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Abstract

The prediction of fill levels in stormwater tanks is an important practical problem in water resource
management. In this study state-of-the-art CI methods, i.e. Neural Networks (NN) and Genetic Program-
ming (GP), are compared with respect to their applicability to this problem. The performance of both
methods crucially depends on their parametrization. We compare different parameter tuning approaches,
e.g. neuro-evolution and Sequential Parameter Optimization (SPO). In comparison to NN, GP yields
superior results. By optimizing GP parameters, GP runtime can be significantly reduced without degrad-
ing result quality. The SPO-based parameter tuning leads to results with significantly lower standard
deviation as compared to the GA-based parameter tuning. Our methodology can be transferred to other
optimization and simulation problems, where complex models have to be tuned.

1 Introduction

The prediction of fill levels in stormwater tanks based on rainfall data is an important problem in imple-
menting predictive control of sewage networks [6, 11]. This problem will be referred to as the stormwater
problem in the remainder of this paper. Solving the stormwater problem efficiently reduces environmental
pollution and costs associated with sewer deterioration due to over- or under-loading. Additionally, this
problem is a typical example of a large class of predictive control problems in environmental engineering,
and it is realistic to hope that acceptable solutions for this problem are adaptable to similar problems.

The stormwater problem belongs to the class of timeseries regression problems [7]. Although many
different methods, ranging from classical statistical regression to modern computational statistics, can be
used for time series regression, CI-methods offer an attractive tradeoff between ease-of-deployment and
prediction quality [5, 10]. Furthermore, CI-methods are robust to changes in the underlying system, which
leads to low maintenance costs of CI-based systems. These findings make Cl-based systems particularly
suitable for application in environmental engineering, therefore we focus this paper on CI-methods.

The most prominent CI-methods applied in environmental engineering are Neural Networks (NN),
while symbolic regression via Genetic Programming (GP) offers an interesting alternative. In contrast to
the black-box models of NN, GP models are presented as human-readable and -interpretable mathematical
formulas. Good results can be reported from the area of financial forecasting, where our project partner
(DIP Dortmund Intelligence Project GmbH) applied GP successfully for several years. This is why a
comparison of NN methods with GP in the domain of water resource management is of great interest.
We use Sequential Parameter Optimization (SPO), as implemented in the SPOT toolbox, for tuning the
parameters of all compared algorithms to enable fair and unbiased results [4]. To improve readability, the
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term SPO will be used for SPOT throughout the rest of this article. We also compare the results of SPO-
tuned algorithms with the results of hand-tuning and tuning via Genetic Algorithms (GA) to verify that
SPO finds near-optimal parameters for the algorithms in this study.

This paper is organized as follows: Section 2 introduces the real-world optimization problem of fill
level prediction in stormwater tanks and its related objective function. Section 3 presents setup and results
from four case studies: The first case study uses a classical Cl-approach, which is also known as neuro-
evolution: A GA is used to tune the parameters of a NN [1, 17]. The second case study applies SPO to
the same NN, allowing for a direct comparison of GA and SPO as parameter tuners for NN. The third
case study employs GP/INT2, a hybrid analytical and GP approach, with hand-tuned parameters. In the
fourth case study, SPO is used to tune the parameters of the GP system of the third case study. Section 4
summarizes results and gives an outlook to further research.

2 Prediction of Fill Levels in Stormwater Tanks

The main goal of this study is the prediction of fill levels in stormwater overflow tanks based on rainfall
data in order to implement predictive control of water drain rate. Such predictions are of immense practical
utility in preventing costly and damaging over- or under-loading of the sewage system connected to these
stormwater overflow tanks. The task of predicting the current fill levels from the past rain data alone—not
using past fill levels—is rather challenging since the hidden state of the surrounding soil influences the
impact of rain in a nonlinear fashion [5, 13].

