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Introduction

Design of experiments (DOE) has proven to be a useful tool to optimize process
or production output [1]. A design specifies which values for input parameters of
an experiment are to be chosen to reach a desired output or gather a maximum
amount of information.

Many authors recommend space-filling and non-collapsing designs for determin-
istic computer experiments [2, 3]. Latin hypercube designs (LHDs) are non-
collapsing by default due to their creation rules. The space-filling property can
be fulfilled by maximizing the minimum Euclidean distance of points. Those
designs are especially useful for fitting Kriging models [4]. But it has not been
proven, if they are the best choice [2]:

In sum, it has not been demonstrated that LHDs are superior to
any designs other than simple random sampling (and they are only
superior to simple random sampling in some cases).

Based on the experimental analysis of Santner [2], this work analyses the behavior
of di�erent LHD types (space-filling and non-space-filling) used to fit Kriging
metamodels and compare their properties and performance to classical design of
experiment methods.

Designs can be evaluated with regards to optimality. For a given model, infor-
mation based statistical criteria like D-optimality (maximize the determinant
of the information matrix), A-optimality (minimize the trace of the inverse of
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the information matrix) and E-optimality (maximize minimum eigenvalue of the
information matrix) can be calculated.

Searching for an optimal design even with the search space limited to a subclass
of all designs is still di�cult [5]. Often, a search for an optimal design is stopped
before convergence, to avoid spending too much time on design generation. So, in
this work the approach is to randomly draw designs instead of creating optimized
designs with much e�ort. Afterwards the drawn designs are evaluated and
compared with optimized designs to determine, which properties and criteria a
design must fulfill to be adequate for fitting Kriging metamodels.

This work compares model dependent properties like the mentioned optimality
criteria with spatial criteria like minimum and average Euclidean interpoint
distance. The goal of this paper is to find answers to the following research
questions:

• Which criteria must a design fulfill to enable fitting high quality Kriging
metamodels?

• Does the design type have a significant impact on the model quality?

• How many points should a good design consist of (regarding the tradeo�
between cost intensive number of experiments and the model quality)?

In this work, the designs’ properties and their e�ect on building Kriging models
will be observed using a simple test function. This enables a very transperent
and easy to reproduce comparison. Also, su�ciently accurate models may be
build with a very limited number of design points.

Methods

Optimality Criteria

The optimality criteria observed in this work can be divided in two groups. The
first contains model dependent criteria and the second spatial criteria with no
reference to an underlying (surrogate) model. The model-dependent criteria are
computed based on the information matrix of each design corresponding to a
simple first order linear regression model [6].
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Model-dependent Criteria

Consider the linear model in matrix form, Y = —X+‘, where the vector ‘ contains
the n random errors (n denotes the sample size). The elements of the error vector,
‘

i

, are assumed to be independent and identically normally distributed with
mean zero and error variance ‡2

‘

. The vector of unknown coe�cients, —, can be
estimated via least squares methods as —̂ = (XT X)≠1Y. Its covariance matrix
is var(—̂) = ‡2

‘

(XT X)≠1. The square roots of the diagonal entries of this matrix
are the standard errors of the —

i

’s. The diagonal elements of (XT X)≠1 are called
the relative variances of the —

i

’s, v
i

= var(—̂)/‡2

‘

. The v
i

’s indicate how large the
variances of the estimated model parameters compared to the error variance ‡

‘

are. The inverse of the covariance matrix var(—̂) is called the information matrix
for the model parameter vector —̂, i.e., M = 1/‡2

‘

XT X. The information matrix
is a measure of the information about the factor e�ects that is contained in the
design. The information matrix measures the information on factor e�ects that
is contained in the design.

An experimental design that maximizes the determinant of the information
matrix, |M|, is called D-optimal. The minimization of |(XT X)≠1| is equivalent
to the maximization of |(XT X)|.
A-optimality minimizes the trace of the inverse of the information matrix and is
often used as a criterion for designs with equal D-optimality.

