
From Real World Data to Test Functions

Andreas Fischbach, Martin Zae�erer, Jörg Stork, Martina Friese,
Thomas Bartz-Beielstein

SPOTSeven Lab, Dept. of Comp. Sci. and Eng. Sci.
TH Köln

E-Mail: {andreas.fischbach, martin.zae�erer, joerg.stork, martina.friese,
thomas.bartz-beielstein}@th-koeln.de

www.spotseven.de

1 Introduction

When researchers and practitioners in the field of computational intelligence
are confronted with real-world problems, the question arises which method
is the best to apply. Nowadays, there are several, well established test
suites and well known artificial benchmark functions available. However,
relevance and applicability of these methods to real-world problems remains
an open question in many situations. Furthermore, the generalizability of
these methods cannot be taken for granted. Some preliminary ideas about
generalizability are discussed in [1, 2].

This paper describes a data-driven approach for the generation of test
instances, based on real-world data, as depicted in Figure 1. The test
instance generation uses data-preprocessing, feature extraction, modeling,
and parameterization. It was applied to several real-world scenarios, e.g., in
the context of genetic programming [3]. In this work we apply this concept
on a classical design of experiment real-world project and generate test
instances for benchmarking, i.e., design of experiment methods and model
fitness. But it can also be used to compare and analyze several surrogate
techniques and optimization algorithms as well.

In most cases, complex and expensive real-world problems do not provide
su�cient data for comparison of methods. Thus, our goal is our goal is to
create a toolbox containing multiple data sets of real-world projects. With
that toolbox, researchers are granted access to both the data sets and the
derived test functions.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 159

www.spotseven.de

Create initial design

Evaluate objective function

Build surrogate model

Evaluate model fitness

Real‐world Dataset

Create parameterized model

Generate test instances

2

3

4

5

1

Figure 1: Simplified test process of surrogate models fitted upon evaluation on
initial designs with real-world data based test instances. An optional
validation step can be added before the test instances are used in step 3.

This work mainly focuses on the following questions:

(Q-1) What is the characteristic of a variation of a certain model parameter
in terms of the models fitness landscape?

(Q-2) How can similarity between models be computed and what are useful
thresholds to separate similar models from almost equal models on
the one hand, and completely di�erent models on the other hand?

Considering an example application for the test function generator, the
design of experiment used to gather the reference data set used in this work
will be further analyzed:

(Q-3) Which design of experiment works best for the underlying real-world
problem?

The remainder of this work is organized as follows. Section 2 gives a
literature review. Section 3 describes the process of the test function
generation and applied modeling techniques as well as model similarity
measures used. Section 4 illustrates the reference data set and the example
application, the evaluation of design of experiment methods. Section 5
concludes the work and gives a short outlook for future work.

160 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

2 Related Work

In the research field of benchmarking real-parameter problems many contri-
butions address the random generation of problem instances based on user
defined parameters, like the Max-Set of Gaussian Landscape Generator [4],
or the Krigifier [5], both using Gaussian Processes.

The Max-Set of Gaussian Landscape Generator computes the upper en-
velope of m weighted Gaussian process realizations and can be used to
generate continuous, bound-constrained optimization problems. The land-
scape generator is parameterized to control, e.g., the number of Gaussian
components and implicitly, the number of local optima, the occurrences
and variations of hills and the peaks, and the global optimum.

The Krigifier realizes a procedure for generating nonlinear objective func-
tions. Its idea is based on the convenient supposition that objective
functions are realizations of stochastic processes. The user specifies an
underlying trend, a stochastic process and a finite number of points at
which the process will be observed. The Krigifier creates a noise term and
uses the trend and the noise term to produce an objective function.

A completely di�erent approach is addressed by the Real-Parameter Black-
Box Optimization Benchmarking [6]. The organizers of this benchmarking
challenge choose and implement a benchmarking function testbed, typically
covering artificial test functions like Sphere, Rosenbrock, Rastrigin, etc.
Participants then have to apply their black-box problem solvers and their
results will be gathered and compared.

