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Abstract
This paper introduces CAAI, a novel cognitive architecture for artificial intelligence in cyber-physical production systems.
The goal of the architecture is to reduce the implementation effort for the usage of artificial intelligence algorithms. The
core of the CAAI is a cognitive module that processes the user’s declarative goals, selects suitable models and algorithms,
and creates a configuration for the execution of a processing pipeline on a big data platform. Constant observation and
evaluation against performance criteria assess the performance of pipelines for many and different use cases. Based on these
evaluations, the pipelines are automatically adapted if necessary. The modular design with well-defined interfaces enables
the reusability and extensibility of pipeline components. A big data platform implements this modular design supported
by technologies such as Docker, Kubernetes, and Kafka for virtualization and orchestration of the individual components
and their communication. The implementation of the architecture is evaluated using a real-world use case. The prototypic
implementation is accessible on GitHub and contains a demonstration.
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2 TH Köln, Institute of Computer Science,
Gummersbach, Germany

3 Institute Industrial IT, OWL University of Applied Sciences
and Arts, Lemgo, Germany

1 Introduction

The use of artificial intelligence (AI) in cyber-physical
production systems (CPPS) can help to significantly reduce
costs and provides new market opportunities [21]. Many
Industry 4.0 (I4.0) applications rely on the use of AI, such
as condition monitoring, predictive maintenance, diagnosis,
or optimization [6, 13]. Until now, the implementation of
real-world use cases is time- and cost-intensive due to
missing standards and imprecisely described architectures.
Typically, an AI expert analyzes one specific application
and develops a suitable solution that will match customer
needs. Often use cases, particularly those in small and
medium-sized enterprise (SMEs), are not implemented
because of limited resources and the unpredictable benefit
of AI solutions. Therefore, to enable a resource-efficient
use for many applications, AI solutions require moderate
manual implementation and operation effort.

Goals (G) for the cognitive architecture for artificial
intelligence in cyber-physical production systems (CAAI)1

1A prototypic implementation inlcuding a tutorial is accessible
on GitHub: https://github.com/janstrohschein/KOARCH/tree/master/
Use Cases/VPS Popcorn Production/Docker
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application are represented by several SME requirements
that have to be fulfilled by an AI solution.

(G-1) Reliability: In a competitive market environment,
the efficiency of CPPS is important, and reliabil-
ity is a prerequisite to achieving it. Since the CAAI
supports the CPPS, both are interconnected and
share the same requirements. Capturing the com-
plete data is essential. It contains a vast amount of
value, especially if it includes information about the
quality of produced products, which can be utilized
by applications of AI. To avoid losses of data or
downtime of the CPPS, the CAAI and its under-
lying infrastructure have to be stable and reliable
[12, 41].

(G-2) Flexibility: A significant drawback of existing AI
solutions is that an AI expert often develops them
for a single machine or a single problem. Therefore,
these solutions do not include common interfaces,
which enable an adaption or extension of the
existing system. This inflexibility is not acceptable,
because there is a great demand in the market for
fast adapting CPPS, which can not be fulfilled by
the approach of specific AI solutions. The CAAI
has to be flexible and extendable to enable a quick
reaction on this market demand [10].

(G-3) Generalizability: The CAAI should apply to many
types of CPPS and support many different use
cases. As it is impossible to choose algorithms
for all system type combinations and applications
in advance, their selection should be performed
automatically in an intelligent manner. Thus, the
CAAI has to process the user-defined aims, derive
a valuable process pipeline for the specific system,
and learn over time to improve the system’s
performance, i.e., the CAAI implements cognitive
capabilities [36].

(G-4) Adaptability: The realization of adaptability
through the CAAI increases the efficiency of the
CPPS by directly adjusting process parameters so
that users do not have to change them manually.
Furthermore, adaptability allows us to automate
the adjustment, which is less error-prone, and ulti-
mately realize an autonomous system. However, the
CAAI has to ensure the safe operation of the CPPS
during the whole process. For example, the opera-
tion boundaries of the CPPS have to be respected
during optimization. In contrast, in anomaly detec-
tion, there might be machine parts that need to pro-
ceed operation, even in case of emergency. Thus, the
boundary conditions must be included in the CAAI
and CPPS adjustments are only allowed within these
boundaries [27, 36].

First, we review existing approaches. They are associated
with the goals (G1–G4). To the best of our knowledge,
until now, no work tackles those goals properly. Proposed
architectures from the domain of automation, i.e., the
Reference Architecture Model Industrie 4.0 (RAMI4.0) [1],
the Industrial Internet Reference Architecture (IIRA) [29],
or the 5C architecture [26], are too abstract since they
do not define implementation details, such as interfaces.
It is necessary to extend and refine certain parts of
them to achieve a more specific architecture. Cognitive
architectures, such as Adaptive Control of Thought-Rational
(ACT-R) [2] and Soar [25], implement certain concepts to
reach adaption and cognitive capabilities.

They can not be directly used to address industrial use
cases, because they focus on cognition and lack gener-
ality [8]. Automated Machine Learning (AutoML) [14]
and hyperheuristics can choose and configure a suitable
algorithm automatically. That includes steps such as data
pre-processing, algorithm selection, and hyperparameter
optimization [15, 35, 45]. Since there is an intersection
between our architecture and these methods, they are con-
sidered for our implementation. Some Big Data Platform
(BDPs) can be found in the literature, such as the Open Big
Data Platform for Industry 4.0 [47], the Big Data Analyt-
ics Architecture for Industry 4.0 [39], and the Big Data for
Industry 4.0 [16]. To the best of our knowledge, none of
these BDP fulfills all our requirements towards a cognitive
architecture.

