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Abstract When using machine learning techniques for learning a function approx-
imation from given data it can be di�cult to select the right modelling
technique. Without preliminary knowledge about the function it might
be beneficial if the algorithm could learn all models by itself and select
the model that suits best to the problem, an approach known as auto-
mated model selection. We propose a generalization of this approach
that also allows to combine the predictions of several surrogate mod-
els into one more accurate ensemble surrogate model. This approach
is studied in a fundamental way, by first evaluating minimalistic en-
sembles of only two surrogate models in detail and then proceeding to
ensembles with more surrogate models. The results show to what ex-
tent combinations of models can perform better than single surrogate
models and provide insights into the scalability and robustness of the
approach. The focus is on multi-modal functions which are important
in surrogate-assisted global optimization.

Keywords: Function Approximation, Surrogate Models, Model Selection, Ensemble
Methods, Global Optimization

1. Introduction

Surrogate models are mathematical functions that, basing on a sample
of known objective function values, approximate the objective function,
while being cheaper in terms of evaluation. Such surrogate models can
then be used to partially replace expensive objective function evalua-
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tions. Expert systems like SPOT [1] come with a large variety of models
that has to be chosen from when initiating an optimization process.
The choice of the right model implies the quality of the the optimization
process.
Often expert knowledge is needed to decide which model to select for a
given problem. If there is no preliminary knowledge about the objective
function it might be beneficial if the algorithm could learn all by itself
which model suits best to the problem. This can be done by evaluat-
ing di↵erent models on test data a priori and using a statistical model
selection approach to select the most promising model.
Some occurrences imply that there might also be a benefit in linearly
combining predictors from several models into a more accurate predic-
tor. In Figure 1 such an occurrence is happening. Predictions with two
di↵erent (Kriging) models are shown and results obtained by a convex
combination of the predictors of these models. Di↵erent errors seem to
be compensated by the combined model ’s predictions.

Figure 1: The black line marks the actual objective function value. The dots show
the results obtained in a leave-one-out cross-validation. Blue and red dots mark the
predictions of single models. The green dots shows predictions obtained with an
optimal convex linear combination of the two predictors.

Such occurences show that a predictor based on a single modeling ap-
proach is not always the best choice. On the other hand, complicated ex-
pressions based on multiple predictors might not be a good choice, either,
due to overfitting and lack of transparency. Using convex combinations
of predictors from available models seems to be a ‘smart’ compromise.
Given s surrogate models ŷi : Rd ! R, i = 1, . . . , s and d the dimension
of the search space, by a convex combination of models we understand
a model given by

Ps
i=1 ↵iŷi with

P
↵i = 1 and ↵i � 0, i = 1, . . . , s.

Finding an optimal convex combination of models can be viewed as a
generalization of model selection, where selecting only one model is a
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special case. Convex combinations of predictors have also the advantage
that they combine only predictions and can be used for heterogeneous
model ensembles. The main research questions are:
(Q-1) Can convex combinations of predictors improve as compared to

(single) model selection?
(Q-2) Given the answer is positive, what are explanations of the ob-

served behavior?
(Q-3) How can a system be build that finds the optimal convex combi-

nation of predictions on training data?
In order to answer these questions, detailed empirical studies are con-
ducted, starting from simple examples and advancing to more complex
ones. This paper follows a structure, where the discussion of experimen-
tal results follows directly the introduction of the modeling extensions.

2. General Approach and Related Work

To base a decision or build a prediction from multiple opinions is common
practice in our everyday live. It happens in a democratic government,
or when in TV shows the audience is asked for help. One also might
use it when we try to build an opinion on a topic that is new to us.
Naturally, such tools already found their way into statistical prediction
and machine learning. In statistics and machine learning an ensemble
is a prediction model from several models, aiming for better accuracy.
A comprehensive introduction to ensemble-based approaches in decision
making is given in [9] and [5]. Generally, there are two groups of ensemble
approaches: the first group’s approaches, the so-called single-evaluation
approaches, only choose and build one single model, whereas the second
group’s approaches, the so-called multi-evaluation approaches, build all
models, and use the derived information to decide which output to use.
For each of these two approaches, several model selection strategies can
be implemented. Well-known strategies are:

