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Abstract— The prediction of fill levels in stormwater tanks is
an important practical problem in water resource management.
In this study state-of-the-art CI methods, i.e., Neural Networks
(NN) and Genetic Programming (GP), are compared with
respect to their applicability to this problem. The performance
of both methods crucially depends on their parametrization.
We compare different parameter tuning approaches, e.g. neuro-
evolution and Sequential Parameter Optimization (SPO). In
comparison to NN, GP yields superior results. By optimizing GP
parameters, GP runtime can be significantly reduced without
degrading result quality. The SPO-based parameter tuning
leads to results with significantly lower standard deviation as
compared to the GA based parameter tuning. Our methodol-
ogy can be transferred to other optimization and simulation
problems, where complex models have to be tuned.

I. INTRODUCTION

The prediction of fill levels in stormwater tanks based on
rainfall data is an important problem in implementing predic-
tive control of sewage networks [6, 12]. This problem will be
referred to as the stormwater problem in the remainder of this
paper. Solving the stormwater problem efficiently reduces
environmental pollution and costs associated with sewer
deterioration due to over- or under-loading. Additionally, this
problem is a typical example of a large class of predictive
control problems in environmental engineering, and it is
realistic to hope that acceptable solutions for this problem
are adaptable to similar problems.

The stormwater problem belongs to the class of timeseries
regression problems [8]. Although many different methods,
ranging from classical statistical regression to modern com-
putational statistics, can be used for time series regression,
CI-methods offer an attractive tradeoff between ease-of-
deployment and prediction quality [7, 5, 11]. Furthermore,
CI-methods have the potential of being robust to changes
in the underlying system, because they can be automatically
retrained. This can lead to lower maintenance costs. These
findings make CI-based systems particularly suitable for
application in environmental engineering, therefore we focus
this paper on CI-methods.

The most prominent CI-methods applied in environmental
engineering are Neural Networks (NN), while symbolic re-
gression via Genetic Programming (GP) offers an interesting
alternative. In contrast to the black-box models of NN, GP
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models are presented as human-readable and -interpretable
mathematical formulas, given a suitable function set and a
reasonable expression complexity limit. Good results can be
reported from the area of financial forecasting, where our
project partner (DIP Dortmund Intelligence Project GmbH)
applied GP successfully for several years. This is why a
comparison of NN methods with GP in the domain of
water resource management is of great interest. We use
Sequential Parameter Optimization (SPO), as implemented
in the SPO toolbox (SPOT), for tuning the parameters of all
compared algorithms to enable fair and unbiased results [4].
To improve readability, the acronym SPO will be used for
SPOT throughout the rest of this article. We also compare
the results of SPO-tuned algorithms with the results of hand-
tuning and tuning via Genetic Algorithms (GA) to verify that
SPO finds near-optimal parameters for the algorithms in this
study.

This paper is organized as follows: Section II introduces
the real-world optimization problem of fill level prediction
in stormwater tanks and its related objective function. Sec-
tion III presents setup and results from four case studies:
The first case study uses a classical CI-approach, which is
also known as neuro-evolution: A GA is used to tune the
parameters of a NN [1, 19]. The second case study applies
SPO to the same NN, allowing for a direct comparison
of GA and SPO as parameter tuners for NN. The third
case study employs GP/INT2, a hybrid analytical and GP
approach, with hand-tuned parameters. In the fourth case
study, SPO is used to tune the parameters of the GP system
of the third case study. Section IV summarizes results and
gives an outlook to further research.

II. PREDICTION OF FILL LEVELS IN STORMWATER
TANKS

The main goal of this study is the prediction of fill levels
in stormwater overflow tanks based on rainfall data in order
to implement predictive control of water drain rate. Such
predictions are of immense practical utility in preventing
costly and damaging over- or under-loading of the sewage
system connected to these stormwater overflow tanks. The
task of predicting the current fill levels from the past rain
data alone—not using past fill levels—is rather challenging
since the hidden state of the surrounding soil influences the
impact of rain in a nonlinear fashion [5, 14].



A. Objective Function

The quality of a fill level predictor is measured as the
root mean squared error (RMSE) between true fill level and
predicted fill level on the test dataset defined in Sec. II-B:
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A fill level predictor is a function from a rainfall time series
to a scalar fill level prediction. When predicting the fill level
at time t, a fill level predictor has the rainfall time series up
to time t available as input. A time series of predicted fill
levels is obtained by iteratively applying a fill level predictor
to a time series of rainfall data.