2.1 Objective Function

The quality of a fill level predictor is measured as the root mean squared error (RMSE) between true fill
level and predicted fill level on the test dataset defined in Sec. 2.2:

RMSE(Ypred, Yreal) = \/mean[(ypmd — Yreal)?] )

A fill-level predictor is a function from a rainfall time series to a scalar fill level prediction. When predicting
the fill level at time ¢, a fill level predictor has the rainfall time series up to time ¢ available as input. A
time series of predicted fill levels is obtained by iteratively applying a fill level predictor to a time series of
rainfall data.

2.2 Test Data

Training and test time series data for this study consist of 25, 344 data records. This data comprises mea-
surements of the current fill level and the current rainfall at a real stormwater tank in Germany. These
measurements were taken every 5 minutes, ranging from April, 21th 2007 (00:00 a.m.) to July, 17th 2007
(11:55 p.m.). We divided this dataset into a training dataset, ranging from April, 21th 2007 (00:00 a.m.) to
April, 28th 2007 (00:00 a.m.) and a test dataset, ranging from April, 28th 2007 (00:05 a.m.) to July, 17th
2007 (11:55 p.m.). The results presented in the following are based on the test dataset, while all methods
were trained on the training dataset. The training dataset consists of a short but balanced sample of dry and
rainy days.

Making predictions on the training dataset had to be embedded into the fitness function of GP, therefore
this dataset is comparatively small.! We used the same training dataset in each case study to keep results
comparable. While fill levels responds differently to rain depending on season, the response stays very
stable within a season. This is why the size of our training dataset should not pose a problem to the
methods under study, and also why our test dataset spans the late-spring/early summer season, but not
more. In practice, the methods under study would be retrained for each season.

'In absolute terms, the training dataset contains 2016 data points.



3 Case Studies

We conducted four case studies to assess the relative performance of different CI-based prediction methods
and to test the following two scientific hypotheses:

H-1 A study by Bartz-Beielstein et al. [5] indicated that Nonlinear AutoRegressive with eXogenous inputs
(NARX) [18] neural networks weren’t able to yield good accuracy on the stormwater problem, but
only used SPO to tune the NARX network structure and parameters. By using an established neuro-
evolution approach, it is possible to evolve a NARX network structure that yields an improved
prediction performance.

H-2 Flasch et al. [10] described an approach that yields good accuracy on the stormwater problem. This
approach employs GP to optimize a set of integral equations and will be referred to as the GP/INT2
model in the following. A drawback of this approach is its compute-intensive GP training process.
It is possible arrive at comparable results with a much shorter GP training time budget by using
optimized GP parameter settings.

The first two case studies are based on NARX to test hypothesis H-1, while the last two case studies are
based on the hybrid GP/INT2 approach to test hypothesis H-2. Fig. 1 gives an overview of the setups for
these four case studies. We use manual tuning, GA, and SPO to obtain optimized parameter settings for
NARX and GP/INT2. Since both NARX and GP/INT2 employ randomized algorithms, each optimized
parameter setting was repeated 10 times on consecutive random seeds. We report descriptive statistics on
these 10 runs.
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Figure 1: Case study architecture overview. This figure illustrates the setup of the four case studies, see
Sec. 3. From left to right: The neuro-evolution approach (A), which is directly compared to the SPO-tuned
neural network (B). The setup of the manually-tuned GP/INT2 approach (C), which is directly compared
to the SPO-tuned GP/INT2 approach (D).

3.1 GA-tuned NARX

In the first case study, we employed a GA to tune the structural parameters of a NARX network (see
Fig. 1.A).

3.1.1 NARX

The NARX recurrent neural network was chosen for this case study because of its dynamical neural ar-
chitecture which makes it suitable for the stormwater problem. As opposed to other conventional recurrent



neural models like Elman and Hopfield neural networks, the NARX model has a limited feedback archi-
tecture, i.e. feedback comes only from the output neuron instead as from hidden neurons. The NARX
model is defined as:

y(t+1) = flu(t)...,u(t —dy +1),y(t)...,y(t —dy +1)] 2)

u(t) and y(t) denote, respectively, the input and output of the model at discrete time ¢ and d,,, d,, are
the input and output memory delays, were d,, > 1, d, > 1, and d,, > d,,. The function f is a nonlinear
function which can be approximated by a multilayer perceptron.

