
Clustering Based Niching for Genetic Programming in
the R Environment

Oliver Flasch, Thomas Bartz-Beielstein,
Patrick Koch, and Wolfgang Konen

Fakultät für Informatik und Ingenieurwissenschaften, Fachhochschule Köln
E-Mail: {oliver.flasch | thomas.bartz-beielstein |

patrick.koch | wolfgang.konen}@fh-koeln.de

Abstract

In this paper, we give a short introduction into RGP, a new genetic programming
(GP) system based on the statistical package R. The system implements classical un-
typed tree-based genetic programming as well as more advanced variants including,
for example, strongly typed genetic programming and Pareto genetic programming.
The main part of this paper is concerned with the problem of premature convergence
of GP populations, accompanied by a loss of genetic diversity, resulting in poor ef-
fectiveness of the search. We propose a clustering based niching approach to mitigate
this problem. The results of preliminary experiments confirm that clustering based
niching is effective in preserving genetic diversity in GP populations.

1 Introduction

The goal of this paper is twofold: first, it provides a short introduction into RGP, a new
open source genetic programming system implemented as an extension package for the
statistical language and software package R [1]. Second, it reports on our ongoing re-
search in diversity preservation methods for tree-based genetic programming (GP).

GP is a class of evolutionary algorithms for the automatic generation of computer pro-
grams from high-level problem definitions [2, 3, 4]. In our work, we apply a strongly-
typed tree-based multi-objective GP variant for symbolic regression to solve real-world
time series regression problems from water resource management and from finance [5, 6].
We recently developed RGP, a modular GP system based on the R statistical package. By
building on R, our system can leverage extensive tools for statistics, data handling, and vi-
sualization. Because GP individuals are represented as R functions, arbitrary R functions
may be used as GP building blocks. Furthermore, GP individuals can be used and ana-
lyzed by all available R-based tools. By distributing our system as open source software,
we enable others to verify the results of our experiments and to apply our algorithms and
techniques to their problems and datasets.

In our application of GP, we experienced the common problem of premature convergence
into local optima, accompanied by a loss of genetic diversity, resulting in poor effective-
ness of the search. This problem is perhaps more severe in GP for symbolic regression
than in other evolutionary algorithms or GP applications because of the highly difficult
structure of the symbolic regression GP search space: depending on the set of GP building
blocks (the function set), the fitness landscape is highly multi modal and rough, making
it especially difficult to escape from local optima.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 33

A typical means to circumvent the impact of premature convergence is to use multiple
independent runs in parallel, combining their results only after a certain number of fitness
evaluations m have passed [7]. The hyperparameter m can be fixed at the start of a run or
controlled dynamically. This algorithm is a form of static niching, where genetic diversity
is preserved by isolating possibly structurally, i.e., genotypically, different solutions from
direct competition [8, 9]. Multi-objective GP methods, such as Pareto GP, also result
in an implicit form of niching by maintaining a set of Pareto-optimal solutions that may
be structurally different. Furthermore, explicit static niching schemes based on trivial
geographies, demes or islands, or on individual age have shown promising potential in
several GP applications [10, 3, 11, 12].

The remainder of this paper is organized as follows: Section 2 gives a high-level introduc-
tion into the design and features of the RGP system. Section 3 motivates and describes
clustering based niching in the abstract and, building on this description, presents our
algorithm. Section 4 explains preliminary experiments and gives first results. Section 5
concludes this paper with a short summary and an outlook to further research.

2 Genetic Programming in the R Environment

The recent availability of fast multi-core systems has enabled the practical application of
GP in many real-world application domains. This has lead to the development of software
frameworks for GP, including DataModeler, Discipulus, ECJ, Eurequa, and GPTIPS1.

All of these systems are complex aggregates of algorithms for solving not only GP spe-
cific tasks, such as solution creation, variation, and evaluation, but also more general
Evolutionary Computation (EC) tasks, like single- and multi-objective selection, and even
largely general tasks like the design of experiments, data pre-processing, result analysis
and visualization. Packages like Matlab, Mathematica, and R already provide solutions
for the more general tasks, greatly simplifying the development of GP systems based on
these environments [1].