According to Neisser [34], cognition refers to “all pro-
cesses by which the sensory input is transformed, reduced,
elaborated, stored, recovered, and used”. Regarding the con-
text of I4.0, in the scope of CAAI we define cognition as
follows.

Definition 1 (Cognition) Cognition refers to all processes
that transform, reduce, elaborate, store, recover, and
use input data to solve I4.0 use cases, i.e., condition
monitoring, anomaly detection, optimization, and predictive
maintenance.

The central part of CAAI is a cognitive module that
processes knowledge, interprets aims, creates appropriate
pipelines, and improves the system through continuous eval-
uation. According to (G-2), our architecture is developed as
an extensible platform, to integrate future developments of
AutoML related methods. Additionally, the cognition mod-
ule stores a priori knowledge that is valid for all use cases,
e.g., information about suitable algorithms to solve spe-
cific tasks such as multi-criteria optimization or time series
anomaly detection. By learning from experience, the knowl-
edge grows, and the performance of the system improves
over time. Due to its modularity, the architecture is exten-
sible and allows the integration of new algorithms into the
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CAAI. Therefore, technologies such as containerization,
messaging, and well-defined interfaces are used to achieve
an abstracted and language-agnostic view and thus encapsu-
late the algorithms in separated modules. Furthermore, the
architecture enables an adaption of the CPPS if a promising
configuration was determined. Even though it is difficult for
CAAI to reach results that are equivalent to a customized
solution from an AI expert, it will achieve improvements in
a cost-efficient manner for many use cases, without the need
of support from an AI expert.

Depending on the individual problem characteristic,
which changes from use case to use case, some algorithms
might be superior to others in terms of either performance
or computation time. Additionally, each algorithm needs
several pre-processing steps, e.g., feature creation, feature
selection, or model building. The type of models, their
parameter values and the algorithm topologies can be
learned, at least to some extent, by the system itself.

This paper’s main contribution is a novel cognitive
architecture for CPPS, which has several advantages in
comparison with state-of-the-art architectures. To tackle
goals (G-1) to (G-4), the following methods (M) are
considered in this paper:

(M-1) Big Data Platform: Continuous and reliable oper-
ation (G-1) is ensured by a BDP. The CAAI-Big
Data Platform (CAAI-BDP) comprises different
techniques to reach the goal, such as orchestration,
virtualization, and containerization. The orchestra-
tion instantiates and connects the selected modules
and thus creates the pipelines needed for the pro-
cessing. Furthermore, the orchestration enables to
move applications and their respective containers
to the remaining infrastructure if certain parts of
the system fail. Containerization, which provides
virtualization on operating-system-level, allows the
existence of multiple isolated user-space instances.
It improves reliability because each instance can
only access its container’s contents and devices
assigned to this container [33]. Orchestration of
virtualized containers also aids scalability as it is
possible to create several instances of a container to
work in parallel.

(M-2) Modularization: A modularization of the AI com-
ponents enables the flexibility (G-2) of the CAAI to
adapt it to specific requirements. Moreover, mod-
ular components require well-specified interfaces
with detailed definitions. Furthermore, the modular
design reduces development and maintenance costs
by the integration of existing components. Thus,
only new components have to be developed.

(M-3) Cognition: Automated process pipeline genera-
tion methods enable the realization of different

use cases without the involvement of an AI expert
and the transfer to different types of CPPS. The
automated pipeline creation is an important fea-
ture to ensure generalizability (G-3) for specific
use cases, dynamic systems, and changing envi-
ronments. It is realized by the cognitive module,
which generates the pipeline and selects the best
fitting algorithms according to the given data and
defined goal. The pipeline evaluation is automated
to improve results and detect performance drifts.
The cognitive module subsequently evaluates the
various pipelines to collect information about the
performance of different algorithms for a given
use case. This evaluation enables learning over
time, and the detection of performance drifts that
may result in a re-calibration of the processing
pipeline.

(M-4) Automatic Decision: The algorithm’s results can
be interpreted, and suggestions for an adaption can
be derived, enabling automatic or CAAI supported
adaptions of the CPPS. Therefore, new parameter
sets or other system changes, identified by the
algorithms, have to be applied to the CPPS (G-4).
Furthermore, boundary conditions can be defined
and applied for decision making, e.g., a minimum
of expected improvement or specifications that
ensure a safe adaption. Moreover, the decision must
be applied to the CPPS controller, which adapts the
physical machine. For realization, several existing
approaches, such as skill-based engineering, can be
used [10, 30, 49].

The remainder of this paper is organized as follows:
Section 2 introduces the proposed cognitive architecture.
A real-world use case evaluates the CAAI architecture as
described in Section 3 along with available techniques to
implement the methods, design choices, and the results of
our implementation. Finally, the conclusion and outlook
Section 4 presents our major findings and resulting future
research tasks.

2 The CAAI architecture

In this section, we introduce the CAAI, which aims to
have a reference character, on a rather abstract level.
Detaching the description from the concrete implementa-
tion allows choosing implementation technologies accord-
ing to individual preferences or technological advances.
Nevertheless, Section 3 introduces an exemplary imple-
mentation of the CAAI. The architecture addresses the
methods (M-1) to (M-4) to reach the goals (G-1)
to (G-4).
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2.1 Overview

Our cognitive architecture builds upon modeling the
information, data applications, and streams required for
specific tasks in the I4.0 scenario while providing reliability,
flexibility, generalizability, and adaptability. The concept,
depicted in Fig. 1, is based on a three-tier architecture
to simplify interoperability and to ensure horizontal
scalability.

