better than other techniques.

It is also shown that the SMWA algorithm is well suited to work with
various kinds of univariate datasets. Although algorithms like Kalman
smoothing are highly robust for smaller datasets, they fail to perform
well with large intervals of missing data. Also, due to very expensive
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computational time, Kalman smoothing cannot be used in practice for
large industrial datasets.

Furthermore, SMWA technique can be utilized to fit the missing data even
from the available future time series. This can be easily done by running
the algorithm with reversed time series. Further improvement could be
gained by approximating the results both from past and future data. This
algorithm can be easily used on top of any other imputation algorithm
mainly for large missing intervals.
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