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1 Introduction
Many real-world optimization problems consider the optimization of ordinal in-
tegers, categorical integers, binary variables, permutations, strings, trees, or
graphs structures in general. These real-world problems pose complex search
spaces which require a deep understanding of the underlying solution represen-
tations. Some of them, for example integers, are more suitable to be treated by
classic optimization algorithms. Others, such as trees, have to be handled by
specifically developed optimization algorithms. In general, solving these kinds
of problems usually necessitates a significant number of objective function eval-
uations. However, in many engineering problems, a single evaluation is based
on either on experimental or numerical analysis. This causes significant costs
with respect to time or resources. Surrogate model-based optimization (SMBO)
aims to handle the complex variable structures and the limited budget simulta-
neously. Sequential Parameter Optimization (SPO) pursues the identification
of global optima making advantage of a budget allocation process that maxi-
mizes the information gaining in promising regions. This chapter aims to show
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an efficient method to face mixed-discrete optimization problems utilizing SPO.
Particularly, the chapter is structured as follows: Sec. 2 will introduce the prob-
lem definition, Sec. 3 describes the challenges that are common in this problem
domain, Sec. 4 contains a thorough description of SPO, and finally an applica-
tion of SPO on real-world discrete-mixed optimization problem is presented in
Sec. 5 .

2 Problem Definition
Optimization can be seen as the process of searching for the best candidate
solution in the search space, that maximizes or minimizes an objective function.
Without loss of generality, we refer to optimization as a minimization process.
In this chapter, we will focus on describing problems including real-valued vari-
ables, ordinal integers, and categorical (uncountable) variables.

Let f : Rnr ×Znz ×Dnd → R denote the objective function to be optimized,
gj : Rnr × Znz × Dnd → R, 1 ≤ j ≤ ng the inequality constraints, and hk :
Rnr × Znz × Dnd → R, 1 ≤ k ≤ nh the equality constraints.

The problem of mixed-discrete optimization can be formalized as follows:

min
x
f(x) where x ∈ Rnr × Znz × Dnd

subject to



gj ≤ 0, 1 ≤ j ≤ ng

hk = 0, 1 ≤ k ≤ nh

ri ∈ [rmin
i , rmax

i ], 1 ≤ i ≤ nr

zi ∈ [zmin
i , zmax

i ], 1 ≤ i ≤ nz

di =
{
d1

i , ..., d
Ni
i

}
, 1 ≤ i ≤ nd

(1)

where rmin
i and rmax

i define the lower and upper bounds that the nr real variables
ri can assume, zmin

i and zmax
i define the lower and upper bounds that the nz

integer variables zi can assume, di is the set of the possible values that the i-th
discrete variable can assume, and finally nd is the number of discrete variables.
The input variables will be referred to design variables.

3 Challenges in Real-World Optimization
3.1 Problem Features
Over the years, a large number of optimization methods have been proposed
and new algorithms are developed every day to improve their general perfor-
mance. However, it has been stated by Wolpert and Macready [57] that any
algorithm’s improved performance over one class of problems is offset by a per-
formance loss over another class. Hence, the identification of problem features
becomes a crucial stage in the development and selection of optimization al-
gorithms. Among all potential problem features, the ones that mostly affect
the performances in mixed-discrete optimization can be listed as follows: high-
dimensionality, uncertainties, computationally expensive evaluations, complex
landscapes, and black-box problems [55].
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Here, ”black-box” implies that no knowledge about the function is available,
and any knowledge can only be derived by evaluating the function itself. It
is often impossible to predict the response of the function because the physi-
cal phenomena are not fully understood or the modeling strategy leads to bias
and undesired, unknown sensitivities. The integration of optimization method-
ologies with computational analysis and simulations is of some importance in
this context. This lack of knowledge is especially problematic when function
evaluations are expensive: Black-box optimization processes inherently require
numerous evaluations of objective functions [29]. Therefore, although numerous
non-gradient optimization methods are available for cheap black-box functions,
more sophisticated methods are necessary to deal with limited evaluation bud-
gets.

Determining whether the best solution currently known is a local or a global
optimum is often difficult. This issue typically arises for multi-modal problems
(if the function has multiple maxima and minima). Moreover, difficult fitness
landscapes may exhibit deceptiveness [10]. Deceptive objective functions can
trap the optimizer by a large basin of attraction, which leads the search process
away from the global optimum in favour of a local one.