All these approaches do not rely directly on real-world problems. Our work
realizes one step towards closing a gap in means of validating methods
regarding their applicability and generalizability in practical deployment.

3 Test Function Generation

The simplified process of real-world data based test function generation is
depicted in Figure 2. It consists of the following steps:

1. Process a data set of a real-world problem, X is the design matrix
and Y is a vector of corresponding outcome values of the underlying
process.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 161

Industrial Data
 xi, yixi, yi

Level 0 model
e.g. Kriging or linear

model

generate ��

Level 1
 model

1

model

1

 �
1

�

1

Level 1
 model

2

model

2

 �
2

�

2

Level 1
 modelnmodeln �n�n

define
bounds

generation

Figure 2: Resulting hierarchy of the generation process of di�erent models to be
used as test function instances.

162 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

2. Build a model, further denoted as level 0 model, that is suitable for
regression and interpolation purposes of the data. In this work the
Kriging technique is used to build the model.

3. Create a parameter – to vary the previously fitted level 0 model. The
parameter – is a scalar or vector, that perturbs the generated model.
It may, e.g., define a change in parameters or other variables of the
derived model. First, bounds are generated for –, ensuring numerical
robustness. Then, n instances –i with i = 1, ..., n are randomly
created within the chosen bounds. Finally, a randomly selected
subset of the desired number of m < n instances is chosen. This
ensures that the instances which need to be solved by the evaluated
methods, are never known in advance.

4. Apply the selected – instances on the level 0 model to retrieve the
desired number of m level 1 model instances, each coupled with an –j ,
j = 1, ..., m. The process ensures the fulfillment of the requirements
on the similarity demands of the models by computing similarity
measures and discarding infeasible – instances.

The remainder of this section describes the Kriging modeling technique,
the model variation and the model similarity evaluation.

3.1 Kriging

Often used for the purpose of regression and interpolation, Kriging is a
modeling method based on Gaussian processes. In the following we will
stick closely to the descriptions by Forrester et al. [7]. Further details can
be found in their book. Given a set of n solutions X = {x(i)}i=1...n in a
k-dimensional continuous search space with observations y = {y(i)}i=1...n,
Kriging tries to determine an expression for a predicted value at an unknown
location by interpreting the observations y as realizations of a stochastic
process. The stochastic process is defined by the set of random vectors
Y = {Y (x(i))}i=1...n. The correlation of the random variables Y (·) is
modeled as follows [7]:

cor
Ë
Y (x(i)), Y (x(l))

È
= exp

Q

a≠
kÿ

j=1
◊j |x(i)

j ≠ x
(l)
j |pj

R

b . (1)

The matrix that collects correlations of all pairs {(i, l)} is called the corre-
lation matrix �. It is used in the Kriging predictor

ŷ(x) = µ̂ + Â

T �≠1(y ≠ 1µ̂), (2)

where ŷ(x) is the predicted function value of a new sample x, µ̂ is the
maximum likelihood estimate (MLE) of the mean and Â is the vector of
correlations between training samples X and the new sample x. The width
parameter ◊ = (◊1, . . . , ◊j , . . . , ◊k)T determines how far the influence of
each sample point x spreads. In detail, the larger the width parameter is,
the faster are the potential changes in the predicted value. The smaller the
width parameter is, the slower are the potential changes in the prediction.
Since there is one ◊i for each dimension, this parameter can control the
activity in each dimension. The parameter pj is usually fixed at pj =
2, and defines the shape of the correlation function: At pj = 2, the
correlation function is more smooth, whereas pj = 1 is less smooth. In
case of noise, the parameter ⁄ is added to the diagonal of the correlation
matrix �. This allows the model a more smooth fit through observations
(regression), in contrast to the default which reproduces all training data
exactly (interpolation). Classically, ⁄ is used to deal with noisy data. But
it can as well be used to smoothen more rugged fitness landscapes.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 163

All model parameters are determined by Maximum Likelihood Estimation
(MLE). For ◊, ⁄ and p, MLE requires numerical optimization.

