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Abstract. We propose to apply typed Genetic Programming (GP) to
the problem of finding surrogate-model ensembles for global optimization
on compute-intensive target functions. In a model ensemble, base-models
such as linear models, random forest models, or Kriging models, as well
as pre- and post-processing methods, are combined. In theory, an opti-
mal ensemble will join the strengths of its comprising base-models while
avoiding their weaknesses, offering higher prediction accuracy and ro-
bustness. This study defines a grammar of model ensemble expressions
and searches the set for optimal ensembles via GP. We performed an
extensive experimental study based on 10 different objective functions
and 2 sets of base-models. We arrive at promising results, as on unseen
test data, our ensembles perform not significantly worse than the best
base-model.

Keywords: Ensemble Methods, Genetic Programming, Surrogate-Model-Based
Optimization

1 Introduction

The application of surrogate-model based methods for the purpose of solving
cost extensive and time consuming optimization problems is an established tech-
nique. Surrogate models, as employed in methods like Efficient Global Optimiza-
tion (EGO) [19] or Sequential Parameter Optimization (SPO) [1] offer several
advantages. While their main goal is often to reduce the number of costly tar-
get function evaluations, one can also benefit from the information surrogate
models provide on the problem. This can include information on the shape of
the optimized landscape, interactions between parameters or their individual
importance.

A question that often arises with such approaches is the choice of the model-
ing technique (e.g., tree-based, Support Vector Machines or Kriging). This paper
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will use ”base-models” to refer to such different model types. Depending on the
task at hand, a certain individual base-model might be most promising. In many
cases however it may be unclear which of several candidates is best suited. For
instance, one base-model might provide better global approximation than an-
other, while another base-model can handle discontinuous regions of the design
space with more ease. Thus it is of interest to develop methods with which to
choose from or combine substantially different base-models.

Relevant cross references to similar problems as well as previous studies on
this issue are reviewed in Sec. 2.

In this very first step towards learning a meaningful ensemble policy, a Ge-
netic Programming (GP) system is used to combine the different models with
very simple operators. The methods to this end are introduced in Sec. 3. We limit
ourselves to the modeling stage, due to the complexity of the problem. Employ-
ing generated ensemble policies in an actual optimization framework will remain
for a detailed investigation in following publications.

Thus, our approach is tested for its success in modeling simple numerical test
functions. The problem setup, including test functions and employed modeling
techniques, are described in Sec. 4. Experiment results are given in Sec. 5 and
analyzed in Sec. 6. This text closes with a summary and outlook in Sec. 7.

2 Previous Research

Ensembles are not a new topic, neither in modeling nor in surrogate model
supported optimization.

As the costly optimization problems at hand warrant only very sparse sam-
pling of data, some classical ensemble approaches like bootstrap aggregating
(bagging) [2] or boosting [20, 28] are not well applicable. Also, bagging is often,
although not always [22, 6], employed to build ensembles of homogeneous base-
models, i.e. models of the same type (e.g., only tree or only linear). In a similar
way boosting has been used to combine homogeneous base-models to a stronger
set of models, for instance as applied in evolutionary optimization by Holena et
al. [17].

With a different concept, Ong et al. [27] combined homogeneous base-models
by building them locally around individuals of an evolutionary algorithm’s pop-
ulation, thus building different models in different regions of the design space.
Another approach to splitting the design space is that of Gramacy et al. [15].
There, trees that split the design space are learned, applying Gaussian process
or linear models in the various divisions.

Two different ensemble policies have been tested by Lim et al. [26] for the
purpose of enhancing a Surrogate Assisted Memetic Algorithm. They combined
base-models either by aggregation or by selecting the best solution from each
model for evaluation on the real target function.

Focusing on a heterogeneous set of base-models, Gorissen et al. [14] combine
models using a genetic algorithm. In their implementation, ensembles occur when
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two model types are selected for recombination. The ensembles created are sim-
ply an averaged combination of the models.