The CAAI approach addresses sub-symbolic AI. In
contrast to symbolic AI, sub-symbolic AI does not use
human-readable problem representations. Sub-symbolic AI,
such as neural networks and deep learning, perform
calculations based on principles that have demonstrated to
be able to solve problems.

The CAAI-CBDP wraps the architecture and arranges
software modules in two processing layers, the data
processing layer (DPL), and the conceptual layer (CL) and
connects them via three bus systems (data, analytics, and
knowledge bus). Data from a CPPS enters the system at the
very bottom (see Fig. 1). The protocol translation module
transforms incoming data and sends it to the data bus.
The pre-processing module receives the raw data, performs
the necessary steps to clean the data, and publishes the
results back to the data bus. Other modules in the data

processing layer utilize data from the data bus and transfer
their analytical results onto the analytics bus. Modules in the
CL process information about the user-defined aims and the
business logic for a given use case. They evaluate the results
from the analytics bus, determine the parameters to adjust
the CPPS via the adaption module, and measure the overall
system performance. The CL modules also interact with the
knowledge bus to generate reports for the user and process
new instructions.

The central element of the architecture is the cognitive
module, which selects and orchestrates different analyses
and algorithms, depending on the use case. Therefore, the
composition of active modules and their communication
over the bus system will change during run time. Providing
a pre-defined set of modules and the capability to add new
modules reduces the overall implementation complexity by
building a cohesive yet modular solution. The following
sections describe the bus infrastructure, the layers, and the
cognitive module in more detail.

2.2 Bus infrastructure

Different modules of the system communicate asyn-
chronously via three buses, the data bus, analytics bus, and
knowledge bus. The processing degree of the data grows

Fig. 1 CAAI architecture
overview. The CAAI-BDP,
depicted in dark gray, manages
the bus systems and layers. Bus
systems are colored in blue and
establish communication
between the modules. The
arrows demonstrate the
designated information flow.
The layers are shaded in light
gray and contain the different
modules. The cognition module,
which establishes automatic
configuration, is colored in
turquoise. Oval shapes depict
external systems, e.g., a CPPS
or a Human-Machine Interface
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incrementally from bottom to top, and additionally in some
cases horizontally as well. Each bus covers several topics,
which can be subscribed by modules attached to the bus. All
modules publish their data to the relevant attached bus on
a pre-defined topic, so one or more other modules can use
the data and intermediate results for their processing. Thus,
the architecture implements a message-driven processing
approach, leading to a flexible and agile system with clear
interfaces and hierarchies. The main features of applications
that use message queuing techniques are [18]:

(i) no direct connections between modules,
(ii) communication between modules can be independent

of time,
(iii) work can be carried out by small, self-contained

modules,
(iv) communication can be driven by events,
(v) data integrity through validation schemata, and

(vi) recovery support.

The following paragraphs give a detailed description of
the three bus systems, while Table 1 presents an overview
and summarizes the differences of the respective data
type.

2.2.1 Data bus

The data bus transports raw data from a CPPS, as
well as data from demonstrators, external simulators, or
simulation modules. Cleaned and further pre-processed
data is also published back to the data bus by the
pre-processing modules. Therefore, the data volume and
velocity are high, even though the entropy is still quite low,
and interpretability is complicated. Entropy describes the
average level of information in any new message in the
context of information theory [42]. The content in messages
coming from the CPPS is often quite similar; therefore, the
entropy is accordingly low. Overall the data bus transports
streams of real-time data.

2.2.2 Analytics bus

Aggregated data and intermediate results transported on
the analytics bus have a higher information density

than data from the data bus. The number of processing
pipelines and the type of used algorithms determines
the computational effort. These get instantiated by the
cognition module and are expected to use a significant
amount of the available processing power. Consequently,
the analytics bus distributes knowledge, models, and results
from the model application, the monitoring module, and
the business logic to derive commands to adjust the
system.

2.2.3 Knowledge bus

The knowledge bus enables the communication between
the end-user and the system and combines the knowledge,
business logic, and user-defined goals and actions. The
cognitive module receives declarative goals defined by the
user [8]. Information from the analytics bus condenses into
reports for the user. Furthermore, feedback from the user
can be requested. So the knowledge bus uses enriched data,
which aids the interpretability and provides the most value
for the user.

2.3 Layer

Several modules process the data within two layers. Each
layer can be extended individually. Each of the modules
processes the data in a specific manner, e.g., with a specific
algorithm. Several modules are combined to enable complex
data processing.

2.3.1 Data processing layer

The DPL contains all modules that are processing sub-
symbolic data. Instances of modules are combined in
processing pipelines in order to solve the desired task based
on the raw data (see Fig. 2). Except for the monitoring
module, all initially provided modules belong to one of the
following three types:

(i) Pre-processing modules receive data from the data bus
and provide results to the data bus. They prepare data
for the usage, e.g., by imputing missing values or
synchronizing time stamps.

Table 1 Comparison of the data on the three bus systems used in the CAAI

Data bus Analytics bus Knowledge bus

Type of data Raw, pre-processed Processed Enriched

Volume and Velocity High Moderate Low

Computational effort Low High Moderate

Entropy Low Moderate High

Interpretability Complicated Moderate Easy
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Fig. 2 Top: DPL with modules
highlighted that can be selected
and varied by the cognitive
module. Bottom: An example of
four different process pipeline
candidates. Two different
modeling Algorithms (M1, M2)
with different parameter setups
(Setup A1, A2, B1, B2) and four
different Modeling Application
modules (MA1 to MA4) are
used. Here, all pipelines use
shared results of one
pre-processing module

Preprocessing 1 Modeling M1
Setup A1

Model Application MA1Pipeline 1

Model Application MA2Modeling M1
Setup A2

Model Application MA3Modeling M2 
Setup B1

Model Application MA4Modeling M2
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(ii) Modeling modules receive pre-processed data from the
data bus and send their results to the analytics bus.