3.2 Model variations

The main parameters controlling the behavior of the model are ◊ and
⁄. The major goal of the test function generator is the deployment upon
real-world data, which is usually noisy. So the variation of the parameter
⁄ is a natural choice at a first glance. In addition the variation of the
width parameter ◊ seems important to change the model (slightly) by
maintaining the general characteristic of the fitness landscape under certain
circumstances. The bounds of the variations of the parameters have to be
defined carefully, otherwise the model can show signs of degeneration.

The test function generator will compute lower and upper bounds for –
according to the fitted level 0 model. The first component of – represents
the ⁄ value and the remaining components represent the corresponding
◊ values. They will be added to their corresponding values of the level
0 model to retrieve the altered level 1 model. Afterwards the correlation
Matrix � is recalculated, so that the changes take e�ect before predictions
are made. The test function generation returns the desired number of
similar functions, randomly drawn from the search space defined by the
level 0 model and the bounds for –. If the given bounds do not allow the
creation of su�cient feasible instances, an error message is produced.

An example is shown in Fig. 3. Here, the one-dimensional function

f(x) = (≠18x ≠ 2)2 sin(20x ≠ 4)

is first sampled by 11 equidistant points. The derived level 0 Kriging model
has ⁄ = 0 and ◊ = 100. To derive the level 1 models, the bounds for alpha
are set to alphalow = [0, ≠90] and alphahigh = [1, 900] so that ⁄ will be set
to values between zero and one, and ◊ between ten and one thousand. For
demonstration purposes, the extreme values for alpha are chosen, as shown
above each plot in Fig. 3. The plot shows that di�erent – values a�ect the
ruggedness of the function and vary the number of local optima.

164 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

0
10

0
30

0

Level 0 Model

x

f(x
)

−2
00

0
10

0
30

0
y

(x
)

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

0
10

0
30

0

Level 1 Model, a = [0.2,0]

x

f(x
)

−1
00

0
10

0
20

0
y

(x
)

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

0
10

0
30

0

Level 1 Model, a = [1,0]

x

f(x
)

−5
0

0
50

10
0

y
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

0
10

0
30

0

Level 1 Model, a = [0.2,−90]

x

f(x
)

−1
0

0
10

20
30

y
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

0
10

0
30

0

Level 1 Model, a = [1,−90]

x

f(x
)

0
5

10
15

20
y

(x
)

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

0
10

0
30

0

Level 1 Model, a = [1,900]

x

f(x
)

−5
0

0
50

10
0

15
0

y
(x

)

Figure 3: A level 0 Kriging model and several derived level 1 models. The solid
line is the true function f(x), circles indicate observations used to fit
the level 0 model and the dashed line indicates the level 1 model ŷ(x).

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 165

3.3 Model Similarity Computation

In addition to the quality of a model itself a measurement of the similarity
of two models is needed. This should prevent the generation of test
functions which are not anymore correlated to the given training data.
Some correlation is desirable, so that the generated instances reflect the
structure of the real-world data to some degree.

The level 1 models di�erence from the level 0 model will be computed
evaluating the models at a pre defined equidistant grid and taking the
di�erences of the predicted values of the models. It must be ensured that
there is at least a di�erence large enough to ensure that the models are not
equal or almost equal, otherwise we are always looking at the very same
function. On the other hand, the di�erence must not be too large, because
the characteristic of the underlying problem must be preserved, otherwise
the results of the evaluations are questionable.

Each of the accuracy measures discussed in the following is unique and
none can be considered as superior to the others. One goal in this work is
to define an ensemble of measurements with carefully defined thresholds.
This should lead to a confident set of di�erent models comparable to the
underlying real-world problem.