RGP2 is based on the R environment for several reasons. First, there seems to be a
trend towards employing statistical methods in the analysis and design of evolutionary
algorithms, including modern GP variants [13, 14]. Second, R’s open development model
has led to the free availability of R packages for most methods from statistics and many
methods from EC. Also, the free availability of R itself makes RGP accessible to a wide
audience. Third, the R language supports “computing on the language”, which greatly
simplifies symbolic computation inherent in most GP operations. In addition, parallel
execution of long-running GP experiments is easily supported by R packages such as
Snow [15].

1DataModeler is a commercial Mathematica-based GP system focused on symbolic regression in in-
dustrial applications (evolved-analytics.com). Discipulus is a commercial linear GP system
(www.rmltech.com). ECJ is an open source framework for evolutionary computation (cs.gmu.
edu/~eclab/projects/ecj). Eurequa is a graph GP system optimized for symbolic regression
(ccsl.mae.cornell.edu/eureqa). GPTIPS is an open source Matlab toolbox for symbolic re-
gression by GP (sites.google.com/site/gptips4matlab).

2The RGP package and documentation is freely available at rsymbolic.org.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 34

2.1 RGP Features

RGP was mainly developed as a research tool for exploring time series regression and
prediction problems with GP. Nevertheless, the system is modular enough to be easily
adapted and extended to new application domains.

Individual Representation RGP represents GP individuals as R expressions that can
be directly evaluated by the R interpreter. This allows the whole spectrum of functions
available in R to be used as building blocks for GP. Because R expressions are inter-
nally represented as trees, RGP may be seen as a tree-based GP system. However, the
individual representation can be easily replaced together with associated variation and
evaluation operators, if an alternative representation is found to be more effective for a
given application [16].

Besides classical untyped GP, strongly typed GP is supported by a type system based on
simply typed lambda calculus [17]. A distinctive feature of RGP’s typed tree represen-
tation is the support for function defining subtrees, i.e. anonymous functions or lambda
abstractions. In combination with a type system supporting function types, this allows
the integration of common higher order functions like folds, mappings, and convolutions,
into the set of GP building blocks.

RGP also includes a rule based translator for transforming R expressions. This mecha-
nism can be used to simplify GP individuals during the evolution process as a means the
reduce bloat, or just to simplify solution expressions for presentation. The default rule
base implements simplification of arithmetic expressions. It can be easily extended to
simplify expressions containing user-defined operators and functions.

GP Operators RGP provides default implementations for several initialization, varia-
tion, and selection operators. The system also provides tools for the analysis and visual-
ization of populations and GP individuals.

Initialization Individual initialization can be performed by the conventional grow and
full strategies of tree building. When using strongly-typed GP, the provided individ-
ual initialization strategies respect type constraints and will create only well-defined
expressions. Initialization strategies may be freely combined, e.g. to implement the
well known ramped-half-and-half strategy [3].

Variation RGP includes classical and type-safe subtree crossover operators. Also, sev-
eral classical and type-safe mutation operators are provided. The variation step can
be freely configured by combining several mutation and recombination operators to
be applied in parallel or consecutively, with freely configurable probabilities.

Selection The system provides an implementation of single-objective tournament selec-
tion with configurable tournament size. Other selection strategies can be easily
added and will be provided in later versions. Additionally, multi-objective selection
is supported via the EMOA package by implementing the Pareto GP algorithm [7].
This algorithm optimizes solution quality while, at the same time, controlling solu-
tion complexity. For this purpose, RGP implements multiple complexity measures
for GP individuals.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 35

3 Clustering Based Niching

Preserving genetic diversity in the population of an evolutionary algorithm (EA) is im-
portant for reaching two related goals: first, high diversity is a resource for exploratory
crossover, helping in the discovery of multiple optima in multi-modal search spaces. Sec-
ond, high diversity decreases the probability of the whole population converging to a local
optimum.

Most diversity-preserving EA are based on altering the selection operator to prevent pre-
mature convergence to a local optimum, examples include Fitness Sharing, Crowding,
and Tagging [18, 19, 20]. A different approach is to use multiple independent populations
or niching, like in Multinational GA and Forking GA [21, 22].