(iii) Model application modules get data from the data bus
and the analytics bus and send their results to the
analytics bus.

The modeling modules contain different machine learn-
ing algorithms in a modular manner. There is a need that
the architecture incorporates multiple algorithms to chose
appropriate modules, based on the task, the type of data,
and the resulting model. It is also possible that modeling
modules integrate expert knowledge into the model and pro-
vide tools for data curation. Model application modules can
access the final model on the analytics bus. Additionally, the
model application will access the data bus to compare the
model with the process data to detect deviations, which are
provided to the analytics bus. The cognitive module ensures
that each model application module is compatible with a
specific task and a particular model. Each of these compo-
nents has a particular purpose, such as condition monitoring,
predictive maintenance, diagnosis, optimization, or similar
tasks.

2.3.2 Conceptual layer

The CL is located between the analytics bus and the
knowledge bus and contains the following four modules.

(i) The reporting module visualizes the process data for
the Human-Machine Interaction (HMI). It processes

the data resulting from, e.g., monitoring or model
application results.

(ii) The knowledge module contains

(a) relevant information about the CPPS, such as
signal names, types of devices, or its topology,

(b) general knowledge, such as an algorithms topol-
ogy, which describes the ability and properties of
algorithms, and

(c) constraints that can be defined by the user, e.g.,
time constraints.

(iii) The business logic module decides whether an action
is required or not. Therefore, it monitors the results
from the model application modules, checks the
constraints from the knowledge module, and derives
actions, e.g., an adaption of the CPPS when a certain
threshold is reached.

(iv) The cognition module is responsible for pipeline
creation and optimization. If a specific task is
provided by the user, the cognitive module aggregates
and configures suitable modules of the DPL to fulfill
the task. Hence, it uses the algorithm topology of
the knowledge module as well as past experiences.
Monitoring the results of a specific aggregation
enables the learning of functional aggregations and
improves performance over time. Therefore, the
cognitive module is an elementary module of the
CAAI and the reason it is called a cognitive
architecture.
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2.4 Cognition

The cognition module is a crucial part of the CAAI
architecture, as it enables the system to learn over time.
Subsequently, resulting knowledge can be transferred to
other similar use cases (G-3). It is responsible for major
tasks in the CAAI architecture, such as the algorithm
selection, parameter tuning, and system management. To
properly address these tasks, the following preconditions
have to be fulfilled:

(i) Feature engineering is the task of selecting and
extracting relevant features from sensor data after or
during the pre-processing. Involving domain knowl-
edge and years of experience from the engineers is
considered a prerequisite and can significantly speed
up process time and boost the quality of resulting
models.

(ii) A declarative goal for the system has to be given,
e.g., “minimize energy consumption”. Furthermore,
the goal needs to be reflected in the CPPS and the
sensor data. A set of appropriate algorithms to address
the specified goal has to be available.

(iii) Finally, relevant knowledge and business logic to
solve the given task must be available.

As illustrated in Fig. 3, the cognition module works in two
phases, initialization and operation.

2.4.1 Phase 1: Initialization

The cognitive module chooses one or more processing
pipelines. Pipelines typically consist of pre-processing,
modeling, and one or more model applications (such as
classification, regression, or optimization). While some
modules may require particular predecessors, e.g., a cer-
tain pre-processing, other module instances can be identical
across different pipelines, and consequently, their results
must be computed only once. The CAAI-BDP orches-
trates the sequence of modules and manages their pro-
cessing, which might be in parallel. The initialization
phase utilizes automated selection tools such as AutoML

or hyperheuristics. We implement Surrogate Model-Based
Optimization (SMBO) to model the performance of algo-
rithms and suggest new promising algorithm configurations
by utilizing model-predictions [5, 44]. Once pipelines are
selected, the initialization step includes tuning the asso-
ciated parameters of all included methods, to omit false
configurations and wrong parameter settings. At the end of
phase 1, the cognition evaluates the candidate pipelines and
chooses the best according to their performance.

2.4.2 Phase 2: Operation

The cognition is responsible for observing the processing
pipeline in an online manner to detect drifts or performance
decreases during the operation phase. These can occur
if circumstances change over time, e.g., the quality of
a material used in the production process. When such
situations appear, the cognition performs a re-calibration
of the processing pipeline, which includes a new selection
or reconfiguration of the modules. This feature allows the
system to adapt to new situations in the production process
automatically. Moreover, the performance monitoring of
the data structure itself and the performance of the chosen
algorithms on the data enable the system to learn over time
which methods are suitable for solving desired tasks.

3 Implementation

In this section, we introduce the considered use case, fol-
lowed by implementation details about the CBDP. Further-
more, we present the process description of how CAAI
behaves and introduce the results of our implementation.