If an area with a better average fitness compared to other regions has been
found, the optimization algorithm will consider it as promising and will focus on
the exploration of this region. This assumes that such areas are likely to contain
the true optimum. Hence, developing an algorithm that is able to interpret the
function response correctly is a demanding task.

In many cases, this problem can be solved by choosing the correct optimiza-
tion strategy and performing a preliminary algorithm tuning. For example, a
population-based optimizer’s ability to distinguish the global optimum from a
local optimum often relies on the chosen population size. Moreover, maintain-
ing diversity in the population helps to avoid premature convergence [55]. It
is also clear that the optimality of the algorithms’ parameters changes during
the optimization process in case of multi-modal problems: In the beginning,
algorithms should be more explorative. This leads to a fastest identification of
all the promising areas and would help escaping misleading local-minima. On
the contrary, at the end of the process, exploitation would gain more impor-
tance, assuming that the most promising area has already been identified. For
these reasons, algorithms able to auto-tune (i.e., perform on-the-fly parameter
control) all along the optimization process, such as [40, 31], can be a promising
choice. More details on auto-tune can be found in Chapter 11. The combina-
tion of these features strongly increases the problem difficulty. Optimization
algorithms need to be designed to solve specific problems, presenting different
combinations of these features. We will focus on two essential problems in this
chapter, namely the dimensionality and the uncertainty.

3.2 High Dimensionality
The dimensionality of the search space is defined by the number of design vari-
ables. Referring to the notation in Eq. (1), we define the dimensionality as
n = nr + nz + nd. It is intuitive that a large number of variables poses an
demanding challenge that affects many algorithm’s aspects. Dealing with this
particular problem requires a great modeling capability, a huge amount of ac-
quired data and, consequently a large budget of objective function evaluations.
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Every modeling technique requires a sufficiently large data-set such that an
accurate model can be trained.

Furthermore, high dimensionality leads to severe practical issues in the de-
velopment of surrogate-models as well. Kriging, besides linear regression, is one
of the most popular techique in SMBO, see [9]. For example, depending on
the employed distance measures [1], it is widely recognized that Kriging may
perform poorly for problems with more than approximately 20 variables [20].

A spectrum of countermeasures to these issues comes from different fields of
engineering and data analytics. Most commonly, methods attempt to use some
screening or mapping approach. The former attempts to remove insignificant
variables, while the latter attempts to map the original search space to a low-
dimensional subspace.

3.2.1 Screening

In the effort of reducing the problem complexity and dimensionality, screening
identifies and retains important input variables and interaction terms. Screening
is often implemented via sampling and the analysis of sampling results [46].

Sensitivity analysis studies how the variability of a function’s output re-
sponds to changes of its inputs. It includes local and global sensitivity analyses.
The local sensitivity indicates the variability of the output with respect to input
variable changes at a given point, in other words it evaluates the numeric partial
derivatives. The global sensitivity, contrarily, explains the global variability of
the output over the entire design space, which provides an overall view of the
impact of input variables on the output. One example of sensitivity analysis
applied to aircraft design is given in [48].

A classic method for screening and sensitivity analysis using experimental
designs is the modeling and analysis of regression models [15]. Common exam-
ples are the analysis of p-values in linear regression, mean decrease impurity in
random forests [12], and the theta values of Kriging models [20].

For example: we consider a simplified variant of the optimization problem
introduced in Eq. 1. The input variables are real valued and no equality and
inequality constraints are imposed. In this situation we obtain the following
optimization problem:

min
~x∈R2

f(~x)

with ~x = (x1, x2) we obtain the linear regression model

f̂(x1, x2) = β0 + β1x1 + β2x2

The coefficients β1 and β2 are interpreted as the estimated change in the objec-
tive function corresponding to one unit change in a variable, when all the other
variables are held constant [37]. The p-values [37] for the coefficients indicate
whether these relationships are statistically significant. Intuitively, it is possible
to set a threshold value for the p-values over which the corresponding variables
are considered uncorrelated to the objective function and thus, can be neglected.
In the scope of linear regression, screening designs have been developed, which
are applicable in the context of small function evaluation budgets [52].

A model-independent approach for variable screening that varies one-factor-
at-a-time has been proposed by Morris [39]. This method, unlike the stepwise
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variable selection [25], requires a number of model evaluations that are linearly-
dependent by the number of design variables. This strategy aims to estimate
the overall effect of the variables and the ensemble of the second-order and
higher-order effects addressing two sensitivity measures per design variable [43].