We used the MATLAB Neural Network Toolbox 6.0.3 implementation of NARX neural networks [9].
A NARX network was trained using the training dataset. The trained NARX network was then used for
multi-step time series prediction on the test dataset (see Sec. 2.2). We employed the Bayesian regulation
backpropagation algorithm [9] during training to find the connection weights of the neurons for each neural
network structure configuration. The NARX neural network’s most influential parameters were subject to
tuning as covered in Sec. 3.1.3.

3.1.2 GA for Parameter Tuning

We used a GA as an automatic tuning method for NARX structure and parameters, following a neuro-
evolution approach. We mainly conducted this case study to evaluate the effectiveness of NARX param-
eter tuning by SPO in comparison with a well-known algorithm. Neuro-evolution is an well-established
algorithm for finding near-optimal neural network structures [1, 17].

We used the GA implementation of MATLAB’s Genetic Algorithm and Direct Search Toolbox 2.4.2
[12] with parameter settings as shown in Table 1.

Table 1: Parameter settings of the MATLAB GA.

GA Parameter Value

Budget 200 Fitness Evaluations
Creation Function Stochastic Uniform
Crossover Fraction 0.8

Crossover Function Scatter

Elite Count 2

Fitness Scaling Function | Rank

Generations 20

Initial Penalty 10

Mutation Function Adaptive Feasible
Penalty Factor 100

Population Size 10

Selection Function Stochastic Uniform

These parameter settings were determined by performing several preliminary experiments. The algo-
rithm had an allowed budget of 200 fitness evaluations, i.e., it could evaluate the RMSE of 200 NARX
network structures on the test dataset.

3.1.3 Coupling NARX and GA

NARX and GA are coupled with the aim of finding improved NARX parameters. The NARX parameters
with most influence on the networks performance in the given problem domain are the number of hidden
layers, the number of neurons in each hidden layer, and the number of delay steps. These parameters
determine the NARX network structure and were chosen to be subject of the optimization by the GA.
Their respective region of interests (search spaces) are shown in Table 2.



Table 2: ROIs for tuned NARX parameters.

NARX Parameter Region of Interest

Number of Delays | [2,40]

Number of Neurons | [(1,1,1,1,1),(10, 10,10, 10, 10)]
Number of Layers [1,5]

The genotype of a NARX network parametrization is an [-dimensional vector of natural numbers of
the form (d,l,n1, ..., Nmas ), Where [ denotes the number of hidden layers, Imaz the upper bound of the
ROI chosen for [, and n; the number of neurons in the ith hidden layer. If [ < Imazx, surplus n;s are simply
ignored during the (trivial) genotype-phenotype mapping.

The fitness of a GA individual is calculated by creating a new NARX network (the phenotype) ac-
cording to the parameters encoded in the individual’s genotype, then training this network on the training
dataset, and finally evaluating the RMSE of this trained network on the test dataset. The result of a GA
parameter optimization run is the parameter setting encoded by the individual of the lowest RMSE in the
population, after the algorithm has exceeded its predefined budget of fitness evaluations.

The best NARX parametrization found, shown in Table 6, was then tested on different random seeds
and statistical results are reported in Sec. 3.5.

3.2 SPO-tuned NARX

In this case study, we used SPO to optimize the parameters of a NARX network, in order to assess the
performance of SPO in comparison with the established neuro-evolution approach described in Sec. 3.1
(see Fig. 1.B). We will give a short introduction to SPO first. Section 3.1.1 describes the neural network
which is tuned by SPO, the experiment setup for this case study is described in Sec. 3.2.2.