3.1 Use case

We evaluate the CAAI through its implementation for the
Versatile Production System (VPS), which is located in
the SmartFactoryOWL. The VPS is a modular production
system, which processes corn to produce popcorn, which is
used as packaging material. Typically, there are four VPS

Exploration:
System analysis,
Parameter screening

      :       
       Select and tune 
       Methods

      Recalibration:       
      Re-tune or re-
       select method

         Observation:       
         Detect 
          performance 
          drifts

Phase 1: Initialization Phase 2: Operation

Fig. 3 Two working phases of the cognition module: Phase 1 initializes the search for the best fitting pipeline utilizing a space-filling design like
Latin Hypercube Sampling. During phase 2 the process is observed with respect to performance drifts. A re-calibration of the methods can be
performed on demand
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units, namely delivery, storage, dosing, and production. Due
to its modularity, the first three units can be exchanged
or removed easily. Depending on the current orders,
different configurations are used. The need for different
configurations rises, e.g., if the dosing unit should produce
a small and exact amount of popcorn. However, if larger
amounts are requested, it is more efficient to renounce
the dosing unit because it is slow and generates operation
costs. Efficiently operating the VPS is a challenge because
many parameters influence the result, e.g., the moisture
of the corn, the rate of corn that does not pop, or the
amount of corn within the reactor. Since not all parameters
can be measured inline, data-driven optimization is a
promising method to increase efficiency. Therefore, the
CAAI architecture perfectly matches the requirements of
the VPS use case. As a basis, a reliable, easy to set up,
and scalable environment for the AI is needed, which
refers to method (M-1). Since the configuration is regularly
changing, the AI components have to be modular (M-2),
re-useable, and extendable.

Configurations of the VPS, the use case, and the VPS
units might change over time. Hence, there is the need for
cognition (M-3). However, improvements should be directly
applied to the VPS to reach the best performance, where
automatic decisions (M-4) are needed.

In this use case, all VPS units are used, and small boxes
of popcorn are produced. In each batch, one box of popcorn
has to be filled. The overage of popcorn produced in one
batch, or not fully filled boxes cannot be used, so it is
waste. Optimizing the amount of corn in the reactor, as
provided by the dosing unit, is the goal. The optimum is a
trade-off between three minimization functions: the energy
consumption (f1), the processing time (f2), and the amount
of corn needed for a small box (f3). These functions are
conflicting to some degree. The result of the optimization
is a parameter value for the dosing unit. The parameter
x controls the runtime of the conveyer and, therefore,
indirectly influences the amount of corn processed. As the
given optimization problem can be regarded as relatively
simple, we will apply a single objective optimization
algorithm and compute a weighted sum of the objectives.
This results in the following optimization problem:

min
3∑

i=1

wifi(x); w.r.t wi > 0 and
3∑

i=1

wi = 1 (1)

The scalar weights of the corresponding objectives, wi ,
are chosen based on the user’s preferences. As a default,
equal weights are used. The minimum of Eq. 1 is a Pareto-
optimal solution [31]. The problem will be optimized by
SMBO [19]. SMBO utilizes a data-driven surrogate model
to create an approximation of the real VPS production
process. The model construction requires sampled data for

a set of n values of x, which should ideally depict a
representative set of all possible settings, i.e., in a space-
filling manner. In this case, the set is generated by evaluating
an equidistantly spaced design in the complete parameter
range of x. The cognition will evaluate different surrogate
models: random forest [7] and Kriging [23]. Kriging is
especially suitable for modeling continuous data with few
variables and comes with an uncertainty measurement. At
the same time, random forest is also able to model discrete
parameters and computes very fast. Recent examples of
Kriging and random forest applications in CPPS scenarios
can be found in [20, 48].

With these two modeling algorithms, a broad range
of systems can be covered. Furthermore, these surrogate
models may differ in their hyperparameters, which results
in a large number of possible configurations. The cognition
decides which model and parameterization fit best to
approximate the process data and perform optimization
based on performance evaluation of the whole optimization
cycle. The surrogate will then be optimized to identify
the next candidate solution to be evaluated on the VPS
by applying a local search algorithm. Figure 4 shows the
optimization cycle of SMBO.

If a new parameter has been identified the business logic
defines when an adaption should be performed and verifies
boundaries, such as limitations for parameters to protect
the VPS. Finally, the adaption module adapts the VPS, i.e.,
changes parameters to achieve better performance.

3.2 CAAI-Big Data platform

The CAAI-BDP is a distributed system that can be hosted on
a single machine, an on-premise cluster, or a cloud provider.
Our stated architectural goals (G1–G4) are supported by
the CAAI-BDP through the implementation technologies,
which are presented below. Transferring incoming/outgoing

VPS 
Evaluation

Experimental Design 
Generation

Data Archive

Fit / Update 
Surrogate Model

Surrogate Model 
Optimization

Optimized 
Parameter Values 

Initialization

Fig. 4 The SMBO optimization cycle starts in the upper left with the
initialization and design generation. Then the loop is processed with
the evaluation of the design, the model computation and optimization
to retrieve the next candidate solution to be evaluated in the VPS
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data, orchestrating the data processing tasks, assuring the
persistence of results, and managing the communication
between modules are the resulting tasks of the CAAI-BDP.
The following concepts and technologies (T) are used to
accomplish the tasks.

(T1) Container Virtualization: All components of the
system exist as virtualized containers on the CAAI-
BDP. Isolating the module requirements from the
general environment ensures that all requirements
for a specific module are met and do not interfere
with other modules on the same platform, similar to
virtual machines. In contrast to virtual machines, a
container uses the host operating system, and con-
tainers share binaries and libraries, resulting in less
overhead. Containers are consistent and immutable,
which ensures compatibility across systems. A cen-
tral container registry stores the container images
and keeps track of changes via versioning. Docker is
used as a container engine for the implementation of
this use-case [33]. Images consist of all the neces-
sary code instructions to install the requirements and
create a specific environment to execute the desired
algorithm or software. Generally speaking, a vali-
dated, running image guarantees to work the same on
every computer, server, or cloud environment.

(T2) Orchestration: The CAAI-BDP manages the nec-
essary infrastructure and orchestrates virtualized
components to compose a system consisting of
microservices that perform a specific task. Orchestra-
tion frameworks handle deployments, configuration,
updating, and removing of the virtualized software
components. A text file declaratively composes a
system and lists the different services. Orchestration
is done by Kubernetes, which can utilize the Docker
container engine [17]. The cognition module uses the
orchestration to instantiate pipelines with selected
algorithms and evaluate the results.