Round robin and randomized choosing are the most simplistic im-
plementations of ensemble-based strategies. In the former approach,
the models are chosen in a circular order independent of their previ-
ously achieved gain. In the latter approach, the model to be used in
each step is selected randomly from the list of available models. The
previous success of the model is not a decision factor.
Greedy strategies choose the model that provided the best function
value so far, while the SoftMax strategy uses a probability vector,
where each element represents the probability for a corresponding
model to be chosen [13]. The probability vector is updated depending
on the reward received for the chosen models.
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Ranking strategies try to combine the responses of all meta models to
one response, where all meta models contributed to, rather than to
choose one response.
Bagging combines results from randomly generated training sets and
can also be used in function approximation, whereas
Boosting combines several weak learners to a strong one in a stochastic
setting.
Weighted averaging approaches do not choose a specific model’s result
but rather combine it by averaging. Since bad models should not
deteriorate the overall result, a weighting scheme is introduced. Every
model’s result for a single design point is weighted by its overall error,
the sum over all models yields the final value assigned to the design
point. A similar approach is stacking, where the weights are chosen
by an additional training step.

The convex model combinations in this paper can be viewed as an elegant
stacking approach and as such is similar to ’ensembles of surrogates’
[7], which however used a fixed rule for determining weights. In our
work weights are optimized globally and the approach is analysed in
a controlled and detailed way. Since most of the black-box real-world
problems considered to be di�cult are multimodal, the focus for this
work also is on multimodal function approximation (cf. [12, 14, 10, 8]).

3. Preliminaries

By a surrogate model, we understand here a function ŷ : Rd ! R that
is an approximation to the objective function y : Rd ! R, learned from
a finite set of evaluations of the objective function. Kriging surrogate
models are used in our study. A set of three di↵erent kernels is used to
implement the ensemble strategies. Following the definitions from [11],
the correlation models can be described as follows. We consider station-
ary correlations of the form R(✓, w, x) =

Qn
j=1R(✓j , wj � xj). The first

model uses the exponential kernel R(✓, w, x) = exp(�✓j |wj � xj |) the
second model uses an gaussian kernel R(✓, w, x) = exp(�✓j |wj � xj |2),
whereas the third model is based on the spline correlation function
R(✓, w, x) = ⇣(✓j |wj � xj ]) with

⇣(✏j) =

( 1� 15✏2j + 30✏3j for 0  ✏j  0.2
1.25(1� ✏j)3 for 0.2 < ✏j < 1
0 for ✏j � 1.

Here, ✏ and ✓ are hyperparameters estimated by likelihood maximization.

For generating test functions we use the Max-Set of Gaussian Land-
scape Generator (MSG). It computes the upper envelope of m weighted
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Table 1: Gaussian landscape generator options

Parameter Description Value
d Dimension 2� 10
m Number of peaks 10� 40
l Lower bounds of the region, where peaks

are generated
{01, . . . , 0d}

u Upper bounds of the region, where peaks
are generated

{51, . . . , 5d}

max Max function value 100
t Ratio between global and local optima 0.8

Gaussian process realizations and can be used to generate continuous,
bound-constrained optimization problems [6].

G(x) = max
i21,2,...,m

(wigi(x)),

where g : Rn ! R denotes an n-dimensional Gaussian function

g(x) =

 
exp

�
�1

2(x� µ)⌃�1(x� µ)T
�

(2⇡)n/2|⌃|1/2

!1/n

,

µ is an n-dimensional vector of means, and ⌃ is an (n ⇥ n) covariance
matrix. Implementation details are presented in [2]. For the generation
of the objective function the spotGlgCreate method of the SPOT pack-
age has been used. The options used for our experiments are shown in
Table 1. With the parameter d the dimension of the objective function
is specified. The lower and upper bounds (l and u, respectively) specify
the region where the peaks are generated. The value max specifies the
function value of the global optimum, while the maximum function value
of all other peaks is limited by t, the ratio between the global and the
local optima.