• The mean absolute error (MAE) is a popular measure to evaluate
model fitness. It is defined as follows:

MAE =
qn

i=1|ŷi ≠ yi|
n

• The root mean square error (RMSE) has been used as a standard
metric to measure model performance in di�erent scientific fields like
meteorology, air quality, and climate research studies [8]:

RMSE =
Úqn

i=1|ŷi ≠ yi|2
n

• Pearsons correlation coe�cient (r) is a measure of the amount
of linearity between two continuous variables X and Y , giving a value
between ≠1 and +1 inclusive, where +1 is total positive correlation, 0
is no correlation, and ≠1 is total negative correlation. Regarding the
prediction values of the level 0 model and level 1 model, correlation

166 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

values are desired to be closer to +1 as to 0. If they are too close to
+1, they can be discarded due to their degree of conformity, while
correlation values near 0 or even negative correlations indicates that
the two models are not similar anymore.

• To be capable of dealing with non-linear models or non-linear changes
of the models, rank based correlation is regarded as well. In this work
Spearmans fl rank correlation coe�cient is used. An increasing
coe�cient value describes an agreement of the rankings. A value of
+1 implies that the rankings are the same, ≠1 that the rankings are
inverse and 0 that the rankings are independent.

• In addition a t-test will be performed to compare the two populations
of predictions. The p-value of the t-test describes the likeliness of
the observed data assuming the null hypothesis is true. The null
hypothesis is that the compared data groups are from the same
population. For two similar models a high p-value next to +1 is
to be expected. It has to be regardet that t-test demands several
assumptions, i.e., the normal distribution of the data.

Although these statistics have been used for years now, there is no consensus
which of these statistics is superior. Measures of absolute values like the
MAE or the RMSE lack interpretability, while statistics delivering values
between ≠1 and +1 or 0 and +1 are easy to interpret if the distribution
of the observed values is appropriate. As a conclusion, a combination of
these statistics will be used.

The interface of the test function generator provides a function that takes
training data, validation data, lower and upper bounds for the variation
vector – and the number of test functions to generate. These instances are
drawn randomly in the search space defined by the level 0 model and –. The
test function generator performs the similarity computation automatically
and discards generated models that are within the bounds for – but can not
be seen as similar or are too similar according to the previously discussed
statistics.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 167

4 Example Application - DoE Evaluation

The test function generator was motivated by two di�erent kinds of ap-
plications. The first application is to analyze the generalizability of a
method developed for a specific problem. The second application is to
further analyze a specific real world data set. The remainder of this section
introduce the real-world data set, the experimental setup and the results
of the experiments.

4.1 Reference Data Set

The industrial data, which depicts the basis for our test function generator,
originated from experiments to optimize the development of gas sensors for
combustion processes [9]. In a combustion process, a number of di�erent
gases are produced. A fraction out of these gases are crucial indicators
for the goodness of the combustion and important for the process control.
Therefore, the target of the new sensor design was to improve the sensor
sensitivity for a specific gas, while reducing the cross sensitivity to other
gases. The experiments were conducted using a mixture of seven di�erent
gases as input, further denoted as X1 to X7. Moreover a measurement in
voltage of two di�erent sensors were retrieved as output, further denoted
as Y 1 and Y 2. The underlying experimental design was a response surface
design fitted to built the associated regression model, including two-way
interactions and quadratic behavior.

The design size was set to 80 experiments as a result of time-consuming
real-world measurements. So, all experiments could be performed within
one week. An overview of the data is outlined in Table 1. The data was
anonymized and standardized due to confidentiality restrictions.

An additional 60 experiments were run, with the same characteristics as
described above. The resulting dataset was used for model validation.

These two data sets were previously used to compare and analyze advan-
tages and disadvantages of several di�erent regression modeling techniques
on sparse and limited data, e.g. Bayesian robust linear regression, standard
regression approaches, like ordinary least squares and Lasso (least abso-
lute shrinkage and selection operator, see [10]), and genetic programming
[9]. The results show that the Lasso regression model performs best on

168 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

Table 1: Overview of the standardized dataset used to generate the models of the
sensors. Each input of the model is denoted by an X and each sensor
output is denoted by an Y .