The underlying idea of niching in evolutionary algorithms is to apply the biological con-
cept of isolated non-interbreeding species living in separate ecological niches to preserve
genetic diversity in EA populations. Individuals of different species do not interbreed and
individuals living in different niches do not compete for the same resources. Each niche is
implemented as an independent EA run, convergence of the species in a single niche has
no influence on the genetic diversity of other species in other niches. Inside each niche,
individuals breed and compete like in a traditional EA, converging to a local optimum.
This has the benefit that all possible EA extensions and specialized EA operators can still
be applied at the niche level.

Given a technique for dynamically creating and merging niches, speciation can occur. By
merging species, the higher genetic diversity of the resulting species can be exploited as
a resource for exploratory crossover. By splitting a species into separate niches, the now
isolated sub-species can evolve independently, creating new genetic diversity. In cluster-
ing based niching, clustering algorithms are used to divide an initial global population
into species which are then distributed to niches. Clustering algorithms group individuals
into species so that the individuals within the same species are relatively similar, while
individuals in different species are relatively distinct. The similarity of individuals can be
measured in several different ways, leading to different clusterings and different algorithm
behaviour.

Clustering based niching methods have shown to be effective in preserving genetic diver-
sity in Evolution Strategy (ES) populations [23]. In this work, we apply clustering based
niching to GP for the first time. This leads to our main hypotheses:

H1 Niching is effective in preserving genetic diversity in GP populations.

H2 Clustering based niching yields significantly better results than static niching when
applied to GP for symbolic regression.

If these hypotheses can be accepted is not clear, mainly because of the difficult nature
the GP search space for symbolic regression. Table 1 shows the results of an experiment
designed to highlight this difficulty. The phenotypic distance (see Section 3.1) between a
GP individual and its mutated variant after a single mutation step of three different stan-
dard GP mutation operators is given. The phenotypic effect of a single mutation is highly
random. Mutating constants in an GP individual can change its behaviour and therefore
its fitness significantly, the effect of mutating function nodes or replacing subtrees is even

Proc., 20. Workshop Computational Intelligence, 2010 - S. 36

stronger. These observations tell us that GP individuals might be unrelated phenotypi-
cally, even if they have very similar genotypes. We study empirically if clustering based
niching is effective under these conditions.

Table 1: Effect of standard genetic programming mutation operators: in each experiment, a ran-
dom full tree TA of depth 6 is generated and the phenotypic distance to another tree TB

is measured. In mutation type (Mut. Type) Random, TB is another random full tree of
depth 6. In Const. Mut., TB is created by mutating constants in TA. In Func. Mut., TB

is created by mutating function labels in TA. In Subtree Mut., TB is created by replacing
random subtrees of TA. The results shown are summaries of 500 experiments for each
mutation type.

Phenotypic Distance (RMSE)
Mut. Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Random 0 30.4959 197.2396 1.9161 106 1.3951 103 5.8326 108

Const. Mut. 0 0.0030 1.1040 5.5765 103 17.2065 7.8703 105

Func. Mut. 0 0.4273 19.9414 3.6973 107 408.7947 1.6742 1010

Subtree Mut. 0 6.8196 78.2556 2.7572 105 1.1684 103 4.5585 107

What is the expected advantage of clustering based niching in contrast to a conventional
static niching approach? In contrast to fixed niching, in clustering based niching indi-
viduals inside a single niche can be expected to be more similar than individuals of two
different niches. This could be beneficial because successful crossover is much more
likely between similar individuals, i.e. individuals which share homologous subtrees.

The general scheme of clustering based niching GP consists of four steps:

1. Cluster the GP population Pi into Ni niches.

2. Perform parallel GP passes in each of the Ni niches until the pass stop criterion is
met at each niche.

3. Join the Ni populations into the GP population Pi 1, adding the best performing
individuals into an elite set E.

4. Unless the run stop criterion is met, set i : i 1 and return to step 1, otherwise
return the resulting population Pi 1 and the elite set E.