The objective of this study is to find fill level predictors of
high accuracy. As our input data is sampled with 5 minute
frequency and fill level predictors are only retrained once
every season, time constraints only play a minor role.

B. Test Data

Training and test time series data for this study consist of
25, 344 data records, comprising measurements of the current
fill level and the current rainfall at a stormwater tank in
Germany. These measurements were taken every 5 minutes,
ranging from April, 21th 2007 (00:00 a.m.) to July, 17th 2007
(11:55 p.m.). We divided this dataset into a training dataset,
ranging from April, 21th 2007 (00:00 a.m.) to April, 28th
2007 (00:00 a.m.) and a test dataset, ranging from April, 28th
2007 (00:05 a.m.) to July, 17th 2007 (11:55 p.m.). The results
presented in the following are based on the test dataset, while
all methods were trained on the training dataset. The training
dataset consists of a short but balanced sample of dry and
rainy days.

Making predictions on the training dataset had to be em-
bedded into the fitness function of GP, therefore this dataset
of 2016 data points is comparatively small, yet a larger
training dataset would not make the problem significantly
easier. We used the same training dataset in each case study
for comparability. While fill levels respond differently to rain
depending on season, the response stays very stable within a
season. This is why the size of our training dataset should not
pose a problem to the methods under study, and also why
our test dataset spans the late-spring/early summer season,
but not more. In practice, the methods under study would be
retrained for each season.

III. CASE STUDIES

We conducted four case studies to assess the relative
performance of different CI-based prediction methods and
to test the following two hypotheses:

H-1 A study by Bartz-Beielstein et al. [5] indicated
that Nonlinear AutoRegressive with eXogenous in-
puts (NARX) [20] neural networks weren’t able to
yield good accuracy on the stormwater problem,
but only used SPO to tune the NARX network
structure and parameters. By using an established
neuro-evolution approach, it is possible to evolve a

NARX network structure that yields an improved
prediction performance.

H-2 Flasch et al. [11] described an approach that yields
good accuracy on the stormwater problem. This
approach employs GP to optimize a set of in-
tegral equations and will be referred to as the
GP/INT2 model in the following. A drawback of
this approach is its compute-intensive GP training
process. It is possible arrive at comparable results
with a much shorter GP training time budget by
using optimized GP parameter settings.

The first two case studies are based on NARX to test
hypothesis H-1, while the last two case studies are based
on the hybrid GP/INT2 approach to test hypothesis H-2.
Fig. 1 gives an overview of the setups for these four case
studies. We use manual tuning, GA, and SPO to obtain op-
timized parameter settings for NARX and GP/INT2. Since
both NARX and GP/INT2 employ randomized algorithms,
each optimized parameter setting was repeated 10 times on
consecutive random seeds. We report descriptive statistics on
these 10 runs.

A. GA-tuned NARX
In the first case study, we employed a GA to tune the

structural parameters of a NARX network (see Fig. 1.A).
1) NARX: The NARX recurrent neural network was

chosen for this case study because of its dynamical neural
architecture which makes it suitable for the stormwater
problem. As opposed to other conventional recurrent neural
models like Elman and Hopfield neural networks, the NARX
model has a limited feedback architecture, i.e. feedback
comes only from the output neuron instead as from hidden
neurons. The NARX model is defined as:

y(t+1) := f [u(t)..., u(t�du+1), y(t)..., y(t�dy +1)] (2)

u(t) and y(t) denote, respectively, the input and output of
the model at discrete time t and du, dy are the input and
output memory delays, were du � 1, dy � 1, and du �
dy . The function f is a nonlinear function which can be
approximated by a multilayer perceptron.

We used the MATLAB Neural Network Toolbox 6.0.3
implementation of NARX neural networks [10]. A NARX
network was trained using the training dataset. The trained
NARX network was then used for multi-step time series
prediction on the test dataset (see Sec. II-B). We employed
the Bayesian regularization backpropagation algorithm [10]
during training to find the connection weights of the neurons
for each neural network structure configuration. The NARX
neural network’s most influential parameters were subject to
tuning as covered in Sec. III-A.3.