Several alternative approaches were recently investigated by Friese et al. [12].
They grouped approaches into two categories, single-evaluation and multiple-
evaluation. Single-evaluation approaches view the problem of choosing a model
from the ensemble as a multi armed bandit problem [13]. That means, only infor-
mation from one model is chosen in each sequential optimization step. Multiple-
evaluation approaches train every model in each step, thus using information
from all of them.

The single-evaluation approach is also taken by Hess et al. [16], who introduce
their algorithm termed PROGRESS. PROGRESS is an enhanced algorithm for
solving multi armed bandit problems, specifically adapted to the problem of
selecting a surrogate model for optimization.

There are further approaches, including some not solely intended for being
employed in surrogate model optimization.

One example is the approach of Frayman et al. [10]. Frayman [10] et. al use a
neural network (Multi Layer Perceptron MLP) to train an ensemble combining
linear, MLP, logistic regression and k-nearest neighbor models. This approach
can be classified as a variation of stacked generalization, or model stacking [29,
3.

3 Methods

This section describes the various methods used in this work, including model
ensembles and model combination policies. It is shown how model combination
policies are evaluated and how they are evolved by GP.

3.1 Model Ensembles

It still remains unclear how an ideal policy would combine information from
fundamentally different base-models in a meaningful way. While theoretical con-
siderations or ideas from other fields (i.e. multi armed bandit problems) do yield
Ensemble-Policies that work to some extend, we would like to suggest a way to
learn such policies in a less constricted environment.

The idea presented here attempts to do so with a GP approach. That is, the
different models are viewed as parameters in a symbolic regression problem.

With the terms of Friese et al. we will herein attempt to learn a policy for
a multiple-evaluation approach [12] Multiple-evaluation approaches train every
model in each step, combining or selecting from the information yielded. As
single evaluation approaches need several optimization steps to learn the right
behavior, they may often be infeasible for the costly problems of concern in
surrogate model based optimization.

In this paper we call the set of available base-models M. A specific base-
model will be referred to as m;, where i represents the index of the model type
(e.g., 1 is a linear model, 2 is a Kriging model, etc.). During experiments, each
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m; will be trained on a fixed training data set and yield a vector of responses y;
for a second, independent validation data set.

A policy combining several m; will be referred to as 7. Here, k represents a
counter, as several policies can be learned, for instance by restarting a GP run
with a different seed.

In the following, the models m;, as well as policies 7; are described as real-
valued functions defined in d-dimensional bounded parameter space D C R<.
The dimensionality d, as well as the bounds, or region of interest, of D are
dependent on the objective function.

mean

LM mean

X * decision

X d t Xgstxg=t

RF 1.88 X 2 -0.59 -1.75 0.03

Fig. 1. Example of a GP-generated policy shown as an expression tree.

Fig. 1 shows the expression tree of the following GP-evolved example policy:
mean|[LM(z), mean|[RF(z)x1.88,decision(z,2,—0.59,~1.75,0.03)]]

This policy combines a linear model (LM) with a random forest model (RF) by
calculating the arithmetic mean of the model outputs. The RF output is further
post-processed by scaling and mixing (also via arithmetic mean) with the output
of a simple GP-evolved decision tree. As we are only using 2D test functions in
this study, base-models and model ensembles can be visualized as surface plots.
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In these plots, the first dimension of the bounded parameter space D is assigned
to the X (width) axis, the second dimension of D to the Y (depth) axis and the
model output to the Z (height) axis.

As an example, we applied the ensemble policy of Fig. 1 to the 2D Weierstrass
function with the bounds (domain) shown in Tab. 1. Fig. 2 provides a surface
plot of this test function. As our example policy refers to the LM and RF base-
models, both models have to be fitted to training data. Surface plots of these
base-model fits are shown in Fig. 3 and Fig. 4, respectively. Based on these fits,
the output of our example policy is shown as a surface plot in Fig. 5.