321 SPO

The sequential parameter optimization approach is a flexible and general framework which can be applied
in many situations. Here, we introduce the sequential parameter optimization toolbox (SPOT) as one
possible implementation of this framework. The SPO foolbox was developed over recent years by Thomas
Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss [4]. The main purpose of SPO is to determine
improved parameter settings for optimization algorithms to analyze and understand their performance.
SPO was successfully applied to numerous optimization algorithms [3, 20, 15, 4, 8, 2, 19, 4].

During the first stage of experimentation, SPO treats the algorithm A as a black box. A set of input
variables, say 7, is passed to A. Each run of the algorithm produces some output, i. SPO tries to determine
a functional relationship F' between Z and g for a given problem formulated by an objective function
f 4 — v. Since experiments are run on computers, pseudorandom numbers are taken into consideration
if:

(i) The underlying objective function f is stochastically disturbed, e.g., measurement errors or noise
occur, and/or

(i1) The algorithm A uses some stochastic elements, e.g., mutation in evolution strategies.

This situation can be described as follows:

Objective function: iU 4, U, 3)
Algorithm: i . “)

We will classify elements from (3) and (4) in the following manner:

1. Variables that are necessary for the algorithm belong to the algorithm design, whereas



Algorithm 1: Sequential parameter optimization (SPO).

// phase 1, building the model:
1 let A be the algorithm to be tuned;
2 generate an initial population X = {Z',..., 2™} of m parameter vectors;
3 let b = by be the initial number of tests for determining the estimated performance;
4 foreach z € X do
5 L run A with Z b times to determine the estimated performance y of z;

// phase 2, using and improving the model:
6 while termination criterion not true do

7 let @ denote the parameter vector from X with best estimated utility;
8 let b the number of repeats already computed for a;
9 build prediction model f based on X and {y!,...,y!¥!};
10 generate a set X’ of [ new parameter vectors by random sampling;
11 foreach 7 € X’ do
12 L calculate f(Z) to determine the expected improvement f(Z) of z;
13 select set X" of d parameter vectors from X’ with best expected improvement (d < 1);
14 run A with a once and recalculate its estimated performance using all b + 1 test results; // (improve
confidence)
15 letb=">b+1;
16 run A b times with each Z € X" to determine the estimated performance Z;
17 extend the population by X = X U X",

2. variables that are needed to specify the optimization problem f belong to the problem design.

SPO employs a sequentially improved model to estimate the relationship between algorithm input
variables and its output. This serves two primary goals. One is to enable determining good parameter
settings, thus SPO may be used as a tuner. Secondly, variable interactions can be revealed that help to
understand how the tested algorithm works when confronted with a specific problem or how changes in
the problem influence the algorithm’s performance. Concerning the model, SPO allows for insertion of
virtually every available model. However, regression and Kriging models or a combination thereof are
most frequently used.

Algorithm 1 presents a formal description of the SPO scheme that is realized by SPO. This scheme
consists of two phases, namely the first construction of the model (lines 1-5) and its sequential improve-
ment (lines 6-17). Phase 1 determines a population of initial designs in algorithm parameter space and
runs the algorithm b times for each design. Phase 2 consists of a loop with the following components: By
means of the obtained data, the model is built or updated, respectively. Then, a possibly large set of design
points is generated and their expected improvement computed by sampling the model. A small set of the
seemingly best design points is selected and the algorithm is run b 4 1 times for each of these. The algo-
rithm is also run once for the current best design point and b is increased by one. The new design points
are added to the population and the loop starts over if the termination criterion is not reached (usually a
preset budget is granted to the process). In consequence, this means that the number of repeats is always
increased by one if the current best design point stays at the top of the list or a newly generated one gets
there. Due to nondeterministic responses of the algorithm, it may however happen that neither of these is
found at the top of the list after finishing the loop. In this case, b may effectively shrink as performance
comparisons have to be fair and thus shall be based on the same number of repeats.