2) GA for Parameter Tuning: We used a GA as an au-
tomatic tuning method for NARX structure and parameters,
following a neuro-evolution approach. We mainly conducted
this case study to evaluate the effectiveness of NARX
parameter tuning by SPO in comparison with a well-known
algorithm. Neuro-evolution is an well-established algorithm
for finding good neural network structures [1, 19].
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Fig. 1. Case study architecture overview. This figure illustrates the setup of the four case studies, see Sec. III. From left to right: The neuro-evolution
approach (A), which is directly compared to the SPO-tuned neural network (B). The setup of the manually-tuned GP/INT2 approach (C), which is directly
compared to the SPO-tuned GP/INT2 approach (D).

We used the GA implementation of MATLAB’s Genetic
Algorithm and Direct Search Toolbox 2.4.2 [13] with param-
eter settings as shown in Table I.

TABLE I
PARAMETER SETTINGS OF THE MATLAB GA.

GA Parameter Value
Budget 200 Fitness Evaluations
Creation Function Stochastic Uniform
Crossover Fraction 0.8
Crossover Function Scatter
Elite Count 2

Fitness Scaling Function Rank
Generations 20

Initial Penalty 10

Mutation Function Adaptive Feasible
Penalty Factor 100

Population Size 10

Selection Function Stochastic Uniform

These parameter settings were determined by performing
several preliminary experiments. The algorithm had an al-
lowed budget of 200 fitness evaluations, i.e., it could evaluate
the RMSE of 200 NARX network structures on the test
dataset.

3) Coupling NARX and GA: NARX and GA are coupled
with the aim of finding improved NARX parameters. The
NARX parameters with most influence on the networks
performance in the given problem domain are the number of
hidden layers, the number of neurons in each hidden layer,
and the number of delay steps. These parameters determine
the NARX network structure and were chosen to be subject
of the optimization by the GA. Their respective region of
interests (search space, abbreviated as ROI in the remainder
of this text) are shown in Table II.

The genotype of a NARX network parametrization is
an l-dimensional vector of natural numbers of the form

TABLE II
ROIS FOR TUNED NARX PARAMETERS.

NARX Parameter Region of Interest
Number of Delays [2, 40]

Number of Neurons [(1, 1, 1, 1, 1), (10, 10, 10, 10, 10)]

Number of Layers [1, 5]

(d, l, n1, . . . , nlmax

), where d denotes the numer of delays,
l the number of hidden layers, lmax the upper bound of the
ROI chosen for l, and ni the number of neurons in the ith
hidden layer. If l < lmax , surplus nis are simply ignored
during the (trivial) genotype-phenotype mapping.

The fitness of a GA individual is calculated by creating
a new NARX network (the phenotype) according to the pa-
rameters encoded in the individual’s genotype, then training
this network on the training dataset, and finally evaluating
the RMSE of this trained network on the test dataset. The
result of a GA parameter optimization run is the parameter
setting encoded by the individual of the lowest RMSE in the
population, after the algorithm has exceeded its predefined
budget of fitness evaluations.

The best NARX parametrization found, shown in Ta-
ble VII, was then tested on different random seeds and
statistical results are reported in Sec. III-E.

B. SPO-tuned NARX

In this case study, we used SPO to optimize the parameters
of a NARX network, in order to assess the performance
of SPO in comparison with the established neuro-evolution
approach described in Sec. III-A (see Fig. 1.B). We will give
a short introduction to SPO first. Section III-A.1 describes
the neural network which is tuned by SPO, the experiment
setup for this case study is described in Sec. III-B.2.

1) SPO: The sequential parameter optimization approach
is a flexible and general framework which can be applied



in many situations. Here, we introduce the sequential pa-
rameter optimization toolbox as one possible implementation
of this framework. The SPO toolbox was developed over
recent years by Thomas Bartz-Beielstein, Christian Lasar-
czyk, and Mike Preuss [4]. The main purpose of SPO is
to determine improved parameter settings for optimization
algorithms to analyze and understand their performance.
SPO was successfully applied to numerous optimization
algorithms [3, 22, 16, 4, 9, 2, 21, 4].