4. Binary Ensembles

This Section analyses models which combine only two models. Convex
combinations of models will be referred to as ensemble models, while the
original models will be referred to as base models. We focus on positive
weights, since we do not want to select models that make predictions
which are anti-correlated with the results.
A sample of points (design) is evaluated on the objective function (MSG,
for parameters see Table 1). For the sampling of the points a latin
hypercube design featuring 40 design points is generated. The two base
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models are Kriging with exponential correlation function (referred to
as a) and gaussian correlation function (referred to as b). Both base
models are fitted to the data and then asked to do a prediction on the
testdata. The predictions ŷ of the ensemble models are calculated as
convex combinations of the predictions of the base models.
Given a weight ↵i, where ↵i 2 {0.0, 0.1, 0.2, ..., 0.9, 1.0}, the ensemble
models can be defined as the linear combinations of the models a and b

as follows:

ŷn = ↵n ⇥ ŷa + (1� ↵n)⇥ ŷb (1)

The models are evaluated by calculating the root mean squared error
(RMSE) of the predictions made during a leave-one-out cross-validation
on the 40 design points.
Since randomness has been induced into the experiment by using the
latin hypercube design, the evaluation process has been repeated 50
times. With each model returning one prediction for each design point
in every repetition this results in a total of 2000 prediction values (40
design points ⇥ 50 repetitions) for each model.

To get a first quick insight into the result data, for each repetition the
rankings of the RMSE’s have been calculated. The models with ↵ = 0.6,
↵ = 0.8 and ↵ = 0.9 dominate this comparison, each performing best 8
out of 50 times. The base models, a and b, performed best only in four
respectively two cases out of 50. Never an ensemble model with positive
weights was performing worst.
In order to achieve some comparability between the RMSE’s of di↵er-
ent repetitions all RMSE’s have been repetition-wise scaled to values
between zero and one, so that the scaled RMSE of the best model in
one repetition is always zero and the scaled RMSE of the worst model
for one repetition is always 1.0. Figure 2 shows the boxplot over these

Figure 2: Boxplot over the scaled RMSE’s of all models. The models are defined
by an ↵-weighted linear combination of the two base models. The results of the base
models depicted on the outer rows and colored red (exponential kernel), respectively
blue (gaussian kernel). The model combination chosen as best with ↵ = 0.6 is colored
green. The mean value of each result bar is marked by a dot.
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scaled RMSE’s. It can be seen that the model a (exponential) in most
of the cases performs worst since its median is 1.0 - only some outliers
come closer to zero.
Model b (gaussian) shows a larger variation in its performance. It has
been the best- as well as the worst performing model each at least once.
Its median and mean performances are average in comparison with all
models evaluated. A parabolic tendency can be seen in the performance.
Due to the convex combination of the predictor, a prediction by the en-
semble model cannot be worse but it might be better than both base
models. An ensemble can only be better, if one model overestimates
and the other model underestimates the objective function value. In the
experiment this happens in 649 out of 2000 cases.

As a consistent method for evaluating the performance and automatically
choosing the best model the following approach is proposed: Model-wise
mean-, median- and 3rd quartile-values are calculated. The resulting
values are ranked and the rankings summed up to one final ranking.
The model that achieved the lowest value is recommended as best choice.
In Figure 2 the model recommended as best choice by this method is
colored green.