E-optimality maximizes the smallest eigenvalue of the information matrix. The
aim of E-optimality is to minimize the maximum variance of all possible normal-
ized linear combinations of parameter estimates. E-optimal designs minimize the
maximum axis of the confidence ellipsoid of estimators, namely, E-optimal designs
minimize the maximum eigenvalue of the covariance matrix of estimators.

An overview of these criteria is given in [7]. The relationship between these three
optimality criteria is illustrated in [8].

Spatial Criteria

The spatial criteria analyzed in this work are the Cartesian pairwise point
distances of a design. Let m denote the problem dimension and d

ij

= d(X
i

, X
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) =!q
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|X
ik

≠ X
jk
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, with p œ {1, 2}, be the distance between two design
points X

i

and X
j

. A maximin distance design maximizes the minimum pairwise
point distance, i.e., d

min

= min
1Æi,jÆn,i”=j

d(X
i

, X
j

). Additional optimization
criteria for LHDs are discussed in [5]. Minimax distance designs are defined in a
similar manner [9].
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Quality Criteria

In the following we will analyze the model quality for each design fitting a Kriging
model and measure the impact of the mentioned design properties, namely

• minimum distance: d
min

,
• average distance: d

avg

,
• optimality: A-, D-, and E.

Note, not every criterion from this list is used as an optimality criterion during
the design generation. For example, the average distance will be used only
to visualize and analyze results. Our analysis is based on results obtained by
Santner [2].

Design types

To answer the previously stated questions several experimental designs will be
generated. The below described designs are divided in di�erent types, namely
Maximin LHD, Degenerated LHD, Optimized LHD and Uniform. All types have
in common that their designs are created based on pseudo random number
sampling. Therefore experiments using these designs are repeated multiple times
and statistically analyzed to lead to robust results.

The Maximin LHD uses pairwise Cartesian distances of the design points to
maximize the minimum distance and thus lead to a space filling design. Out of
1,000 randomly created LHDs the one with the maximum minimum distance will
be taken.

Degenerated LHD tries to compute a non space-filling Latin hypercube design to
be able to analyze the importance and necessity of the space-filling property. For
this type the design out of 1,000 randomly generated LHDs with the minimum
sum of the pairwise Euclidean distances will be drawn. An Optimized LHD is
computed using the simulated annealing algorithm to optimize an LHD via the
�p criterion, which is linked to the minimum distance criteria [10]. Regarding
computation time, especially for large designs, this design type is computationally
very cost intensive.

The various LHDs are compared to a simple random sampling approach. Here,
design points are sampled from a uniform distribution, hence this approach is
denoted Uniform. The comparison of LHD and Uniform approaches provides
a simple benchmark. Furthermore, it allows to determine the necessity of the
space-filling and non-collapsing property of the LHDs
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To get an idea if and how classical designs are also applicable for computer
experiments and if they are able to outperform LHDs when fitting Kriging-
models, Full Factorial Designs (FFD) with appropriate number of design points
and additional center points are also included in the experiments.

Metamodel

Kriging (or Gaussian Process Regression) is a frequently used surrogate-model.
It is an excellent predictor of smooth, continuous problem landscapes. Moreover,
it provides an uncertainty estimate of its own prediction, which can be used
to calculate the Expected Improvement (EI) of a candidate solution. EI is one
great benefit of Kriging models and is for example used in the E�cient Global
Optimization algorithm introduced by Jones et al. [11] to balance exploitation
and exploration in a Kriging-based optimization process.

The Kriging implementation used in the experiments is taken from the SPOT
R-Package13. This implementation is based on earlier code by Forrester et al. [12],
who also provide a very comprehensive description of Kriging and Kriging-based
optimization.