During the first stage of experimentation, SPO treats the
algorithm A as a black box. A set of input variables, say
~x, is passed to A. Each run of the algorithm produces some
output, ~y. SPO tries to determine a functional relationship
F between ~x and ~y for a given problem formulated by
an objective function f : ~u ! ~v. Since experiments are
run on computers, pseudorandom numbers are taken into
consideration if:

(i) The underlying objective function f is stochastically
disturbed, e.g., measurement errors or noise occur,
and/or

(ii) The algorithm A uses some stochastic elements, e.g.,
mutation in evolution strategies.

This situation can be described as follows:

Objective function: ~u

f�! ~v, (3)

Algorithm: ~x

F�! ~y. (4)

We will classify elements from (3) and (4) in the following
manner:

1) Variables that are necessary for the algorithm belong to
the algorithm design, whereas

2) variables that are needed to specify the optimization
problem f belong to the problem design.

SPO employs a sequentially improved model to estimate
the relationship between algorithm input variables and its
output. This serves two primary goals. One is to enable
determining good parameter settings, thus SPO may be used
as a tuner. Secondly, variable interactions can be revealed
that help to understand how the tested algorithm works when
confronted with a specific problem or how changes in the
problem influence the algorithm’s performance. Concerning
the model, SPO allows for insertion of virtually every
available model. However, regression and Kriging models
or a combination thereof are most frequently used.

Algorithm 1 presents a formal description of the SPO
scheme. This scheme consists of two phases, namely the
first construction of the model (lines 1–5) and its sequential
improvement (lines 6–17). Phase 1 determines a population
of initial designs in algorithm parameter space and runs the
algorithm b times for each design. Phase 2 consists of a loop
with the following components: By means of the obtained
data, the model is built or updated, respectively. Then, a
possibly large set of design points is generated and their
expected improvement computed by sampling the model. A
small set of the seemingly best design points is selected
and the algorithm is run b + 1 times for each of these. The
algorithm is also run once for the current best design point

Algorithm 1 : Sequential parameter optimization (SPO).
// phase 1, building the model:

let A be the algorithm to be tuned;1
generate an initial population X = {x̄1

, . . . , x̄

m} of m2
parameter vectors;
let b = b0 be the initial number of tests for determining3
the estimated performance;
foreach x̄ 2 X do4

run A with x̄ b times to determine the estimated5
performance y of x̄;

// phase 2, using/improving the model:

while termination criterion not true do6
let ā denote the parameter vector from X with best7
estimated utility;
let b the number of repeats already computed for ā;8
build prediction model f based on X and9
{y1

, . . . , y

|X|};
generate a set X

0 of l new parameter vectors by10
random sampling;
foreach x̄ 2 X

0 do11
calculate f(x̄) to determine the expected12
improvement f(x̄) of x̄;

select set X

00 of d parameter vectors from X

0 with13
best expected improvement (d ⌧ l);
run A with ā once and recalculate its estimated14

performance using all b + 1 test results;
// (improve confidence)

let b = b + 1;15
run A b times with each x̄ 2 X

00 to determine the16
estimated performance x̄;
extend the population by X = X [X

00;17

and b is increased by one. The new design points are added
to the population and the loop starts over if the termination
criterion is not reached (usually a preset budget is granted to
the process). In consequence, this means that the number of
repeats is always increased by one if the current best design
point stays at the top of the list or a newly generated one gets
there. Due to nondeterministic responses of the algorithm, it
may however happen that neither of these is found at the
top of the list after finishing the loop. In this case, b may
effectively shrink as performance comparisons have to be
fair and thus shall be based on the same number of repeats
(function evaluations).

Sequential approaches are generally more efficient, i.e.,
require fewer function evaluations, than approaches that
evaluate the information in one step only. Extensions of this
sequential framework are discussed in Bartz-Beielstein et
al. [3] and Lasarczyk [15]. Because the set of parameters
tuned in this study is small, an approach like Grid Search
might find an optimum faster, though our approach enables a
statistical analysis and learning about parameters interactions
and important parameters of the algorithm.

We used SPO to tune NARX parameters to minimize
the RMSE on the test dataset. The SPOT implementation
was parametrized as shown in Table III. A main goal of this
study was to compare the optimization results obtained by
SPO with the results obtained by GA. For that reason, we
chose the same underlying modeling method (NARX) for
both parameter tuning methods.



TABLE III
PARAMETER SETTINGS OF THE SPO SYSTEM USED IN THIS STUDY.