5. Detailed Analysis on Transparent Test Cases

It can clearly be stated that for this first experiment setup the combina-
tion of two models is beneficial for the overall prediction. In this section
we’re going to have a closer look at possible explanations for the success-
ful result. Are there problem features that encourage using ensembles
and is this result generalizable.
We chose a 1D objective function to allow for a better understanding
of the underlying process. This is the only change in the experimental
setup. The Figures 1 and 2 from Section 4 depict the main results of
this second experiment setup. Figure 2 shows the scaled RMSE’s for
all models. Applying the rule defined in Section 4 names the model
obtained by a linear combination with ↵ = 0.7 as best choice.
Figure 1 shows only the performance of the best choice model and the
base models. Each dot marks a single prediction made during the leave-
one-out cross-validation. As can be seen in the plot, the predictions
of the model a (exponential), marked by red dots, seem to smooth the
objective function - straight segments are well met while curved segments
are smoothed out.
The predictions of the model b (gaussian), marked by the blue dots show
signs of overfitting. Again straight segments are well met but when ap-
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proaching local extrema the predictions start to oscillate. So the linear
combination of both predictions averages positive as well as negative
outliers of base models. This seems to provide some benefit to the over-
all experiment outcome.
Since the curves and corners in the objective function seem to make the
game here, two additional experiments are set up. For these experiments
two objective functions are specified featuring corners that are not con-
tinuous di↵erentiable. For one experiment a triangle objective function
is used while the other features a piecewise assembled objective function.
Figure 3 shows the results for the piecewise assembled objective func-

Figure 3: Results on a piecewise assembled objective function. Left hand side plot
shows the scaled RMSE‘s. The ↵ value defines the weight for the linear combination.
The ensemble obtained by a linear combination with ↵ = 0.5, here colored green, is
suggested best for this experiment setup. On the right hand side all predictions done
during the leave-one-out cross validation for the base models and the best model are
plotted against the objective function.

tion. Looking at these results, we again find a strong parabolic tendency
in the boxplot. Both base models have a rather large variance in their
performance. The ensemble model marked as best choice has a smaller
variance and performed better than the base models in nearly all cases.
The results on the triangle objective function happened to show a clear
tendency towards base model b, which clearly outperformed basemodel
a and thus was chosen best.

6. Ternary Ensembles

Next, the experiments are extended to a larger scale: The dimension-
ality of the objective function is increased and three base models are
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combined. As before Kriging models with di↵erent kernels are used, but
now a third model using the spline correlation function is added.

↵n,�n, �n 2 {0.0, 0.1, 0.2, ..., 0.9, 1.0}, ↵n + �n + �n = 1 (2)

For the linear combination of three base models three weights are needed,
that sum up to one as specified in (2). With a step size of 0.1 for the
linear combinations this results in 66 models.
Figure 4a shows the results of the first experiment using three base
models. The only change that has been made to the original experiment
setup, besides the number of base models, is the dimension d of the ob-
jective function and the number of peaks m generated in the gaussian
landscape. As a first step towards objective functions of higher com-
plexity, the dimension of the objective function has been set to 4. But
this change alone is not su�cient to gain a larger complexity, since with-
out adjusting the number of gaussian components used for generating
the objective function, it rather gets less complex. Thus the number of
gaussians process trajectories is adjusted to ten times the dimension.
With the points getting smaller when approaching the center of the
triangle, it can be stated, that again it is beneficial to use a convex
combination of the base models.

7. Scaling-up to multiple models

By now, only experiments with up to three models are carried out, but
the underlying goal is to evolve a system that is able to handle quite
a large set of available base models. But at this point quickly another
approach is needed, since the number of possible discretised convex com-
binations between a higher number of base models grows exponentially.
A recursive formula is given below: There is only one setting where the
first model gets all the weight (first factor in sum). In all other settings
the remaining weight must be distributed on the remaining models.

f(r, s) = 1 +
r�1X

r⇤=1

f(r � r

⇤
, s� 1), f(r, 1) = 1, f(1, s) = s (3)

The relation between number of models, the step size for the discretised
convex combinations and the resulting number of linear combinations
can be expressed as function of r the reciprocal of the step size and s

the number of models as defined in (3). Using three base models and
a step size of 0.1 as defined in (2) this results in f(10, 3) = 66 linear
combinations. Now thinking of combinations of 10 base models already
results in f(10, 10) = 92378 linear combinations.
The complexity of the search space, when increasing the number of mod-
els, quickly gets too large to do a complete evaluation of all possible
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convex combinations with a fixed step size of 0.1. Looking at previous
results, the function that describes the performance of the models built
by convex combinations up to this point only showed unimodal char-
acteristics. This seems to be expectable due to the nature of convex
combinations. We expect the function to show this characteristic also
when combining larger number of models.
Thus, instead of a complete evaluation of all linear combinations, an
optimization step is implemented to find the best combination. The
allowed weights are restricted to a precision of two decimal places. Since
the area around the optimum tends to build a plateau. This reduces the
possible search space without loosing the possible best solution.