Fig. 2. Surface plot of the 2D Weierstrass test function.
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Fig. 3. Surface plot of a linear model (LM) fit of the 2D Weierstrass test function.
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Fig. 4. Surface plot of a random forest (RF) model fit of the 2D Weierstrass test
function.
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Fig. 5. Surface plot of an ensemble fit of the 2D Weierstrass test function based on the
policy shown in Fig. 1. The base-model fits used in the ensemble are shown in Fig. 3
and Fig. 4.
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3.2 Typed Genetic Programming

To apply GP to the problem of finding model combination policies 7 given as
symbolic expressions for combining base models m;, we have to define
i) a quality measure for policy expressions (fitness function),
ii) the set of valid policy expressions,
iii) the set of GP variation operators (mutation and recombination),
iv) the GP search heuristic and its parameters.

As a quality measure, we use the Scaled Root Mean Squared Error (SRMSE)
on an independent validation data set, as introduced in Sec. 4.3. For GP, SRMSE
is a particularly well-suited, as the GP system does not have to fit constants
exactly.

We represent combination policies as symbolic expressions (i.e. formulas).
The set of valid policy expressions is defined by the grammar given in Extended
Backus-Naur Form (EBNF) shown in Fig. 6 [18]. Here, terminal symbols are
shown in a regular typeface, non-terminal symbols are shown in italics. The
start symbol of the grammar is marked by enclosing it in a .

According to this grammar, a policy expression is either a base policy expres-
sion, the sum, product, difference, arithmetic mean or minimum of two policy
expressions, or a branching ”decision” expression. Decision expressions split the
input space into two subspaces that can then be handled by sub-policies. The in-
put space is split axis-parallel. The split dimension is given by a constant index i,
the split threshold is given by a constant scalar between -1 and 1, which is scaled
to the lower and upper bounds of the region of interest of the selected dimension.
If the ith component of the input vector is strictly less than the threshold, the
first policy is applied, otherwise, the second policy is applied. Note that deci-
sion expressions can be nested. Decision expressions enable policies that apply
different combinations of base-models to different areas of the parameter space
D.

The set of valid combination policies as defined in Fig. 6 was chosen some-
what arbitrary as a compromise of GP search space size and policy expression
expressiveness. Possibly interesting additions left for further work are non-linear
transformations of the parameter space D as well as of the objective (i.e. model
output) space R.

In our GP system, policy expressions are represented as trees annotated with
type information. Therefore, standard tree-based GP algorithms can be applied
with minimal modifications to respect type constraints.

We used the open source R-based GP system RGP [8] in release version 0.3-1
for all our experiments. Source code and documentation can be downloaded at
http://rsymbolic.org/projects/show/rgp and http://cran.r-project.org/.
Standard Koza-style [23, 7] typed GP operators are used used for GP individual
(i.e. policy expression) initialization, mutation and recombination. We used the
default GP operator set for typed GP as implemented in RGP version 0.3-1.
See the RGP documentation for details. As GP search heuristic, or concrete GP
algorithm, we used the default of RGP 0.3-1, that is a modern Pareto GP search
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=base policy

| policy + policy
| policy x policy
| policy — policy
| mean(policy, policy)
| min(policy, policy)
| decision(point, indez, threshold, policy, policy)
base policy =base model(point)
base model =fast base model | KF | MLP | SVM
fast base model =LM | MARS | RF
point =x | constant vector
index=112|---|d

threshold =constant scalar € [—1,1]

Fig. 6. EBNF-Grammar Defining the Set of Valid Policy Expressions. Terminal sym-
bols are shown in a regular typeface, non-terminal symbols are shown in italics. The
start symbol of the grammar is marked by a .

heuristic with age layering for population diversity preservation. See the RGP
documentation for details.