Sequential approaches are generally more efficient, i.e., require fewer function evaluations, than ap-
proaches that evaluate the information in one step only. Extensions of this sequential framework are dis-
cussed in Bartz-Beielstein et al. [3] and Lasarczyk [14].

We used SPO to tune parameters of NARX to minimize the RMSE on the test dataset. As already
mentioned, the SPOT implementation was used to solve this problem. A main goal of this study was to
compare the optimization results obtained by SPO with the results obtained by GA. For that reason, we
chose the same underlying modeling method (NARX) for both parameter tuning methods.



3.2.2 Coupling NARX and SPO

This section describes the specific setup used for the tuning of NARX parameters with SPO. The tuned
parameters are the same as in Sec. 3.1, i.e. the number of hidden layers, the number of neurons in each
hidden layer, and the number of delay steps. The region of interest for all parameters are also the same as
in the last case study (see Table 2). As in the coupling of NARX and GA, the algorithm had an allowed
budget of 200 fitness evaluations. The additional computational cost of applying SPO in comparison with
applying GA was negligible, both algorithms are bounded by the NARX training and evaluation time.
Results of this case study are reported in Sec. 3.5.

3.3 Manually-tuned GP/INT2

Bartz-Beielstein et al. [5] and Konen et al. [13] introduced an analytic approach to predictive control in
environmental engineering. They developed an analytical regression model which was customized for
the stormwater problem, the so-called INT2 model. By integrating this existing analytical approach into
GP, it is possible to pre-structure the GP search space to allow for a much more effective evolutionary
search. This significantly improves on the results obtainable by applying standard GP alone or GP/INT2
alone [10].

The INT2 model describes the causal relationships between incoming rain r(¢) and the resulting
stormwater tank fill level y(t) by the following integral equations:

~
—~
o~
~

t
/ Bur(r)e = dr (5)

K(t) = max(0,L(t) — A) )

y(t)— B = [ (T — Train)g(t — 7)dT
+ [ K (7 — Train)h(t — 7)dT @)

The leaky rain” L(t) of equation 6 is a leaky integration of the past rainfall and thus helps to character-
ize the hidden state of the soil. K (¢) is simply a clipped version of L(t). Equation 7 models the stormwater
tank fill level as the convolution of rainfall and leaky rain with certain filter kernels g(t), h(t). These filter
kernels are generated by symbolic regression using GP.

Our GP implementation is a slightly generalized version of vTrader, a commercial typed graph GP
system provided by DIP Dortmund Intelligence Project GmbH?. vTrader represents GP individuals as
term graphs of the expressions of a strict and strongly-typed functional programming language. These
graphs are stored in a layered array data structure to allow efficient mutation and interpretation.

Fig. 1.C shows the layered system architecture used in this case study. Table 3 lists the parameter
settings for the GP system. To give a baseline for comparison with the SPO-tuned parameters of the last
case study (see Sec. 3.4), the mutation strength and population size parameters were tuned by hand by
observing the results of 10 GP runs. We started with reasonable parameter settings and tried to reach better
results by informed guessing, decreasing the magnitude of the changes at later tuning steps.

3.4 SPO-tuned GP/INT2

This case study builds on previous work by Flasch et al. [10] on applying GP/INT2 to the stormwater
problem. The best result reported was an RMSE of 11.91573, calculated on a comparable test dataset. The
termination condition of the GP was set to 2500 generations, which amounts to a total runtime of about 20
hours on a Intel Xeon 5500 (2.93 GHz, 4 GiB RAM). In this case study, we tried to improve this result by
using SPO to tune the GP system parameters, and by reducing the overall compute time by setting a time

2yTrader is primarily used in financial time series prediction and portfolio optimization. See http://www.
dortmundintelligence.com/ for more information.



Table 3: Parameter settings of the vTrader GP system.

GP Parameter Value

Objective Find optimal convolution kernels
g(t) and h(t) for the INT2 model.

Terminal Set {t} U[0.0,200.0]

Function Set {polyline}

Fitness RMSE(fill levelpreq, fill level,eq;)

Selection Tournament selection (tournament
size 2).