SPO Parameter Value
Initial Design Size (m) 6

Initial Repeats (b) 1

Initial Design Type Latin Hypercube Design
Predictor Method DACE zero-order polyno-

mial, Gaussian correlation
Result Merging Function mean

2) Coupling NARX and SPO: This section describes the
specific setup used for the tuning of NARX parameters with
SPO. The tuned parameters are the same as in Sec. III-A,
i.e. the number of hidden layers, the number of neurons
in each hidden layer, and the number of delay steps. The
region of interest for all parameters are also the same as
in the last case study (see Table II). As in the coupling
of NARX and GA, the algorithm had an allowed budget
of 200 fitness evaluations. The additional computational
cost of applying SPO in comparison with applying GA
was negligible, both algorithms are bounded by the NARX
training and evaluation time. Results of this case study are
reported in Sec. III-E.

C. Manually-tuned GP/INT2

Bartz-Beielstein et al. [5] and Konen et al. [14] introduced
an analytic approach to predictive control in environmental
engineering. They developed an analytical regression model
which was customized for the stormwater problem, the so-
called INT2 model. By integrating this existing analytical
approach into GP, it is possible to pre-structure the GP
search space to allow for a much more effective evolutionary
search. This significantly improves on the results obtainable
by applying standard GP alone or GP/INT2 alone [11].

The INT2 model describes the causal relationships be-
tween incoming rain r(t) and the resulting stormwater tank
fill level y(t) by the following integral equations:

L(t) =

Z t

�1
�Lr(⌧)e

�↵L(t�⌧)
d⌧ (5)

K(t) = max(0, L(t)��) (6)

y(t)�B =

Z t

�1
r(⌧ � ⌧rain)g(t� ⌧)d⌧

+

Z t

�1
K(⌧ � ⌧rain)h(t� ⌧)d⌧ (7)

The ”leaky rain” L(t) of equation 6 is a leaky integra-
tion of the past rainfall and thus helps to characterize the
hidden state of the soil. K(t) is simply a clipped version
of L(t). Equation 7 models the stormwater tank fill level
as the convolution of rainfall and leaky rain with certain
filter kernels g(t), h(t). These filter kernels are generated by
symbolic regression using GP.

Our GP implementation is a slightly generalized version
of vTrader, a commercial typed graph GP system provided

by DIP Dortmund Intelligence Project GmbH1. vTrader rep-
resents GP individuals as term graphs of the expressions of a
strict and strongly-typed functional programming language.
These graphs are stored in a layered array data structure to
allow efficient mutation and interpretation.

Fig. 1.C shows the layered system architecture used in this
case study. Table IV lists the parameter settings for the GP
system. To give a baseline for comparison with the SPO-
tuned parameters of the last case study (see Sec. III-D), the
mutation strength and population size parameters were tuned
by hand by observing the results of 10 GP runs. We started
with reasonable parameter settings and tried to reach better
results by informed guessing, decreasing the magnitude of
the changes at later tuning steps.

TABLE IV
PARAMETER SETTINGS OF THE VTRADER GP SYSTEM.

GP Parameter Value
Objective Find optimal convolution kernels g(t) and

h(t) for the INT2 model.
Terminal Set {t} [ [0.0, 200.0]

Function Set {polyline}
Fitness RMSE(fill level

pred

, fill level
real

)

Selection Tournament selection (tournament size 2).
Initialization Random graphs with maximum depth of 2

levels and maximum size of 100 nodes.
The population size is 10 graphs, with a
maximum depth of 2 levels and a maximum
size of 200 nodes.

Variation Normal random perturbation of constant
nodes, single-point crossover.

Termination Terminate after consuming a compute time
budget of 120 minutes.

Mutation Strength 0.1
Population Size 10

D. SPO-tuned GP/INT2
This case study builds on previous work by Flasch et

al. [11] on applying GP/INT2 to the stormwater problem.
The best result reported was an RMSE of 11.91573, cal-
culated on a test dataset ranging from April, 28th 2007
(00:05 a.m.) to July, 18th 2007 (10:10 a.m.). The termination
condition of the GP was set to 2500 generations, which
amounts to a total runtime of about 20 hours on a Intel Xeon
5500 (2.93 GHz, 4 GiB RAM). In this case study, we tried
to improve this result by using SPO to tune the GP system
parameters, and by reducing the overall compute time by
setting a time budget of 2 hours as termination condition
for the GP runs. The main question was if the GP system
is able to generate comparable results in much shorter time
when operating with optimized parameters, which refers to
hypothesis H-2.