(T3) Microservices: All modules are developed as
microservices to compose the software system for a
specific use case from smaller self-sufficient parts.
Each module includes standardized communication
functionality to publish and subscribe to relevant
topics on the bus system [46]. The resulting sys-
tem is modular, language-agnostic, and utilizes well-
defined interfaces. According to microservice best-
practices, each microservice can store internal data in
its local storage.

(T4) Messaging: The different bus systems managed by
the CAAI-BDP transfer data via messaging. Mes-
saging allows asynchronous communication between
modules and enables parallelization and processing
data several times for different purposes via topics

and consumer groups. Adding more instances to the
same consumer group would result in a distributed
processing of incoming messages, which is useful if
a task is very time-consuming or response time is
restricted. We chose Kafka [32] as a reliable message
system for our platform.

(T5) Schema Management: A schema stores the meta-
data of the data, with all the available fields and
datatypes [11]. When a module publishes to the
bus system, the serializer applies the schema and
encodes the message or filters out non-conforming
messages. A consumer that subscribes to a topic on
the bus has access to the same schema and can verify
the integrity before encoding the incoming message.
Therefore, clear communication via the bus system
is ensured, and additional modules can be inte-
grated easily. A central schema registry distributes
and versions the schemas which allow regulated data
evolution.

The combination of technologies (T1–T5) supports the
overall goals and the methods to reach those, namely
providing a reliable infrastructure (M-1) for modular
development (M-2), e.g., re-using existing modules or
extending the system with additional algorithms. The big
data platform enables the cognition to run and evaluate
additional experiments through the automatic creation of
processing pipelines (M-3) and an automatic adaption of
the CPPS (M-4) if a feasible and beneficial solution was
found. The interaction of the five technologies is illustrated
in Fig. 5.

3.3 Process description

Our architecture uses to select different algorithms and
evaluate their results. The workflow of the architecture is
depicted in Fig. 6. Its modularity (M-2) enables a convenient
implementation of a SMBO algorithm as the functionality
of single modules can be re-used. The cognition receives
necessary information from the knowledge module and
starts the workflow consisting of the following nine steps:

1. The cognition initializes candidate pipelines for parallel
processing by varying model types and parameters. The
knowledge module provides the required information
about feasible algorithms and boundary constraints.
Suitable models for this use case in our algorithm
collection are either Kriging or random forest.

2. The protocol translation module transfers the data
from the Open Platform Communications Unified
Architecture (OPC UA) server on the CPPS to the data
bus on the CAAI-CBDP.

3. The pre-processing module cleans the raw data. As the
data quality is good, the pre-processing in this use case
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Fig. 5 Illustration of the five
technologies that compose the
CAAI-BDP. Images of the
different modules are stored in
the container registry (T1). The
orchestration (T2) uses these
images to instantiate the
message broker (T4) as well as
the schema registry (T5), to
enable standardized
communication between
modules. Following that, the
cognition instructs the
orchestration, which modules
compose a data processing
pipeline (T3)

is reduced to data normalization. Figure 7 shows the
pre-processing module publishing messages to the data
bus for further (parallel) processing.

4. The Kriging and random forest model learning compo-
nents fit or update their parameters and send the results
to the analytics bus.

5. The module model application + optimization imple-
ments the sequential step of the SMBO algorithm: it
searches the previously fitted model until an optimal
solution is found or the maximum number of itera-
tions is reached. The module transfers the result to the
analytics bus.

6. The cognition decides using the model accuracy and
predicted optimum, which pipeline will be chosen.

7. The business logic module verifies if the solution
violates any of the constraints, e.g., too much corn in
the reactor, and communicates the appropriate adaption
back to the analytics bus.

8. The adaption module translates the adjustments for
the specific CPPS and sends the instructions from the
CAAI-CBDP to the CPPS.

Cognition evaluates
system performance

9 New data 
transferred to 

CAAI-BDP

2

Pre-process data
3

Model application
+ optimization

5

Business logic
verifies solution

7

Adaption sends
changes to CPPS

8

Configure
pipelines

1

Fit model
4

Pipeline selection
6

Fig. 6 The workflow represents nine steps that are continuously
performed to adapt the pipelines and increase their performance over
time

9. The cognition module analyses the system perfor-
mance, as achieved with the resulting pipeline configu-
ration from step 6. In the following steps, the impact of
changes is verified through information provided by the
monitoring module.

The resulting implementation of the CAAI for the given
use case, including all applied modules and the described
workflow, is illustrated in Fig. 8.

3.4 Results

Data from the real-world VPS was acquired to evaluate
the modeling and optimization. This data consists of
36 production cycles with 12 different settings for the
runtime of the conveyor. Based on this data, we trained
a model that reflects the real behavior of the VPS and
utilize it for further experiments. The three different
objectives, i.e., the energy consumption, the processing
time, and the amount of corn needed (see Section 3.1
for more details), were aggregated by taking the sum
of the single objectives multiplied with equal weights
of 1/3.