(a) The optimal linear combination has
been found by a complete evaluations of
all linear combinations using a fixed step
size of 0.1.

(b) The plot shows the results of the
same experiment setup as presented in
Section 6. The optimal linear combi-
nation has been searched with a sim-
ple (1+1)-Evolution Strategy with 1/5th
success rule (cf. [3]).

Figure 4: The plots show the results of the experiment set up with three base models.
Each circle depicts the performance results for one model. The three base models are
located on the corners of the triangle, models gained by linear combinations of only
two models are located on the outer border. Circles on the inner area of the area
show the results for models that were gained by linear combinations of all three base
models. The size of the circles denotes the mean RMSE value, the color the standard
deviation. The model proposed as best choice is marked by an additional white circle.

For the sake of comparability, the experiment setup here is exactly the
same as the one used in Section 6. Only the process itself changed.
Prior to this experiment, all convex combinations have been evaluated.
Now, only the base models are evaluated initially. Other models are only
evaluated during the optimization. We also stuck to the method used
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by the (1+1)-ES of comparing the o↵spring only to the parent rather
than to the whole population as we did it before.
For the mutation of the weights vector ~v = (↵,�, �)T three random
samples of a normal distribution function with standard deviation of
0.16 have been drawn and added to the weight vector. Since this alone
does not meet the requirements needed for a valid weight vector, the
resulting vector has been adjusted in three steps:

1) If min(↵,�, �) < 0 then ~v  ~v � (min(↵,�, �), . . . ,min(↵,�, �))T ,
2) ~v  ~v/(↵+ � + �),
3) Round the values ↵,�, � to two decimal places so, that ↵+�+� = 1.

For this experiment we allowed a maximum of 100 individuals to be
evaluated. Within these bounds already the 35th evaluated individual
has been the best individual found in this run. Figure 4b depicts the
results of this optimization step. As before, the best individual is marked
by a white circle. However, since determination of optimal weights in the
linear model is a non-linear optimization problem, we cannot guarantee
the optimality of the proposed weights. So far, we have achieved similar
results in repeated runs and on di↵erent objective functions. Due to
space constraints, statistical validation is however left to future work.

8. Discussion and Outlook

Reconsidering the research questions from Section 1, it was shown that
convex linear combinations of predictors can generate better results than
model selection (Q-1). A system, which finds optimal linear combina-
tions, was presented in Section 4. As a possible explanation a com-
pensation of outliers was found, an e↵ect that occured in particular in
non-smooth objective functions (Q-2). The corresponding experiments
were extended to a larger scale, in terms of dimensionality as well as
number of models, in Section 6 with results indicating that the methods
are scalable (Q-3). Finally, in Section 7, we proposed a method to in-
clude even more base models to the system, showing that evolutionary
optimization can be an e↵ective tool for finding optimal convex combi-
nations. With this method the foundation has been created for a larger
system including all available models. Although research questions (Q-
2) and (Q-3) could be partially answered, larger studies are required to
statistically confirm scalability and find in depth explanations.
In summary, convex combination of models are a promising approach
in situtations where several types of models are available. if the user
does not know, which model to choose, a linear combination might be a
promising approach. An interesting aspect about convex combinations
is that they are easy to interpret and that weights in the linear model
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can shed some light on the relevance of certain models and illustrate,
which model is active.
Ideas and questions that will be discussed in future work are:

Experiments featuring more base models, also including other types
of models.
Extensive analysis of the influence of objective function attributes on
the experiment outcome. The results of Section 5 suggest, that par-
ticularly piecewise assembled objective functions might be of special
interest.
Studies also allowing other operations than simple convex combina-
tions only: Does increasing the model complexity of model combina-
tions yield much better results?
Comparing to approaches that chose fixed weights [7].
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