A Kriging model with default parameters is used. The quality of a design is
computed by evaluating the Root Mean Squared Error (RMSE) of a derived
Kriging model. For that purpose, the residuals of the model on an equidistant
grid are computed.

Experiments

The described experiments are based on work done by Santner in 2003 [2].
Santner compared the behavior of a space-filling and evenly spread LHD with a
degenerated LHD with design points at the diagonal axis of a unit square.

Objective Function

The experiments were conducted using the objective function defined in Sant-
ner [2]:

y(x
1

, x
2

) = x
1

1 + x
2

(x
1

, x
2

) œ [0, 1] ◊ [0, 1]. (1)

13
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This objective function is relatively easy to model (see Figure 1). It allows to
focus on the behavior of the design according to its properties instead of the
modeling method itself. The surface of the function is almost plain showing a
linear trend and there is an interaction between x

1

and x
2

.

x1

x2
y

Figure 1: Objective Function used in all Experiments.

Setup

30 random instances of the previously described design types are drawn for design
sizes from n = 5 to n = 12 design points. For n = 5 and n = 9 a FFD design is
added resulting in a total number of 962 simulation experiments (30 ◊ number of
design types ◊ number of di�erent design sizes + 2 FFD experiments). In each
experiment the properties of the used design are computed (pairwise Euclidean
distances and A-, D- and E-optimality).

For each design, a Kriging model of the objective function is fitted using the
function values, y

i

, at the n design points X
i

. Afterwards the model fit is used
to predict values at a pre-defined grid over the region of interest from 0.05 to
0.95 in each dimension with a distance of 0.1. These values are referred to as Ŷ

i

.
This results in l = 100 prediction values that are used to compute the di�erence
to the objective function values at the grid points. With these values the RMSE
as defined in Equation 2 is computed.

RMSE =
ı̂ıÙ1

l

lÿ

i=1

(y
i

≠ Ŷ
i

)2. (2)
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To answer the question if there is a correlation between the model based optimality
criteria of the designs and the quality of the fitted Kriging models, the optimality
criteria are computed using the design information matrix M with regard to a
linear regression model. The model contains terms for each main e�ect x

1

and
x

2

and the interaction term x
1

ú x
2

.

Results
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Figure 2: Development of the model error per design type by increasing number
of design points.

An overview of the results from the experiments is given in Figure 2. The boxplot
shows the median value and the upper and lower quartiles of the RMSE of a
set of experiments. The values are grouped by the design type and the number
of design points. The column FFD shows only two results due to the fact that
the Full Factorial Designs with center points are deterministic. It can be seen,
that model error and variance of error decrease with increasing number of design
points. Although there are further improvements to be expect when design points
are added, a convergence for each type is tendentially recognizable. Further
increasing of the design size would not lead to a significantly improved model
performance.

In the FFD column the experiment results of the two single experiments for
five and nine points are shown. The five point FFD performance is similar to
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the median of the other five point designs. On the other hand, the nine point
FFD’s performance seems to be better than the median performance of the other
types.

The performance di�erences of the design types can best be seen with a minimum
number of design points, say five to seven points. The median RMSE of the
Uniform designs are clearly worse and the variance is largest. It is somehow
surprising that the Degenerated LHD seems to perform at the same level compared
to the others, except of Uniform. In sum it can be stated, that it is not so easy
to consistently create bad performing non-space-filling LHDs.

Table 1: Analysis of Variance of experiment results

Df Sum Sq Mean Sq F value Pr(>F)
type 3 0.0232 0.0077 19.1479 4.63e-12 ***
nrDesignPoints 1 0.3035 0.3035 751.1904 < 2e-16 ***
minDist 1 0.0004 0.0004 0.8743 0.350014
avgDist 1 0.0056 0.0056 13.8912 0.000205 ***
dOptimality 1 0.0115 0.0115 28.5166 1.16e-07 ***
aOptimality 1 0.0001 0.0001 0.3022 0.582629
eOptimality 1 0.0087 0.0087 21.6129 3.81e-06 ***
Residuals 950 0.3838 0.0004

To conclude if the design type among some or all of the designs properties have
a significant impact on the model error an ANOVA is performed. The two
experimental results of the Full Factorial Designs for five and nine design points
are removed in advance.