Broker

Preprocessing P Publish

Random
Forest

KrigingC

C

Messages

Messages

Messages
1 2 3

1 2 3

1 2 3

Fig. 7 Parallel processing of messages through different algorithms.
The cognition module instantiated two pipelines with candidate
algorithms and assigned them into different consumer groups. As two
consumer groups are subscribed to this topic, both groups receive all
new messages and various algorithms can be trained independently.
More instances can be added to the same consumer group, which
results in a distributed processing of incoming messages
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Fig. 8 The resulting CAAI
architecture for the VPS use
case. The numbers indicate the
sequence of the workflow,
where some steps can be
computed in parallel, i.e., the
two different surrogate models
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A MacBook Pro with a quad-core Intel Core i7 CPU
at 3.1 GHz and 16 GB DDR3 RAM computed the results
described in this Section. The statistical software R version
3.4.3 was used to evaluate the algorithms [38]. Kriging
and random forest employ the software packages SPOT
(2.0.5) [4] and caret (6.0-84) [24]. In the initial phase,
the algorithms used five equidistant data points to build
their initial models. Consequently, the results in the figures
presented in this section start at production cycle number
five. The aggregated results use the median values of ten
repetitions, with 20 production cycles in each repetition.
Figure 9 plots the CPU consumption in seconds against the
VPS production cycles.

For both methods, Kriging and random forest, an
increasing trend can be observed. However, the computation
time of Kriging shows a larger slope, compared with random
forest. Both algorithms behave as expected, stemming from
the internal data representation and processing. The same
holds for memory consumption, as depicted in Fig. 10.
At the early stage, the random forest algorithm uses more
RAM than Kriging. After about 15 iterations the situation
changes as Kriging started to acquire more memory
than random forest. While the required memory grows
further for both algorithms, Kriging also shows the steeper
slope.

Comparing the prediction accuracy of the models at
their best-predicted points with the real objective function
value, as shown in Fig. 11, Kriging shows a nearly constant
accurate performance, while random forest shows a larger

variance and starts to get comparably accurate predictions
in the last production cycles.

The reached values of the objective function are depicted
in Fig. 12. It shows that in the beginning, Kriging
outperforms random forest, while later after about 12 cycles,
random forests perform comparably to Kriging.

Results from our study indicate the following, valuable
findings:

(i) It is worth using more than one algorithm: taking only
the best performing (i.e., Kriging) can lead to future
problems due to limited computation resources and
time.

(ii) Random forest needs more data to improve compared
with Kriging and starts to be a good competitor after
about 15 cycles.

(iii) The prediction error is a useful measure to detect
performance drifts and switch to other pipelines if
needed.

(iv) Altogether, it is beneficial to switch algorithms after a
certain number of production cycles, when regarding
all performance metrics together.

(v) A forgetting mechanism is necessary to implement
SMBO efficiently for long-term usage in CPPS
scenarios due to physically limited computation
resources. This mechanism could be a fixed or adaptive
size of the model, e.g., the sliding window approach
applied in time series computation, and a method to
choose which data to remove from the model.
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Fig. 9 This plot shows the
consumed CPU time in seconds
over the production cycle, which
is equal to the number of data
points used. The results are
aggregated over 10 repetitions
using median values
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Additionally, the processed material can change its behavior
over time. Storing the corn over an extended period
eventually requires more corn to fill the cups with the
desired amount. Therefore, it is crucial to adapt the system
during runtime by changing the computation pipelines,
recomputing models, and adjusting model sizes.

The cognition module uses the aggregated information
shown in Figs. 9, 10, 11, and 12 to select the best algorithm
for the next production cycles. This also demonstrates the
relative degree of information density on the analytics bus
compared to the data bus (see Table 1). The cognition
module does not use the raw data, which comprises several
hundred rows of data for each production cycle.

A prototypic implementation of this use case is hosted
publicly on GitHub2. The related tutorial shows how to
start the big data platform and the processing pipeline
as a group of Docker containers. The program flow and
the communication of the individual modules can then be
followed in the console.

2https://github.com/janstrohschein/KOARCH/tree/master/Use Cases/
VPS Popcorn Production/Docker

4 Conclusion and outlook

In this paper, we defined goals (G1–G4) to be reached
by a cognitive architecture to improve or maintain the
efficiency of a CPPS. Each goal is addressed by a particular
method (M1–M4), which can be implemented by several
technologies, e.g., (T1)–(T4) or solutions. Figure 13 details
the coherence of these goals, methods, and solutions which
results in our cognitive architecture CAAI, which was
presented, and further evaluated on a real-world problem in
this work. Different manifestations of this architecture are
possible, with one implementation being exemplified for the
VPS use case evaluation. The key feature is the cognition
module that configures, instantiates and evolves process
pipelines over time to solve the problem, i.e., to reach the
addressed goal.

Besides the main contribution of this paper, the proposed
CAAI, the major results (R) can be summarized as
follows:

(R-1) The central aim, to efficiently optimize the perfor-
mance of a CPPS, can not be reached by addressing
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Fig. 10 This figure depicts the
memory (MB) consumption of
the modeling algorithms for
different production cycles. The
number of the production cycle
is equal to the number of data
points used in this cycle. The
results are aggregated over 10
repetitions using median values

single goals or implementing single methods indi-
vidually (see Section 1). The main implication is
that the individual goals support each other to a high
degree. For example, a flexible and modular sys-
tem is required by the cognition component to allow
generalization of the system and apply to different
use cases.

(R-2) The defined goals and methods represent the
reference character of the proposed architecture and
will maintain valid over a long time. However,
the solutions and chosen technologies or concepts
for implementation may be subject to change in
the future. For example, Docker is a solid choice
to fulfill the requirements of CPPS scenarios, to
process data in near real-time (see Section 3). As
technologies evolve, this solution may be replaced
by a more modern one in the future but can be
regarded as a state-of-the-art virtualization method
nowadays.

(R-3) The performance of an algorithm for a given use
case and data may change over time, in both direc-
tions (worsening and improving) (see Section 3.4).