3.1 Distance Measures for Clustering GP Populations

In order to perform a clustering of a GP population into niches, a distance measure for GP
individuals is needed. This distance measure is then used to calculate a distance matrix
which can be used as an input for several hierarchical or partitioning clustering algorithms.
There are basically three classes of distance measures that are suitable for this purpose:
Fitness distance, phenotypic distance, and genotypic distance. Each of these measures
has distinct requirements, advantages, and drawbacks.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 37

Fitness Distance Given two GP individuals TA and TB, a (possibly multi-objective)
fitness function f and a distance measure d, the Fitness Distance dfitness between TA and
TB is given by the formula dfitness : d f TA , f TB . Trivially, dfitness is a metric iff d
is a metric. Typically, the Euclidean metric is used for d, but other choices are possible.
For example, the Euclidean Squared metric is sometimes used for efficiency reasons.

The main benefit of dfitness is that it is comparatively efficient to calculate if the values of
the fitness function f are already known for most individuals in a population, as it is the
case in later stages of a GP run. At the start of a GP run, fitness values must be expected to
be mostly random, with a high (when fitness values are minimized) mean, making dfitness

unsuitable for meaningful clustering in this stage of a run.

Phenotypic Distance The phenotypic distance dphenotype measures the behavioral dif-
ference between two GP individuals TA and TB. Its definition is highly dependent on
the interpretation of GP individuals, i.e. the GP application. In symbolic regression,
given an error measure ϵ and a set of fitness cases F D, we define dphenotype :
ϵ TA F , TB F . The operator interprets a GP individual tree as a function de-
fined on a domain D. In practice, typically the mean square error (MSE) or the root mean
square error (RMSE) are used as an error measure ϵ.

Phenotypic distance can give meaningful clusterings in every stage of a GP run. Its main
drawback is its possibly high computational effort, depending on the mean computational
cost of calculating F .

Genotypic Distance As a GP population is a set of expression trees, there is no “natu-
ral” genotypic distance measure. To give meaningful and stable clusterings, a genotypic
distance measure dgenotype should reflect the impact of the GP variation operators in the
(informal) sense that dgenotype TA, TB dgenotype TA, TC iff P variate TA TB

P variate TA TC : an individual TA is closer to an individual TB than it is to an in-
dividual TC iff the probability of arriving at TB by a fixed number of stochastic variation
steps from TA is higher than the probability of arriving at TC . Finding an appropriate
dgenotype that is also efficiently computable is a difficult problem, particularly in the pres-
ence of a crossover operator.

We employ norm-induced tree distance metrics as genotypic distance measures because
of their flexibility. A norm-induced tree distance metric δ p,d uses a norm p defined on ex-
pression trees and a metric d on tree node labels to induce a metric on expression trees TA

and TB: if both TA and TB are empty trees, δ p,d TA, TB : 0. If exactly one of TA and
TB is empty, assume without loss of generality TA is empty, then δ p,d TA, TB : p TB .
If neither TA or TB is empty, the difference of their root node labels d root TA , root TB

is added to the sum of the differences of the children as measured by δ p,d . The children
lists are padded with empty trees to equalize their lengths.

In the remainder of this paper, we use δ pvl,ddiscrete
as our implementation of dgenotype,

where ddiscrete is the discrete metric and pvl is the expression visitation length norm [24,
25]. The expression visitation length is a fine-grained expression complexity measure
which is calculated for each (sub-)expression as part of the Pareto GP algorithm. When
using Pareto GP, we are therefore able to calculate δ pvl,ddiscrete

more efficiently by reusing
individual complexity information we already calculated.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 38

3.2 Dynamic Restart of GP Passes

As in each niche, we perform a standard GP run (a GP pass), the pass might fail in the
sense that the niche population converges into a local optimum of unsatisfactory fitness.
We implement a dynamic restart strategy to mitigate this problem [26]. Many different
criteria for detecting convergence are conceivable, such as monitoring the standard de-
viation of the best, median, or mean fitness in a fixed time window during the run and
triggering restarts once the standard deviation drops below a certain fixed limit given as
an algorithm parameter.

We take a different approach to detect convergence by taking advantage of the distance
measures we defined for clustering GP populations (see Section 3.1). This enables us to
reuse a niche’s sub-matrix of the distance matrix calculated for population clustering to
derive a convergence criterion for that niche. We consider a niche to be converged if its
median genotypic distance has dropped below a certain fixed limit given as an algorithm
parameter. When triggering a restart, the fittest individual in a niche is saved into an elite
set, then the niche is reinitialized with newly generated random individuals.