Table 1 shows the results of the ANOVA. The analysis shows that the type
has a significant e�ect on the model error. Besides the type it can be seen,
that the number of design points (as expected), the average Euclidean distance,
D-optimality and E-optimality have a significant impact at a 99% significance
level. Regarding the mean of squares the number of design points has obviously
the largest impact on the model error. The other significant parameters seem to
influence the model error at almost the same level.

To further analyze and compare the di�erent used design types and to answer
the question which design type works best a Tukey’s honest significance test is
performed to present a pairwise comparison of the di�erent design types. The
results are shown in Figure 3. The Degenerated LHD and Maximin LHD perform
on an equal level. Also the Optimized LHD and the Degenerated LHD perform

262 Proc. 25. Workshop Computational Intelligence, Dortmund, 26.-27.11.2015



−0.010 −0.005 0.000 0.005 0.010 0.015 0.020

Uniform−Optimized lhd

Uniform−Maximin lhd

Optimized lhd−Maximin lhd

Uniform−Degenerated lhd

Optimized lhd−Degenerated lhd

Maximin lhd−Degenerated lhd
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Differences in mean levels of type

Figure 3: Pairwise di�erences of model error for LHD types at 95% confidence
level. This figure illustrates,e.g., that Uniform Designs (random
sampling) is worse compared to Optimized LHD, because the
corresponding confidence interval does not contain zero. It is positive,
so the di�erence in the RMSE values is positive, too.

Regarding the ANOVA results, a look at the trend of the minimum distance
parameter (see Figure 4) also shows a decreasing RMSE by increasing the
minimum distance, but not consistently for all number of design points and
additionally the e�ect is decreasing with increasing design size.
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not significantly di�erent, the same holds for the Optimized LHD and Maximin
LHD. All LHD types are superior to Uniform in performance at a 95% confidence
level.

One stated question is which properties of the described experimental designs have
a significant impact on the model quality. The ANOVA results (see Table 1) shows
the significance of the design properties. Figures 4 to 6 show the development of
the resulting RMSE for increasing values of the minimum distance, D-optimality
and A-optimality grouped by the number of design points. The solid black line
shows a trend of the RMSE for the parameter, computed via local smoothing
of the collected data. In these results, the two experiments with the FFD are
included.
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Figure 4: E�ect of minimum distance property d
min

on model error grouped by
number of design points.

D-optimality is often analyzed together with A-optimality. If two or more designs
with an equal value for D-optimality are found, the experimenter often chooses
the design with the best value for A-optimality. Figure 5 clearly shows the
positive e�ect of D-optimality on the model RMSE. In contrast to the general
trend, rather high RMSE values can be observed for the rarely occuring large
D-optimality values.

It also can be seen that with larger designs the value range for the determinant
(printed at a logarithmic scale) is decreasing and lower values occur less frequent.
Figure 6 shows the development of the A-optimality, which is desired to be
maximized. A positive impact of A-optimality on the RMSE can be recognized,
especially for seven and nine design points. This is observed despite of the fact
that the earlier described ANOVA evaluated the impact of A-optimality to be
not significant.

Regarding the researched question how many points a design should consist of
at least, tt can be seen that for five design points the variance of the results is
quite large. Slightly increasing the design size up to seven points leads to better
models and reduced variance in the RMSE (see Figure 2). The Optimized LHD
seems to be the most robust design type.