Initialization Random graphs with maximum

depth of 2 levels and maximum size
of 100 nodes. The population size is
10 graphs, with a maximum depth
of 2 levels and a maximum size of

200 nodes.

Variation Normal random perturbation of
constant nodes.

Termination Terminate after consuming a com-

pute time budget of 120 minutes.
Mutation Strength | 0.1
Population Size 10

budget of 2 hours as termination condition for the GP runs. The main question was if the GP system is
able to generate comparable results in much shorter time when operating with optimized parameters, which
refers to hypothesis H-2.

The experiment setup is a version of the setup used in Sec. 3.3 extended by an SPO-Layer (see Fig. 1.D).
Fig. 2 shows this setup in more detail: The GP system is used to evolve near-optimal convolution kernels for
the INT2 model. Subsequently, the INT2 model uses the optimized kernel to calculate the predicted time
series of the stormwater tank fill level. SPO optimizes GP system parameters based on RMSE feedback,
generating new parameter settings for the GP system, until the preset number of optimization steps is
reached.

We chose to tune only the parameters mutation strength and population size, because preliminary exper-
iments indicated that these parameters have the largest influence on the quality of the generated convolution
kernels. The region of interest for each parameter tuned is shown in table 4. A benefit of using this small
parameter space is that the number of SPO steps needed to arrive at a good setting can be very small, in
this case we used 10 steps. The results of this case study are reported in Sec. 3.5.

Table 4: ROIs for tuned vTrader GP system parameters.

GP Parameter Region of Interest
Mutation Strength | [0.0001, 1.0]
Population Size [3,10]

3.5 Results

We repeated each algorithm 10 times with random different seeds configured to the best parametrization
found by each tuning method. Table 5 shows a statistical summary of the resulting RMSE values. While a
comparison of the mean and median RMSE obtained by GA-tuned NARX and SPO-tuned NARX reveals
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Table 5: Summary of case-study results (best values are shown in boldface).

Case Study | Algorithm RMSE Min | RMSE Max | RMSE Median | RMSE Mean | RMSE SD
A GA-tuned NARX 24.904 39.224 26.645 28.203 4.136
B SPO-tuned NARX 25.789 26.635 26.562 26.436 0.343
C Manually-tuned GP/INT2 | 11.639 13.347 11.745 11.966 0.535
D SPO-tuned GP/INT2 11.226 11.349 11.289 11.287 0.038

Table 6: Best NARX parametrization found by GA and SPO (result RMSE values are shown in Table 5).

NARX Parameter Best GA | Best SPO
Number of Delays 24 37
Number of Neurons | (2,9) (2)
Number of Layers 2 1

no significant difference between the two methods, the RMSE standard deviation of the SPO-tuned NARX
parametrization is lower by one order of magnitude. The results obtained by SPO-tuned GP/INT2 are
comparable to the results of manually-tuned GP/INT2, excluding the RMSE standard deviation. Again, the
RMSE standard deviation of the SPO-tuned GP/INT2 parametrization is lower by one order of magnitude
when compared to that of the manually-tuned GP/INT?2 parametrization. When applied to the stormwater
problem, the GP/INT2 approach is superior to the NARX approach.

Table 6 shows the best NARX parametrizations found by GA and SPO. Both parameter-tuning meth-
ods result in networks with only few layers but relatively many delay steps. Table 7 shows the best GP
parametrizations found by manual tuning and SPO. While we were driven to a small mutation strength in
our manual tuning, SPO chose a relatively large value for this parameter. Both tuning methods resulted
in large population sizes. Due to the fixed compute time budget, larger population sizes lead to a reduced
number of GP generations.