X1 X2 X3 X4 X5 X6 X7 Y1 Y2
Minimum ≠1.13 ≠1.21 ≠1.16 ≠1.13 ≠1.15 ≠1.17 ≠1.00 ≠1.94 ≠2.06
1st Quartal ≠1.13 ≠1.21 ≠1.16 ≠1.13 ≠1.15 ≠1.17 ≠0.82 ≠0.63 ≠0.58
Median 0.09 0.03 0.12 0.08 0.08 0.05 ≠0.39 0.06 0.09
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3rd Quartal 1.30 1.26 1.40 1.29 1.28 1.28 0.59 0.66 0.67
Maximum 1.30 1.26 1.40 1.29 1.31 1.28 3.79 2.32 2.28

the validation data set predicting Y 1. In the resulting model only the
parameters X1 to X4 were included.

Due to the production process of the sensors, future experiments will most
likely lead to similar linear regression models. The customer is heavily
interested in these easy to understand models and from the research per-
spective it is very important and interesting to analyze the capabilities
of the applied design of experiment. Therefore the test function gen-
erator will be set up to deliver similar problem instances based on the
given data.

4.2 Experimental setup

As a first step to demonstrate the application of the test function generator,
the variation of the Kriging parameters ⁄ and ◊ will be analyzed. We use
the data described in the previous section limited to the inputs X1 to X4 ,
which are the most important and interesting parameters according to the
results of the di�erent modeling techniques [9].

The bounds for – for this screening experiment are given in Table 2.
All experiments are performed using the free software environment for
statistical computation, R5. As optimizer for the estimation of the Kriging
model parameters ◊ and ⁄, Global Optimization by Di�erential Evolution
(DEoptim), with a budget of 1000 evaluations is set.

To analyze the generalizability of the design of experiment created to
obtain the training data, further referred to as base design we apply the

5R as well as all employed packages are available at http://cran.r-project.org/

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 169

http://cran.r-project.org/

Table 2: Lower and upper bounds for ⁄ and ◊ and the nr. of values (steps) taken
in each dimension to build a grid as design of experiment to evaluate
the influence of ⁄ and ◊ variations on the model similarity.

lambda theta
lower bound 0.1 ≠2
upper bound 1 10
steps 4 4

test function generator on the data set. The generator will be set up
to generate modified Kriging models of the obtained level 0 model with
previously adjusted similarity thresholds.

Several di�erent designs will be employed and linear regression level 2
models fitted by means of the least squares method by evaluating the
design points on the drawn level 1 model instances. The model fitness
will be evaluated by computing the RMSE between the level 1 models
and level 2 models at a predefined grid. These experiments are based on
previous work to compare di�erent design methods, e.g., random sampling,
Latin hypercube sampling and full factorial designs, see also [11]. The test
function generator is set up to generate 20 di�erent level 1 models.

Several designs will be set up to evaluate the models. The base design will
be pre processed, as the dispensable columns for the parameter X5 to X7
will be omitted and remaining duplicates will be removed. This results into
a design size of 67 points. It has to be regarded that an optimized design
created for the parameters X1 to X4 can look di�erent.

This design will be compared with a Full factorial design (FFD) with 2
levels per factor (16 points) and a FFD with 3 levels per factor (81 points)
as well. In addition Latin hypercube designs (Lhd) with 16, 67 and 81
points resp. and simple uniform random sampling designs of corresponding
sizes will be created.

Each design will be used to retrieve predictions of the 20 di�erent level 1
models and fit a linear regression model of the following form, which will
be taken as a benchmark model structure:

ŷ = —0 +
4ÿ

i=1
—ixi + —14x1x4 + —34x3x4.

170 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

Table 3: Summary of a linear model fit, showing the estimated influence and
significance of the di�erent parameters on the RMSE.