The experiment setup is a version of the setup used in
Sec. III-C extended by an SPO-Layer (see Fig. 1.D). Fig. 2
shows this setup in more detail: The GP system is used
to evolve suitable convolution kernels for the INT2 model.

1vTrader is primarily used in financial time series prediction and portfolio
optimization. See http://www.dortmundintelligence.com/ for
more information.
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Subsequently, the INT2 model uses the optimized kernels to
calculate the predicted time series of the stormwater tank fill
level. SPO optimizes GP system parameters based on test
dataset RMSE feedback, generating new parameter settings
for the GP system, until the preset number of optimization
steps is reached.

We chose to tune only the parameters mutation strength
and population size, because preliminary experiments indi-
cated that these parameters have the largest influence on the
quality of the generated convolution kernels. The region of
interest for each parameter tuned is shown in table V, SPO
was parametrized as shown in Table III. A benefit of using
this small parameter space is that the number of SPO steps
needed to arrive at a good setting can be very small, in this
case we used 10 steps. The results of this case study are
reported in Sec. III-E.

TABLE V
ROIS FOR TUNED VTRADER GP SYSTEM PARAMETERS.

GP Parameter Region of Interest
Mutation Strength [0.0001, 1.0]

Population Size [3, 10]

E. Results
We repeated each algorithm 10 times with random differ-

ent seeds configured to the best parametrization found by
each tuning method. Table VI shows a statistical summary
of the resulting RMSE values. While a comparison of the
mean and median RMSE obtained by GA-tuned NARX and
SPO-tuned NARX reveals no significant difference between

TABLE VII
BEST NARX PARAMETRIZATION FOUND BY GA AND SPO (RESULT

RMSE VALUES ARE SHOWN IN TABLE VI).

NARX Parameter Best GA Best SPO
Number of Delays 24 37

Number of Neurons (2, 9) (2)

Number of Layers 2 1

TABLE VIII
BEST GP PARAMETRIZATION FOUND BY MANUAL TUNING AND SPO

(RESULT RMSE VALUES ARE SHOWN IN TABLE VI).

GP Parameter Best Manual Best SPO
Mutation Strength 0.1 0.846

Population Size 10 8

the two methods, the RMSE standard deviation of the SPO-
tuned NARX parametrization is lower by one order of
magnitude. The results obtained by SPO-tuned GP/INT2
are comparable to the results of manually-tuned GP/INT2,
excluding the RMSE standard deviation. Again, the RMSE
standard deviation of the SPO-tuned GP/INT2 parametriza-
tion is lower by one order of magnitude when compared to
that of the manually-tuned GP/INT2 parametrization. When
applied to the stormwater problem, the GP/INT2 approach
is superior to the NARX approach. Note that, due to time
constraints, we do report results based on the test dataset
seen by SPO. Because only few parameters where tuned,
the danger of overfitting should be small. We plan to supply
results on a completely independent validation dataset in a
further study. Also note that the NARX results are stochastic
because initial weights are set via the Nguyen-Widrow layer
initialization function that uses a degree of randomness [17].

Table VII shows the best NARX parametrizations found
by GA and SPO. Both parameter-tuning methods result in
networks with only few layers but relatively many delay
steps. Table VIII shows the best GP parametrizations found
by manual tuning and SPO. While we were driven to a
small mutation strength in our manual tuning, SPO chose a
relatively large value for this parameter. Both tuning methods
resulted in large population sizes. Due to the fixed compute
time budget, larger population sizes lead to a reduced number
of GP generations.

F. Discussion and Analysis

The comparison of GA with SPO for tuning the param-
eters of a NARX network shows that SPO is able to find
a neural network configuration that consistently performs at
least as good as the best neural network structure found by
GA (see Tables VI and VII). Notice the standard deviation of
the results obtained by evaluating the best network structure
found by SPO, which is one order of magnitude lower than
the standard deviation of the results of the GA-tuned net-
work. At least on this task, SPO presents a viable alternative
to established neuro-evolution algorithms, while one has to
keep in mind that these algorithms are usually applied at the
more detailed neural weight level.



TABLE VI
SUMMARY OF CASE-STUDY RESULTS (BEST VALUES ARE SHOWN IN BOLDFACE).