3.3 Clustering Based Niching with Dynamic Restart

After all components of our clustering based niching GP algorithm have been described
in the abstract, this section shows how these components are integrated into our concrete
RGP implementation. The description follows the general scheme given in Section 3.

Figure 1 shows an outline of the algorithm. After creating an initial population of GP in-
dividuals using the standard ramped half-and-half initialization strategy, the population is
clustered into Ni niches using the R implementation of Ward’s agglomerative hierarchical
clustering algorithm “hclust” [3, 27]. 3 The clustering can be based on any distance
measure described in Section 3.1. Due to time constraints, we only use the genotypic
distance measure δ pvl,ddiscrete

in this paper.

In the next step, the Ni niches are distributed to a compute cluster where each compute
node performs an isolated GP run (a GP pass) on its niche population. Figure 2 shows a
flow diagram of a single GP pass in a niche k 1, Ni . Starting at the initial niche popu-
lation, a standard GP step consisting of tournament selection, mutation, and crossover is
performed. Based on either fitness distance, phenotypic distance, or genotypic distance,
a diversity measure for the niche is calculated. In this paper, we use the niche’s median
of the genotypic distance δ pvl,ddiscrete

as a diversity measure. If this measure drops below
a fixed limit given as an algorithm parameter, the niche population is reinitialized with
new individuals created by the same strategy as the initial population. Before, the fittest
existing individual in the niche is saved to a fixed size niche local elite set Ek, replacing
surplus individuals based on their relative fitness. This process is repeated until a pass stop
criterion holds. When the pass ends, the best individuals of the current niche population
are joined into the niche population’s local elite set Ek.

After all parallel passes have met their stop conditions, the pass results, i.e. the niche
populations and elite sets, are joined. All niche populations are again combined into a

3For practical reasons, Ni is fixed in the current implementation to simplify distribution to a compute
cluster. Yet in principle a dynamic number of clusters could be used, which would lead to a different Ni for
each clustering pass i.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 39

Table 2: GP parameters of the experiment runs: note that some parameters do not apply to all
experiments, these are marked by the phrase “FNGP and CBNGP only”.

Objective: symbolic regression of a test function f with fitness cases F
Fitness: RMSE f F , F (RMSE between real and predicted function values)
Terminal set: x 0.0, 1.0 (function parameter x and uniform distributed random constants)
Function set: , , , , sin, cos, tan, , exp, ln
Selection: tournament selection with tournament size 10
Population size: 200 expression trees
Initialization: ramped half-and-half with maximum tree depth of 6
Variation: constant node mutation (prob. 0.1), function node mutation (prob. 0.1), replace-

ment of node by new subtree (prob. 0.1), single-point crossover (prob. 1.0)
Restart: restart when median of genotypic distance δ pvl,ddiscrete

is less than 4
Clustering: FNGP: fixed, same at every pass; CBNGP: dynamic, based on δ pvl,ddiscrete

(FNGP and CBNGP only)
Niches: 10 (FNGP and CBNGP only)
Pass termination: terminate after 6, 000 fitness evaluations (FNGP and CBNGP only)
Run termination: terminate after 300, 000 fitness evaluations

By using these very simple test functions, we are able to obtain usable results in compar-
atively short run time. A single experiment run takes about 10 minutes on a Intel Xeon
5550 system equipped with two 2.66 GHz quad core CPUs.

4.1 Results

2 4 6 8 10 12

−0
.4

0.
0

0.
2

0.
4

0.
6

1: Damped Oscillator 1D

−2 0 2 4 6 8

0.
5

1.
0

1.
5

2.
0

2: Unwrapped Ball 1D

0 2 4 6 8 10 12

−0
.5

0.
0

0.
5

3: Salustowicz 1D

real
predicted

Figure 3: Plots of the univariate test functions for symbolic regression used in our experiments
and best results: the test functions are plotted in solid black, the overall best symbolic
regression models are plotted in dotted gray.