The best five designs out of 120 for a design size of n = 5 and n = 9 points with
their ranked properties are given in Table 2 and 3. For a design size of five it can
be seen that the Optimized LHD leads to good ranked values (third and sixth
best values) for minimum distance but not automatically to the best RMSE. The
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Figure 5: E�ect of D-optimality, |M|, on model error grouped by number of
design points.

best design, a Degenerated LHD has no property resulting in a top ten rank,
but good values for D-optimality (17th), A-optimality (26th) and E-optimality
(35th). For nine design points at least the best design is an Optimized LHD,
but the RMSE values of the following designs di�er not much. The best designs
properties yield good ranks (7th and 8th) for D-, A- and E-Optimality. The third
best design is to be mentioned because the computed properties are all ranked
around the 90th place out of 120. So it seems worth to not only focus on one
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Figure 6: E�ect of A-optimality, trace(M), on model error grouped by number
of design points.
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single criterion to optimize when looking for suitable designs for fitting Kriging
metamodels.



Table 2: Best performing designs and ranked properties for n=5

type RMSE minDist avgDist D-opt A-opt E-opt
Degen. lhd 0.0187 87 41 17 26 35
Maximin lhd 0.0225 86 104 84 78 78
Optim. lhd 0.0237 3 56 24 38 44
Optim. lhd 0.0244 6 30 27 20 21
Degen. lhd 0.0253 46 82 31 29 31

Table 3: Best performing designs and ranked properties for n=9

type RMSE minDist avgDist D-opt A-opt E-opt
Optim. lhd 0.0031 16 38 7 7 8
Maximin lhd 0.0035 94 15 35 36 38
Maximin lhd 0.0036 98 97 92 87 84
Degen. lhd 0.0038 62 8 14 8 7
Degen. lhd 0.0041 55 30 43 59 61

Conclusion

This work analyzes the behavior of di�erent design of experiment methods and
the design properties including optimality criteria. The focus is on determining
whether these properties and criteria have an influence on the quality of a Kriging
model. The research covers the questions of the impact of the design type, the
significance of model dependent optimality criteria and spatial criteria and the
performance development of the designs by increasing design size.

The experiment results show that LHDs are superior to designs created by simple
random sampling, especially at a small number of design points. Optimized LHDs
are more robust and perform equal to Maximin LHDs and Degenerated LHDs.
Hence the usage of them can be advantageous if the situation allows to a�ord the
computation time. If computation time is an important aspect Maximin LHDs
should be su�cient.
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It seems that the average distance of the design points can be more important
than the minimum distance. Further studies are required to verify that thesis.
A positive e�ect of model dependent optimality criteria (for first order linear
regression models) can be recognized, although the e�ect is not significant for
all computed criteria. Regarding the results of the FFD experiments, it seems
interesting to combine the abilities of standard designs with LHDs.

• Which criteria must a design fulfill to enable fitting high quality
Kriging metamodels?
A general answer to this question was not found, but maximizing the
minimum interpoint distance does not automatically lead to the best designs.
Similar to E-optimality, the smallest eigenvalue of a correlation matrix
of a Kriging model may be maximized. This may provide an interesting
approach towards generating optimal designs for Kriging models.

• Does the design type have a significant impact on the model
quality?
Simple random sampling lead to significant worse designs. But it is also not
easy to generate consistently bad performing LHDs, especially for larger
designs. Surprisingly the di�erent examined LHD types perform all on an
equal level. This might be due to the simplistic experiment setup. A more
sophisticated experimental analyses might yield deeper insights to e�ects
of di�erent design types.

• How many points should a good design consist of (regarding the
tradeo� between cost intensive number of experiments and the
model quality)?
The answer to this question depends on the structure and complexity of
the objective function and the expected costs of an experiment. In this
case designs consisting of at least seven points lead to a significant decrease
in the variance and the median values of the model error. For design sizes
larger than seven points the improvement of the model quality becomes
less significant.

Interesting further studies include the reproduction of the results on di�erent
more complex test functions created by a randomized function generator. The
work should be extended to find statistical robust criteria for optimal designs for
Kriging models.
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