We disabled the complexity criterion of the search heuristic as in this stage of
experimentation, we are interested in identifying the best possible policy expres-
sions, regardless of complexity. Policy expressions larger than a given threshold
are suppressed by the fitness function simply by assigning a very large (i.e. bad)
fitness value. The concrete parameters of the GP system are described in the
following Section on experiment setup.

4 Experiment Setup

All experiments are performed using the free software environment for statistical
computation, R3.

4.1 Objective Functions

All of the employed test functions are taken from the soobench R package. These
functions and their respective domains are shown in Tab. 1.

All scalable functions are used in their two-dimensional form. This was chosen
for simplicity of this very first step, as well as for the possibility to visually inspect

3 R as well as all employed packages, including rgp and SPOT, are available at http:
//cran.r-project.org/
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Table 1. Test Functions Used in this Study

Name Domain {z|z € R*l < x < u}

Ackley 1= (—32.786, —32.786), u := (32.786, 32.786)
Branin l:=(-5,0),u := (10, 15)

Discus 1:= (—32.786, —32.786), u := (32.786, 32.786)
Griewangk [ := (—600,—600),u := (600, 600)

Kotanchek [:=(—2,—1),u:=(7,3)

Mexican Hat I := (=5, —5),u := (5, 5)

Rastrigin l:=(-5,-5),u:=(5,5)

Rosenbrock [ :=(—5,—5),u := (5,5)

Sphere l:=(-5,-5),u:=(5,5)

Weierstrass 1 := (—0.5,—-0.5),u := (0.5,0.5)

the quality of the created model ensembles. Visual inspection is of interest due
to the fact that an ideal measure of model quality for this purpose does not exist.
The function’s lower and upper boundaries as given by the soobench package
are used in the following experiments.

4.2 Surrogate Models for Ensemble

The choice of surrogate models will have a great influence on the experimental
outcome. Using strong base-models like Kriging might lead to ensembles that
can at best perform as good as those strong base-models. This however has to
be accepted as part of the problem.

More importantly, using too many base-models might blow up the problem
complexity quite significantly. At the same time one is interested in having as
many model types as possible, to identify the usefulness of their different features
in an ensemble environment.

We therefore selected six surrogate modeling techniques which should cover
a wide variety of features and limitations:

LM Linear models (LM) with up to second order terms, build with the rsm R
package by Lenth [25]. This model’s simple structure does not only warrant a
fast training, but also easy interpretability for the user. It is however unable
to approximate multi-modal landscapes very well.

RF Random Forest implementation from the R package randomForest which
is based on Breiman and Cutler’s original Fortran code for classification and
regression [4]. RF is usually a good global approximator, avoids over-fitting
and can handle categorical variables very well. However, the landscape as
approximated by RF will be divided into several partitions with constant
function values. This and the discontinuity of the RF model can make it
problematic for use in an optimization environment.
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MARS Multivariate Adaptive Regression Splines (MARS) [11] provided by the
earth R package. MARS allow for better approximations LM while still
being relatively well interpretable.

MLP Multi Layer Perceptron (MLP) [24] is a type of neural network, imple-
mented in the R package monmlp. MLP models can be very flexible universal
approximators, but may require a lot of time for training.

SVM A Support Vector Machine implementation in the package e1071 using
LIBSVM [5]. SVM models are versatile and can still work even on high
dimensional problems. They are however sensitive to several parameters that
require tuning, which leads to a larger computational burden.

KF Kriging implementation shipped with SPOT R package, based on the original
Matlab code by Forrester et al. [9]. Kriging is a very flexible approximator for
continuous functions. In addition to the estimation of the function value, it
also provides an estimation of the error. This feature however is not employed
in this study.

Some of those models can themselves be considered ensembles. For instance, RF
is a homogeneous ensemble of trees.

The base-models listed above were combined in two different sets for the
experiment, M1 and M2. The small set M1 consists only of the more simple
and faster to train models (LM, RF, MARS). The full set M2 counsists of all six
models. Therefore, every GP run on a test function was done twice, i.e. once for
each of the two sets.