Table 3 shows a summary of the results of 10 runs for each algorithm (SGP, FNGP, and
CBNGP) and each test function (Damped Oscillator 1D, Salustowicz 1D, and Unwrapped
Ball 1D). The 10 runs for each algorithm are based on the same set of 10 random seeds.
The lowest, i.e. best, RMSE values are highlighted by gray rectangles. Figure 3 shows
dotted gray line plots of the overall best individuals from Table 3 overlayed over the solid
black line plots of the test functions. Figure 4 shows the data of Table 3 in the form of
box plots.

It is readily apparent from Table 3 that SGP results in the best minimum RMSE of 10

Proc., 20. Workshop Computational Intelligence, 2010 - S. 42

SGP FNGP CBNGP

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

1: Damped Oscillator 1D

R
M

S
E

SGP FNGP CBNGP

0.
1

0.
2

0.
3

0.
4

0.
5

2: Unwrapped Ball 1D

R
M

S
E

SGP FNGP CBNGP

0.
05

0.
10

0.
15

0.
20

0.
25

3: Salustowicz 1D

R
M

S
E

Figure 4: Box plots of our preliminary results: the plots are based 10 runs for each test function
and each algorithm.

Table 3: Overview on our preliminary results: this table shows a summary of 10 runs for each
algorithm and each test function. The best, i.e. lowest, RMSE values are highlighted by
gray rectangles.

RMSE
Algorithm Test Fun. Min. 1st Qu. Median Mean 3rd Qu. Max.

SGP
Damp. Osc. 1D 0.01909 0.06051 0.10320 0.08644 0.11410 0.11830
Salust. 1D 0.05322 0.09828 0.21390 0.17760 0.24520 0.29030
Unwr. Ball 1D 0.02185 0.09492 0.14560 0.23240 0.39940 0.55140

FNGP
Damp. Osc. 1D 0.04810 0.05699 0.07612 0.07630 0.08613 0.11660
Salust. 1D 0.05356 0.12440 0.15210 0.15630 0.20640 0.22240
Unwr. Ball 1D 0.05653 0.19530 0.29290 0.27530 0.36890 0.45460

CBNGP
Damp. Osc. 1D 0.04564 0.05730 0.07084 0.07498 0.09282 0.11430
Salust. 1D 0.06842 0.11040 0.15770 0.15840 0.20200 0.23870
Unwr. Ball 1D 0.06063 0.16260 0.22560 0.20690 0.27280 0.31130

runs in all three test functions, in case of Damped Oscillator 1D and Unwrapped Ball 1D
it does so by a large margin. At the same time, SGP’s 10 run maximum RMSE is the
worst in all three test functions. The question of which algorithm is best in the 10 run
median case yields no conclusive answer. In the 10 run mean and in the 10 run maximum
case, FNGP yields the best RMSE on the Salustowicz 1D test function, while CBNGP
yields the best RMSE on the other two test function. Overall the differences between
FNGP’s and CBNGP’s results are less pronounced than the differences between each of
these niching GP algorithms and standard GP.

4.2 Discussion and First Conclusions

A possible explanation for the preliminary results shown is the high sensitivity of a GP
run to its initial population. This explains the high standard deviation in the best fitness
reached over 10 SGP runs: when starting with a favorable initial population, spending
a high budget of fitness evaluations on a single run leads to good results. Naturally, the
converse is also true, when starting a GP run with an unfavorable initial population, even
a high budget of fitness evaluations leads to a poor result.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 43

Both niching strategies, FNGP as well as CBNGP, result in significantly better mean
results. This indicates that niching is effective in preserving genetic diversity in GP pop-
ulations, leading us to accept hypothesis H1. Regarding hypothesis H2, i.e. whether
clustering based niching is superior to static fixed niching in the domain of symbolic re-
gression, our results are still inconclusive. Further experiments with more realistic test
functions and real-world test cases should illuminate this question further.

5 Summary and Outlook

In this paper we introduced RGP, a new GP system for the R environment, and de-
scribed our ongoing research in diversity preservation for GP populations through clus-
tering based niching. We applied clustering based niching to symbolic regression with GP
for the first time and conducted first experiments. Three classes of distance measures to
be used for GP population clustering and convergence detection where introduced, while
only genotypic distance was used in preliminary experiments.