Therefore, an offline benchmark and selection,
which chooses one particular algorithm as the best
performing, might be misleading. Moreover, a par-
ticular algorithm’s processing time can significantly
increase due to growing data volume, e.g., through
additional sensors in the CPPS. Hence, changing the
processing pipeline to another algorithm can be ben-
eficial to reduce computational resources costs. The
cognitive module needs sufficient degrees of free-
dom and a somewhat broad portfolio of algorithms
to realize such an online selection and establish an
efficient system.

(R-4) Overall, the CAAI is specific enough to support
concrete implementation in the form of the CAAI-
BDP. The resulting system was able to optimize a
simple I4.0 use case by configuring, instantiating,
and evaluating several processing pipelines.

The proposed facilitation reference architecture aims to
support the user with an efficient implementation for
a specific use case. Consequently, several disciplines,
i.e., data, knowledge, and algorithms, are combined and
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Fig. 11 Prediction error plotted
against the number of production
cycles. The prediction error is
the absolute difference between
the model prediction of the best
found point and the true
objective function value

interconnected to enable artificial intelligence for I4.0
scenarios. State of the art does not provide solutions for all
problems in these disciplines, especially when different use
cases are regarded. Therefore, the architecture is developed
in a flexible and extendable manner, such that future
solutions can be easily integrated by implementing and
adding new modules.

The cognition needs pre-classified algorithms to sample
from and learn, which algorithm class is superior to
others, regarding the current use case. A suitable algorithm
taxonomy for optimizers based on the implemented features
of the algorithms can be found in [3]. To evaluate the
performance of selected algorithms, the estimated runtime
of an algorithm to reach a desired optimization target
value is a valid choice [22]. We suggest aggregating this
pure performance metric with the resources consumption
measurement per algorithm. The resource consumption
is very interesting, especially for applications in small
and medium-sized companies, where no high-performance
cluster or, probably expensive, cloud solutions may be
available.

Regarding the management of data and representation of
knowledge, Li et al. provide an overview of corresponding
methods and applications in industrial environments [28].
Please note that the method should be selected carefully
with respect to the compatibility of the knowledge
representation in the I4.0 environment. Nevertheless, the
selection of suitable technology is out of the scope
of this paper. To reference the needed knowledge at
runtime, e.g., to select suitable algorithms according to the
algorithms family and the according control parameters,
implementing the knowledge module as an Application
Programming Interface (API) allows the modification of
the knowledgebase properly either manually by the user
or automatically by the cognition module. The OpenAPI
initiative defines a language-agnostic interface description
for API building blocks [43]. When properly defined, the
microservices can interact with the API building block, e.g.,
the knowledge, with minimal implementation logic.

Data integration from CPPS can be dynamically per-
formed by OPC UA. OPC UA is a platform-independent
standard that aims to exchange information between
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Fig. 12 Objective function
value plotted against the number
of production cycles

automation systems [40]. It is located on the upper lev-
els of the ISO/OSI Model and thus does not depend on
a defined communication protocol [9]. OPC UA provides
high-level functionalities such as a discovery service that
allows to discover, connect to, and access servers in the
network automatically [37]. Signals can be described using
an information model. Consequently, if the CPPS supports
a technology such as OPC UA, data integration can be
performed automatically.

Building a message-driven big data platform increases
software interoperability as all messages regarding a par-
ticular topic need to follow the defined schema. Standard-
ized interfaces simplify the extension via additional mod-
ules. Using containerized environments enables a language-
agnostic development, e.g., it is possible to use algorithm
implementations in R and Python side-by-side. Thus, it is
possible to use the best available implementation for a given
algorithm.

From our point of view, the outcomes of the paper
at hand cover three important disciplines in the field of
AI-applications and the related methods:

(i) Infrastructure: Must be reliable and flexible to fulfill
response time requirements in industry scenarios (M-
1 and M-2).

(ii) Learning: Suitable algorithm portfolio and topology
needed to address several declarative goals and
resource limitations (M-3).

(iii) Data curation: Combines data pre-processing and
domain knowledge to create metadata to support
further algorithmic processing (M-3 and M-4).

To discuss open issues, automatic feature extraction
or explainable AI are important topics to be mentioned.
However, the flexibility of the architecture enables easy
integration of novel technologies. The development of such
solutions is out of the scope of this paper, as we focus on
architectural concepts and the framework to integrate such
technologies.

This paper’s work reveals some additional questions,
leading to logical next steps and follow-up research tasks:
The effort to solve a different use case by implementing
and adjusting the CAAI, which should be minimized, has
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Fig. 13 Overview of goals, methods and solutions. The goals and methods on the left side represent the parts with a larger reference character of
the architecture, while the solutions on the right side rather represent the current state of the art in the respective disciplines

to be analyzed. This would directly take up results (R-
2), regarding the reference character of the CAAI, and
(R-3), regarding the algorithm portfolio. Additionally, e.g.,
configuration for the orchestration, time requirements, or
data pre-processing, may change as well.

The implementation of pipeline creation and evaluation
is adequate for the presented, in terms of the optimization
problem rather straightforward, use case. However, further
efforts are required to build a truly intelligent system that
can solve harder use cases through learning over time and
re-calibration in an online manner (R-3). Automatically
adapting the CPPS was not yet considered for the regarded
use case, as we focus in particular on the CAAI-BDP and the
cognitive module. Therefore, our future work will include a
representation of the necessary knowledge to safely change
the configuration and operation of the CPPS while trying to
increase its efficiency.

To give an idea of a possible long-term perspective, the
degree of cognition addressed by our architecture can be
the topic of future research. We restricted the scope of the
cognition to typical I4.0 use cases, see Definition 1. An
extension of the cognitive capabilities to detect restrictions
(e.g., introduced by the provided algorithms or the limited
available resources) independently and learn how to deal
with them autonomously would be the next step towards a
self-aware system.
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