4.3 Data-Usage

To receive unbiased results, the usage of data during the experiment has to be
planned carefully. We do 48 repeats of each GP run, each with different random
number generator seeds. This is performed on each of the ten test functions. As
specified in the previous section, each experiment is also performed once with the
small, and once with the full set of base-models. This results in 48 x* 10 x 2 = 960
GP runs.

For each of these runs we employ the following concept of data-usage

1. Training Each base-model is trained on a Latin Hypercube Design (LHD)
consisting of 20 points in the design space, which was evaluated on the
corresponding test function. This data set will be referred to as LHD;q,
where i is the index for each of the 48 repeats.

2. Validation Each policy created during the GP run receives a fitness value.
This is evaluated based on an error measure, as described in Sec. 4.4. The
error measure is evaluated on a second LHD consisting of 40 points, referred
toas LHD;q

3. Test Finally, each final best policy 7 has to be tested on data not seen during
training or during the validation (or policy selection) phase. Therefore, each
final best policy is tested on the data sets provided by the other 47 repeats
of the same experiments. That is, the fitness function is invoked for each
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policy, using base-models trained on LHDj,, evaluating them on LHDj,.
Here, j is any number from one to 48, excluding .

For each test function and model set 48 times 47 test values are received for
the result analysis. As the base-models are used for a comparison in the result
analysis, their fitness is evaluated in the same way.

4.4 GP Fitness Function

The fitness associated with each policy 7 is here based on the scaled root mean
square error (SRMSE) as proposed by Keijzer [21],

SRMSE(t,y) = /2 T, (t: — (a+ by:))2

Here, t are the values sampled on the test function and y are the values as
predicted by a base-model or an ensemble of base-models. The intercept a and
the slope b are calculated by finding the zeros of the partial derivative of the
error.

The SRMSE is a promising choice for automatically created policies, as it is
more robust to the choice of constants than the RMSE. For instance, a simple
policy consisting of the sum of two base-models m; would yield bad RMSE
values, while the scaled SRMSE would correct this error by scaling the response
of the policy to the range of the target function. A second advantage of SRMSE is
that it will prefer policies which capture the structure of the target function. As
our initial motivation is to employ such policies for optimization, capturing the
structure of a target function is an important feature. Of course, this ”repair”
feature of the SRMSE has to be remembered when later applying the found
policies, as they will have to be scaled to provide the measured performance.

To limit the maximum size of GP-evolved policy expressions, our fitness
functions associates a fitness of positive infinity to all policy expressions above
a certain tree depth limit. This tree depth limit is defined as a GP parameter
and given in the next subsection.

4.5 GP Parameter Settings

The parameter settings of all our GP experiments are summarized in Tab. 2.
As already mentioned in Sec. 3.2, standard Koza-style typed GP initialization
and variation operators are used. Details on these operators can be found in the
RGP documentation. The maximum tree depth limit was set to 4 to suppress
excessively complex policy expressions. Each GP run had a budget of 10,000
fitness function evaluations. We used a modern elitist multi-criteria evolution-
ary algorithm based on the well-known NSGA-II algorithm as our GP search
heuristic [7]. In addition to fitness, we added individual age as a second mini-
mization criterion. Our algorithm introduces a newly initialized policy expression
of age 0 into the GP population in each generation. In combination with the age
minimization criterion, this strategy provides an efficient means of population
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diversity preservation. Details on this algorithm can be also found in the RGP
documentation.

We refrained from using a complexity criterion in this work, mainly to sim-
plify result analysis and lower algorithm complexity, although we plan to add
policy expression complexity as a minimization criterion in a later study.

Table 2. Parameters Settings of the GP System.