Case Study Algorithm RMSE Min RMSE Max RMSE Median RMSE Mean RMSE SD
A GA-tuned NARX 24.904 39.224 26.645 28.203 4.136

B SPO-tuned NARX 25.789 26.635 26.562 26.436 0.343

C Manually-tuned GP/INT2 11.639 13.347 11.745 11.966 0.535

D SPO-tuned GP/INT2 11.226 11.349 11.289 11.287 0.038
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Fig. 3. Real versus NARX-predicted fill levels, based on a subset of the
test dataset. NARX parameters were tuned by SPO.

0 200 400 600 800 1000

0
20

40
60

80
10

0

SPO−tuned GP/INT2 (Test RMSE = 11.226)

Time (Index)
Fi

ll 
Le

ve
l (

%
)

real
predicted

Fig. 4. Real versus GP/INT2-predicted fill levels, based on a subset of the
test dataset. GP parameters were tuned by SPO.

The comparison of SPO-tuned NARX with SPO-tuned
GP/INT2 shows a clear advantage of the GP/INT2 approach
(see Table VI). This is also readily apparent when plotting
predicted fill levels versus real fill levels, as done in Fig. 3
and Fig. 4 for both prediction methods on a subset of the
test dataset.

Regarding hypothesis H-1 (see the beginning of Sec. III),
neither GA-tuned nor SPO-tuned NARX neural networks
were able to reach an acceptable accuracy on the stormwater
problem. We conclude that the difficulties in applying NARX
to this specific problem are independent of the method used
to tune the NARX network structure and parameters. We
therefore have to reject hypothesis H-1.

Compared to previous results for the stormwater problem
obtained with a combined GP/INT2 approach [11], we
were able to significantly reduce the runtime required from
about 20 hours to 2 hours. This improvement was due to
a new GP system parametrization that was optimized to
the stormwater problem. This optimization was performed
completely automatically by SPO. We also tried to manually
optimize the GP parameters to assess the quality of the SPO
results and found them comparable to our manual results
(see Table VI). When comparing the best GP parametrization
found by manual tuning with the one found by SPO (see ta-
ble VIII), the rather large difference in the mutation strength
parameter might surprise at first. The estimated function
plot generated by SPO’s Kriging approach shown in Fig. 5
gives an explanation: There seems to exist a local minimum
at small mutation strength values. We were drawn to this
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Fig. 5. Plot of the estimated function for the mutation strength parameter
of the vTrader GP system. This plot is based on SPO’s Kriging approach
as described in Sec. III-B.1. Although Kriging is a good interpolator, it is
not well suited for extrapolation. Therefore, the plot does not allow any
conclusion about the shape of the curve for mutation strength values larger
than 0.9. From experience with manual tuning, we would predict that the
error increases rapidly for mutation strength values larger than 0.9.

local minimum in our manual optimization experiments. In
summary, these findings allow us to accept hypothesis H-2
(see the beginning of Sec. III).

Results from all four case studies show that SPO was
able to determine parametrizations with significantly smaller
standard deviations compared to the other parameter tuning
approaches studied (see the rightmost column of Table VI).
This may be caused by SPO’s modelling approach, which



considers both performance and variation [18]. Note that
the DACE model uses merged function values, i.e., function
values from several repeats are mapped to a single value.

IV. SUMMARY AND OUTLOOK

In summary, this work makes the following contributions:
• Replacing SPO-based NARX parameter tuning by a

neuro-evolution approach does not improve the results
of applying NARX to the stormwater problem, there-
fore hypothesis H-1 has to be rejected.

• When compared to a GA based neuro-evolution ap-
proach, SPO finds NARX network structures and pa-
rameters that yield results with significantly lower stan-
dard deviation.

• By tuning the GP parameters in the GP/INT2 approach
to the stormwater problem, the GP runtime can be
reduced by one order of magnitude while still giving
results of comparable quality, leading to the acceptance
of hypothesis H-2.

• SPO is able to find parameter settings comparable with
hand-tuned parameters on highly complex algorithms
like GP/INT2.

In further research, we plan to study the use of GP to improve
analytical models in more detail and in other applications
from the domain of environmental engineering. SPO proved
to be a powerful tool for tuning the parameters of GP, hence
in further studies we want to extend its use to a broader set
of GP parameters.
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