In future work, we plan to study the relative benefits and drawbacks of fitness distance,
phenotypic distance and genotypic distance measures for population clustering and con-
vergence detection in a series of experiment runs. These runs will be based on a much
broader set of test functions, including multivariate functions. We will also include dif-
ficult real-world regression problems from the financial and water resource management
domains into our test function set [6, 5].

Regarding the further development of RGP, we are currently implementing optimized
versions of the most important GP operators, which should enable RGP to solve more
difficult problems in less compute time. We will also extend RGP’s type system to al-
low the finer description of the relevant solution space. This will reduce the time spent
searching infeasible regions of the solution space and will contribute to a more efficient
and effective GP search.

6 Acknowledgements

This work has been supported by the Bundesministerium für Bildung und Forschung
(BMBF) under the grants FIWA and SOMA (AiF FKZ 17N2309 and 17N1009, "Inge-
nieurnachwuchs") and by the Cologne University of Applied Sciences under the research
focus grant COSA. We are grateful to Dr. Wolfgang Kantschik (DIP GmbH) for helpful
discussions on niching strategies for GP.

References

[1] R Development Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.
org. 2008.

[2] Banzhaf, W.; Francone, F. D.; Keller, R. E.; Nordin, P.: Genetic programming: an introduc-
tion: on the automatic evolution of computer programs and its applications. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc. ISBN 1-55860-510-X. 1998.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 44

[3] Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge MA: MIT Press. 1992.

[4] Poli, R.; Langdon, W. B.; McPhee, N. F.: A field guide to genetic pro-
gramming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).
2008.

[5] Flasch, O.; Bartz-Beielstein, T.; Koch, P.; Konen, W.: Genetic Programming Applied to Pre-
dictive Control in Environmental Engineering. In: Proceedings 19. Workshop Computational
Intelligence (Hoffmann, F.; Hüllermeier, E., eds.), p. 101–113. Karlsruhe: KIT Scientific
Publishing. 2009.

[6] Flasch, O.; Bartz-Beielstein, T.; Davtyan, A.; Koch, P.; Konen, W.; Oyetoyan, T. D.; Tamu-
tan, M.: Comparing CI Methods for Prediction Models in Environmental Engineering. In:
Proc. 2010 Congress on Evolutionary Computation (CEC’10) within IEEE World Congress
on Computational Intelligence (WCCI’10), Barcelona, Spain (Fogel, G.; and others, eds.).
Piscataway NJ: IEEE Press. 2010.

[7] Smits, G.; Vladislavleva, E.: Ordinal Pareto Genetic Programming. In: Proceedings of the
2006 IEEE Congress on Evolutionary Computation (Yen, G. G.; and others, eds.), p. 3114–
3120. Vancouver, BC, Canada: IEEE Press. URL http://ieeexplore.ieee.org/
servlet/opac?punumber=11108. 2006.

[8] Mahfoud, S. W.: Niching methods for genetic algorithms. Phd Thesis, University of Illinois
at Urbana-Champaign, Champaign, IL, USA. 1995.

[9] Shir, O. M.: Niching in derandomized evolution strategies and its applications in quantum
control. Phd Thesis, Natural Computing Group, LIACS, Faculty of Science, Leiden Univer-
sity. 2008.

[10] Spector, L.; Klein, J.: Trivial Geography in Genetic Programming. In: Genetic Programming
in Theory and Practice III. Springer. 2005.

[11] Carbajal, S. G.; Levine, J.; Martinez, F. G.: Multi Niche Parallel GP with a Junk-Code
Migration Model. In: EuroGP, p. 327–334. 2003.

[12] Hornby, G. S.: ALPS: the age-layered population structure for reducing the problem of
premature convergence. In: GECCO 2006: Proceedings of the 8th annual conference on
Genetic and evolutionary computation (Keijzer, M.; and others, eds.), vol. 1, p. 815–822.
Seattle, Washington, USA: ACM Press. ISBN 1-59593-186-4. 2006.

[13] Sun, Y.; Wierstra, D.; Schaul, T.; Schmidhuber, J.: Efficient natural evolution strategies.
In: GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, p. 539–546. New York, NY, USA: ACM. ISBN 978-1-60558-325-9. 2009.