Estimate Std. Error t value p value
(Intercept) 0.2029 0.0032 62.88 < 2e-16 ***

lambda 0.1099 0.0047 23.32 <2e-16 ***
theta1 -0.0013 0.0007 -1.83 0.0669 .
theta2 -0.0042 0.0007 -5.96 3.55e-09 ***
theta3 -0.0140 0.0007 -19.95 <2e-16 ***
theta4 -0.0093 0.0007 -13.33 <2e-16 ***

The resulting models will be evaluated at a pre defined equidistant grid
and the RMSE between the predictions of the level 1 models and the level
2 models will be computed.

4.3 Results

At first the results of the screening experiments of the variations of – will
be discussed. In total, 1045 experiments with di�erent – instances were
run, resulting from the 4 di�erent values per parameter (45 =1024) plus
additional 20 runs of one factor at a time variations and one trial with each
component in – set to 0 for validation purpose.

Results of the one factor at a time variations are shown exemplarily in
Figures 4 and 5 for ⁄, ◊1 and ◊4. It can be seen that, even with increasing
RMSE and MAE, the correlation coe�cients seem insensitive against
changes of one parameter, while the p value of the t-test seems very
sensitive against changes. Another interesting aspect is, that the p value
seems less sensitive for changes of ⁄ than for the changes of the ◊ values.

In Figure 5, it can be seen, that the change of the variation of ◊4 from 2 to
4 only results in a small change of the RMSE and MAE. This sometimes
can occur when changes of – are cut to the upper or lower bounds.

As expected, a linear model fit revealed that almost all components of –
have a significant e�ect on the RMSE, see Table 3. Similar results were
obtained for the other measures, i.e., MAE, Pearsons correlation coe�cient
r, Spearmans correlation and the p value of the t-test. The p value of the
t-test seems to be the most sensitive of the measures.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 171

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Lambda variation

M
ea

su
re

 v
al

ue

0.00

0.25

0.50

0.75

1.00

−2 0 2 4
Theta 1 variation

M
ea

su
re

 v
al

ue

Measure linetype
mae
pearson.r
rmse
spearman
t.test.p

Measure symbol
mae
pearson.r
rmse
spearman
t.test.p

Figure 4: E�ects of the variation of model parameters on the chosen similarity
measures MAE, RMSE, Pearsons r, Spearman and the t-test p value.
Left: E�ects of ⁄ changes. Right: E�ects of ◊1 changes.

A detailed look at the result table from the screening experiment was taken,
to decide which thresholds for each of the measures should be taken to
discard test function instances. In the summary of the measures, depicted
in Table 4, the distribution of the measures can be seen. The correlation
coe�cients does not become very low, with their mean at around 0.95. The
p value of the t-tests distributes on the whole scale from 0 to +1.

A full linear model with interaction terms between all parameters and main
e�ects up to second degree predicting the RMSE and Spearman correlation
coe�cient reveals an adjusted coe�cient of determination of about 0.85
and 0.74 respectively.

For the design of experiment application, the bounds for the measures were
set es shown in Table 5. With these thresholds 20 random test functions
were drawn. The impact of the chosen designs on the RMSE of the derived
linear models compared to the test function are shown in Figure 6. It can
be seen that the base design, applied to create the training data in the
real-world project, could not be outperformed by any other design type. At
a first glance it might be surprising, that designs with a larger design size,
e.g. the Uniform 81 or even the LHD 81, perform worse. But these designs

172 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

0.00

0.25

0.50

0.75

1.00

−2 0 2 4
Theta 4 variation

M
ea

su
re

 v
al

ue

Measure linetype
mae
pearson.r
rmse
spearman
t.test.p

Measure symbol
mae
pearson.r
rmse
spearman
t.test.p

Figure 5: E�ects of the variation of ◊4.

were not set up to fit second order linear regression models and would
therefore not be the first choice in such a setup. The results would surely
look di�erent if the level 2 model would as well be a Kriging model.