GP Parameter Name Setting

Initialization Operator ramped half-and-half

Mutation Operator Set { insert/delete subtree,
change function/constant }

Crossover Operator Set { random subtree crossover }

Number of Fitness Evals. 10,000

Tree Depth Limit 4

Population Size () 100

Children per Generation (A) 20

Recombination Prob. 0.1

Complexity Criterion disabled

Age Criterion enabled

New Individuals per Gen. (v) 1

5 Results

The results of the experiments are depicted in Fig. 7. It shows that the perfor-
mance of the ensemble policies based on the validation data is better than any of
the base-models. The performance decreases significantly when evaluated on test
data. That decrease is not only significant but results into the ensemble policies
being equal to or worse than the best base-model for each test function. The
only exception where the policies are significantly better than the base-models
on test data is the Rosenbrock function, although only on the small experimental
set.

The base-models rank differently, depending on concerned test function. It
was noted that Kriging showed unexpected high SRMSE values on several func-
tions, that are usually very well suited for Kriging (e.g, Branin function). In
fact, this could be traced back to a bug in the used implementation. The imple-
mentation bug is fixed and results will be updated for a revised version of this

paper.
6 Discussion

The results described in Sec. 5 reveal one problem, which is over-fitting. In its
current form the ensemble policies look promising on validation data, but (with
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a single exception) perform no better than each best base-model on test data.
While the base-models mostly avoid over-fitting, the too well adapted structure
of a policy can reintroduce that problem. Enabling the complexity criterion, or
cross validating the fitness values might be possible ways to deal with that issue.
However, since complexity is already limited due to the tree depth limit it would
be more promising to look at better validation of fitness values.

Still, even if over-fitting is avoided appropriately, it might occur that ensem-
bles will be unable to outperform the best base-model. The results on Discus
and Sphere function are good examples for that. There, it is unlikely that the
LM base-model can be outperformed by a heterogeneous ensemble policy.

7 Summary and Outlook

For the purpose of optimizing costly global optimization problems, it is of inter-
est how to combine a set of heterogeneous base-models, which are then exploited
in a surrogate model optimization framework. The goal of this paper was to make
a first step towards learning ensemble policies for surrogate based optimization,
using genetic programing. That first step consisted in testing the necessary meth-
ods to build such an ensemble policy. The error in approximating numerical test
functions was used as a quality indicator.

The necessary grammar of model ensemble expressions was defined, and it
was shown that the suggested framework is working. However, our approach only
produced a significant improvement in one of twenty cases. The main problem,
which occurs regardless of the limited complexities (i.e. the tree depth limit),
was over-fitting. It can also be noticed that several of the employed numerical
test functions are best solved with a strategy that simply selects from the base
models instead of learning any more complex policies.

Therefore, we plan to first improve the approach, in an attempt to avoid the
occurring over fitting. Since complexity is already somewhat limited, we would
suggest to cross validate fitness values of each ensemble policy during the GP
run. It is also of interest to extend the process suggested here. That includes
improving the used set of GP operators, as well as to consider using further
information provided by the base models. For instance, Kriging yields an error
estimate. Integrating such an error estimate reasonably would be beneficial, as
it is often successfully used in surrogate model based optimization to balance
exploration and exploitation. In connection with this, a process of identifying
features of the optimized landscape could be incorporated. This would allow
to actually learn policies which are able to work on more than just one target
function.

Besides, due to the limitations of the employed test functions, using real
world problems would be significantly more interesting. Not only would they
indicate behavior more relevant for practical applications. Real world problems
might also yield landscapes which are more interesting to be approximated by
an ensemble.
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In addition, the error measure employed should be further investigated. It
is not clear whether it is the best choice when surrogate model optimization is
the application. Alternatively, some kind of permutation error might be more
suited.

In the long run of course the model policies found should be tested for their
actual purpose, which is surrogate model optimization. Therefore, a second step
could involve testing such policies as surrogates in an optimization framework
like SPO. Or else, the actual optimization performance itself could be used as a
fitness measure in the GP system. That, however, would raise the computational
effort considerably.

Finally, we consider to test this approach for a rather different application,
which is ensembles of time series prediction algorithms.
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