3.6 Discussion and Analysis

The comparison of GA with SPO for tuning the parameters of a NARX network shows that SPO is
able to find a neural network configuration that consistently performs at least as good as the best neural
network structure found by GA (see Tables 5 and 6). Notice the standard deviation of the results obtained
by evaluating the best network structure found by SPO, which is one order of magnitude lower than the
standard deviation of the results of the GA-tuned network. At least on this task, SPO presents a viable
alternative to established neuro-evolution algorithms.

The comparison of SPO-tuned NARX with SPO-tuned GP/INT2 shows a clear advantage of the
GP/INT?2 approach (see Table 5). This is also readily apparent when plotting predicted fill levels versus
real fill levels, as done in Fig. 3 and Fig. 4 for both prediction methods on a subset of the test dataset.

Table 7: Best GP parametrization found by manual tuning and SPO (result RMSE values are shown in
Table 5).

GP Parameter Best Manual | Best SPO
Mutation Strength | 0.1 0.846
Population Size 10 8

10
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Figure 3: Real versus NARX-predicted fill levels, Figure 4: Real versus GP/INT2-predicted fill levels,
based on a subset of the test dataset. NARX param- based on a subset of the test dataset. GP parameters
eters were tuned by SPO. were tuned by SPO.

Regarding hypothesis H-I (see the beginning of Sec. 3), neither GA-tuned nor SPO-tuned NARX
neural networks were able to reach an acceptable accuracy on the stormwater problem. We conclude that
the difficulties in applying NARX to this specific problem are independent of the method used to tune the
NARX network structure and parameters. We therefore have to reject hypothesis H-1.

Compared to previous results for the stormwater problem obtained with a combined GP/INT2 ap-
proach [10], we were able to significantly reduce the runtime required from about 20 hours to 2 hours. This
improvement was due to a new GP system parametrization that was optimized to the stormwater problem.
This optimization was performed completely automatically by SPO. We also tried to manually optimize the
GP parameters to assess the quality of the SPO results and found them comparable to our manual results
(see Table 5). When comparing the best GP parametrization found by manual tuning with the one found by
SPO (see table 7), the rather large difference in the mutation strength parameter might surprise at first. The
estimated function plot generated by SPO’s Kriging approach shown in Fig. 5 gives an explanation: There
seems to exist a local minimum at small mutation strength values. We were drawn to this local minimum in
our manual optimization experiments. In summary, these findings allow us to accept hypothesis H-2 (see
the beginning of Sec. 3).

Results from all four case studies show that SPO was able to determine parametrizations with signif-
icantly smaller standard deviations compared to the other parameter tuning approaches studied (see the
rightmost column of Table 5). This may be caused by SPO’s modelling approach, which considers both
performance and variation [16].

4 Summary and Outlook

In summary, this work makes the following contributions:

e Replacing SPO-based NARX parameter tuning by a neuro-evolution approach does not improve the
results of applying NARX to the stormwater problem, therefore hypothesis H-1 has to be rejected.

e When compared to a GA-based neuro-evolution approach, SPO finds NARX network structures
and parameters that yield results with significantly lower standard deviation.

e By tuning the GP parameters in the GP/INT2 approach to the stormwater problem, the GP runtime
can be reduced by one order of magnitude while still giving results of comparable quality, leading to
the acceptance of hypothesis H-2.

11
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Figure 5: Plot of the estimated function for the mutation strength parameter of the vTrader GP system.
This plot is based on SPO’s Kriging approach as described in Sec. 3.2.1. Although Kriging is a good
interpolator, it is not well suited for extrapolation. Therefore, the plot does not allow any conclusion about
the shape of the curve for mutation strength values larger than 0.9. From experience with manual tuning,
we would predict that the error increases rapidly for mutation strength values larger than 0.9.

e SPO is able to find parameter settings comparable with hand-tuned parameters on highly complex
algorithms like GP/INT?2.

In further research, we plan to study the use of GP to improve analytical models in more detail and in other
applications from the domain of environmental engineering. SPO proved to be a powerful tool for tuning
the parameters of GP, hence in further studies we want to extend its use to a broader set of GP parameters.
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