5 Conclusion

In this work the generation process of test function instances based on a
real-world industrial data set is described. Based on this data a Kriging
model is fitted and altered according to a variation parameter –, by adding
its components to the corresponding model parameter. The generated
instances will be discarded or kept according to thresholds for several
model similarity measures. This leads finally to a test function instance
pool that can be used to benchmark, i.e, design of experiment and modeling
methods, for their practical use on the underlying problem.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 173

Table 4: Summary of statistical measures of similarity gathered on screening
experiments for –.

rmse pearson.r spearman t.test.p
Min. :0.0000 Min. :0.8732 Min. :0.8560 Min. :0.0000006
1st Qu.:0.1819 1st Qu.:0.9268 1st Qu.:0.9283 1st Qu.:0.0189555
Median :0.2430 Median :0.9524 Median :0.9564 Median :0.1431840
Mean :0.2376 Mean :0.9486 Mean :0.9506 Mean :0.3314180
3rd Qu.:0.2935 3rd Qu.:0.9729 3rd Qu.:0.9749 3rd Qu.:0.6384715
Max. :0.4120 Max. :1.0000 Max. :1.0000 Max. :1.0000000

Table 5: Thresholds for measures preventing too similar and degenerated test
functions.

rmse pearson.r spearman t.test.p
lower bound 0.2 0.85 0.85 0.5
upper bound 0.35 0.92 0.92 0.9

altered models that were still correlated at rather high coe�cient
rates around 0.9. This was ensured by the definition of lower and
upper bounds relative to the parameter values of the base level 0
model. This kind of limit the amount of changes applicable to the
model and can be problematic for example when a large number of
test instances is needed.

(Q-2) How can similarity between models be computed and what
are useful thresholds to separate similar models from al-
most equal models on the one hand, and completely di�er-
ent models on the other hand?
This can kind of simple be visually analyzed for one or two dimen-
sional problems, but is getting harder in general for larger number
of dimensions. Statistical measures can help to distinguish models
that are too similar or too di�erent. Further analysis of the result-
ing fitness landscapes in sense of, e.g., number of local optima or
gradients, can help to judge the similarity of two di�erent models.

174 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

The major research Questions addressed in this work were:

(Q-1) What is the characteristic of a variation of a certain model
parameter in terms of the models fitness landscape?
The variation of the Kriging model parameters ⁄ and ◊ lead to

base

FFD 2

FFD 3

LHD 16

LHD 67

LHD 81

Uniform 16

Uniform 67

Uniform 81

0.00 0.05 0.10 0.15 0.20
RMSE

D
es

ig
n

ty
pe

Figure 6: Resulting RMSE values of models based on di�erent design of
experiment methods each applied on the same set of 20 random test
functions.

a Full factorial designs at three levels per factor and Latin hypercube
designs with 81 points could not dominate the results. This of course
has to be further analyzed by altering the model techniques for the
level 2 models. Even slight changes to the base design can now be
analyzed and might lead to interesting new design points for the
customer in future real-world experiments.

Interesting future work include the shift of the similarity computation to
the beginning of the instance generation. The Matrix computations to alter
Kriging models can be regarded as time consuming, especially with high
dimensional data. So it would be beneficial to compute an expectational
value for the similarity of two models.

In addition, fitness landscape analysis is an interesting topic to include
in the work. The fitness landscapes comparison based on the RMSE or
correlations of function values can be extended by interesting features to
add or to avoid, e.g., the number of local optima, plane areas or large
gradients.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 175

(Q-3) Which design of experiment works best for the underlying
real-world problem
The application of di�erent design of experiment methods has shown,
that the base design, used to gather the training data set, was not
outperformed by any other design method. Even larger designs like

Gaussian process with a certain probability and therefore be very suitable
to deliver model variations based on real-world data.