[14] Bartz-Beielstein, T.; Chiarandini, M.; Paquete, L.; Preuss, M. (eds.): Experimental Methods
for the Analysis of Optimization Algorithms. Berlin, Heidelberg, New York: Springer. Im
Druck. 2010.

[15] Tierney, L.; Rossini, A. J.; Li, N.; Sevcikova, H.: snow: Simple Network of Workstations. R
package version 0.3-3. 2009.

[16] Schmidt, M.; Lipson, H.: Comparison of tree and graph encodings as function of problem
complexity. In: GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation (Thierens, D.; Beyer, H.-G.; Bongard, J.; Branke, J.; Clark, J. A.;

Proc., 20. Workshop Computational Intelligence, 2010 - S. 45

Cliff, D.; Congdon, C. B.; Deb, K.; Doerr, B.; Kovacs, T.; Kumar, S.; Miller, J. F.; Moore,
J.; Neumann, F.; Pelikan, M.; Poli, R.; Sastry, K.; Stanley, K. O.; Stutzle, T.; Watson, R. A.;
Wegener, I., eds.), vol. 2, p. 1674–1679. London: ACM Press. 2007.

[17] Barendregt, H.; Abramsky, S.; Gabbay, D. M.; Maibaum, T. S. E.; Barendregt, H. P.: Lambda
Calculi with Types. In: Handbook of Logic in Computer Science, p. 117–309. Oxford Uni-
versity Press. 1992.

[18] Goldberg, D. E.; Richardson, J.: Genetic algorithms with sharing for multimodal function
optimization. In: Proceedings of the Second International Conference on Genetic Algorithms
on Genetic algorithms and their application, p. 41–49. Hillsdale, NJ, USA: L. Erlbaum
Associates Inc. ISBN 0-8058-0158-8. 1987.

[19] De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems. Phd Thesis,
University of Michigan. 1975.

[20] Bäck, T.; Fogel, D.; Michalewicz, Z.: Handbook of Evolutionary Computation. New York
NY: IOP Publishing and Oxford University Press. 1997.

[21] Ursem, R. K.: Multinational GAs: Multimodal optimization techniques in dynamic environ-
ments. In: Proceedings of the Genetic and Evolutionary Computation Conference (Whitley,
D.; Goldberg, D. E.; Cantu-Paz, E.; Spector, L.; Parmee, I.; Beyer, H.-G., eds.), p. 19–26.
Las Vegas, Nevada, USA: Morgan Kaufmann. 2000.

[22] Tsutsui, S.; Fujimoto, Y.: Forking genetic algorithm with blocking and shrinking modes
(FGA). In: Proceedings of the 5th International Conference on Genetic Algorithms (Forrest,
S., ed.), p. 206–215. San Mateo, CA: Morgan Kaufman. 1993.

[23] Streichert, F.; Stein, G.; Ulmer, H.; Zell, A.: A Clustering Based Niching Method for Evolu-
tionary Algorithms. In: Genetic and Evolutionary Computation GECCO 2003 (Cantu-Paz,
E.; and others, eds.), Lecture Notes in Computer Science. Springer. 2003.

[24] Barile, M.: Discrete Metric. MathWorld – A Wolfram Web Resource, created by Eric W.
Weisstein. URL http://mathworld.wolfram.com/DiscreteMetric.html.
2010.

[25] Keijzer, M.; Foster, J.: Crossover Bias in Genetic Programming. In: Genetic Programming
(Ebner, M.; O’Neill, M.; Ekart, A.; Vanneschi, L.; Esparcia-Alcazar, A., eds.), vol. 4445 of
Lecture Notes in Computer Science, p. 33–44. Springer. 2007.

[26] Jansen, T.: On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms. In:
PPSN VII: Proceedings of the 7th International Conference on Parallel Problem Solving
from Nature, p. 33–43. London, UK: Springer-Verlag. ISBN 3-540-44139-5. 2002.

[27] Ward, J. H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the Amer-
ican Statistical Association 58 (1963), p. 236–244.

Proc., 20. Workshop Computational Intelligence, 2010 - S. 46