References

[1] M. Chiarandini and Y. Goegebeur, “Mixed Models for the Analysis of
Optimization Algorithms,” in Experimental Methods for the Analysis
of Optimization Algorithms (T. Bartz-Beielstein, M. Chiarandini,
L. Paquete, and M. Preuss, eds.), pp. 225–264, Germany: Springer,
2010.

[2] T. Bartz-Beielstein, “How to Create Generalizable Results,” in
Springer Handbook of Computational Intelligence, pp. 1127–1142,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[3] O. Flasch, “A Modular Genetic Programming System,” May 2015.
Dissertation zur Erlangung des Grades eines Doktors der Ingenieur-
wissenschaften der Technischen Universität Dortmund, Fakultät für
Informatik.

[4] M. Gallagher and B. Yuan, “A general-purpose tunable landscape
generator,” IEEE Transactions on Evolutionary Computation, vol. 10,
pp. 590–603, Oct. 2006.

[5] M. W. Trosset, I. for Computer Applications in Science, and En-
gineering., The Krigifier [microform] : a procedure for generating
pseudorandom nonlinear objective functions for computational experi-
mentation / Michael W. Trosset. Institute for Computer Applications
in Science and Engineering, NASA Langley Research Center ; Na-
tional Technical Information Service, distributor Hampton, VA :
Springfield, VA, 1999.

[6] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-
box optimization benchmarking 2009: Experimental setup,” Tech.
Rep. RR-6828, INRIA, 2009.

[7] A. Forrester, A. Sobester, and A. Keane, Engineering Design via
Surrogate Modelling. Wiley, 2008.

176 Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016

Finally, di�erent variation methods on the models, e.g. rotating, scaling,
distortion of the input space should be applied. Considering Kriging models,
conditional simulation, could be applied to deliver possible realizations of a

in the literature,” Geoscientific Model Development, vol. 7, pp. 1247–
1250, June 2014.

[9] M. A. Rebolledo Coy, S. Krey, T. Bartz-Beielstein, O. Flasch, A. Fis-
chbach, and J. Stork, “Modeling and Optimization of a Robust Gas
Sensor,” in Bioinspired Optimization Methods and their Applications
(G. Papa and M. Mernik, eds.), pp. 267–278, May 2016.

[10] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society Series B (Methodolgical),
vol. 58, no. 1, pp. 267–288, 1996.

[11] A. Fischbach, J. Stork, M. Zae�erer, S. Krey, and T. Bartz-Beielstein,
“Analyzing Capabilities of Latin Hypercube Designs Compared to
Classical Experimental Design Methods ,” in 25. Workshop Compu-
tational Intelligence (F. Ho�mann and E. Hüllermeier, eds.), pp. 255–
270, 2015.

Proc. 26. Workshop Computational Intelligence, Dortmund, 24.-25.11.2016 177

[8] T. Chai and R. R. R. Draxler, “Root mean square error (RMSE) or
mean absolute error (MAE)? – Arguments against avoiding RMSE

	S. Lu, E. Hüllermeier
	J. Á. González Ordiano, W. Doneit, S. Waczowicz, L. Gröll,R. Mikut, V.Hagenmeyer
	M. Alsayegh, C. Rösmann, F. Hoffmann, T. Bertram
	J. Schneider
	J. H. Schoenke
	M. Krüger, S. Meuresch, A. Stockem Novo, T. Nattermann, K.H. Glander, T. Bertram
	S.Chandrasekaran, M.Zaefferer, S.Moritz, J.Stork, M.Friese, A.Fischbach, T.Bartz-Beielstein
	A. Kroll
	M. Gringard, A. Kroll
	T. O. Heinz, O. Nelles
	A. Fischbach, M. Zaefferer, J. Stork, M.Friese, T. Bartz-Beielstein
	M. Trommer, A. Wenzel, C.Walther
	M.Schneider, C.Walther, A.Wenzel
	C. Dengler
	T. Aissa, A. Cavaterra, S. Lambeck
	B. Jäschke, A. Kroll
	T.Loose