Screening processes can be also directly integrated in the meta-model build-
ing. A cross-validated moving least squares approach in which one variable of
the problem design represented the screening has been proposed in [52]. How-
ever, there is the risk of reducing accuracy due to the omitted dimensions.

3.2.2 Mapping

Mapping has a broad meaning including projection, non-linear mapping, param-
eter space transformation. A mapping procedure transforms a set of correlated
variables into a smaller set of new uncorrelated ones that retain most of the
original information. One popular approach that relies on linear analyses is
the Principal Component Analysis (PCA). This method is especially used for
problems with only continuous variables [14].

Contrarily, other methods are based on non-linear mapping and projection.
Space-mapping (SM) intends to map the design space of a ”coarse” and low-
dimensional model to a fine, ”expensive” and higher-dimensional one [5]. A
good survey of related approaches is given in [46].

Another class of dimensionality reduction approaches is based on unsuper-
vised learning. Two promising examples are Autoencoders and Self-organising
maps. Autoencoders are neural networks that aim to reconstruct their own in-
puts. As such, an encoder network maps from the high-dimensional space to the
coded space. Then, a decoder network maps back to the high dimensional space,
with as little loss of information as possible. By constraining the coded space
to have a smaller dimension than the input space, the autoencoder is forced
to learn the most salient features of the input data [42]. Self-organising maps
are a particularly interesting class of unsupervised systems that are based on
competitive learning. The output neurons compete amongst themselves to be
activated. Hence, only one is activated at one particular time. This competitive
system forces the neurons to organise themselves. Commonly, self-organising
maps target to map from the high-dimensional space to one or two-dimensional
space [30].

3.3 Uncertainty
A large variety of optimization problems in scheduling, finance, transportation,
and engineering design requires that decisions are made in the presence of un-
certainty. Uncertainties are present in all real-world application problems, e.g.,
due to inaccuracies in the manufacturing process, uncertain operating condi-
tions, or system component failures. However, different forms of uncertainties
can be distinguished, a good overview can be found in [28]. In the following a
description of the most common forms of uncertainty in real-world application
problems, noise and robustness, will be given.

An optimization problem is considered subjected to noise if the objective
function is perturbed. This can be due to several factors such as sensor measure-
ments errors or heuristic simulations. Mathematically, noise is often assumed
normally distributed with zero mean and variance [28].
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In other cases, perturbation can afflict the design variables. Therefore, it
is often required that the optimal solution should still work satisfactorily when
the design variables change slightly, e.g., due to manufacturing tolerances [28].

In these cases, successfully performing global optimization means facing a
variety of challenging issues. Resources have to be allocated to perform an
uncertainty analysis in order to direct the research to stable and robust optima.

The correct balance between exploitation, exploration, and uncertainty
quantification has to be addressed. Furthermore, adopting surrogate model-
based optimization in noisy functions causes an additional problem. The use
of derivative-based optimization techniques can lead to regions with seemingly
good function caused by a misinterpretation of the noisy data. This issue ap-
pears if surrogate models confuse noise with the actual behaviour of the objective
function.

Thus, finding efficient methods to deal with uncertainty appears to be a
non-trivial problem. A popular approach is searching for robust optima. This is
done by replacing the deterministic objective function f in favour of a modified f̃
that feeds an estimation of f back to the optimizer. This is evaluated observing
the response of f a number of times with the same design solution. Popular
examples of f̃ are the expected value, expected value + k standard deviation (the
importance of the standard deviations in respect of the mean is weighted by the
coefficient k) or the 95% quantile. The obvious drawback of this method is the
considerable number of repetitions of f that are needed to make an accurate
prediction of the robust objective function. However, researchers are proposing
methods to mitigate the computational effort in estimating f̃ replacing classic
uncertainty quantification methods, such as quasi-Monte Carlo quadrature, in
favour of polynomial chaos with coefficients determined by sparse quadrature
and by point collocation, radial basis function or Kriging models [33].

4 Sequential Parameter Optimization
The Sequential Parameter Optimization Toolbox (SPOT) [6] is an optimization
framework which is based on surrogate model-based optimization. The aim of
SMBO is to train a cheap numerical model that approximates the objective
function and utilizes it to reduce the computational effort.

Initially proposed for algorithm tuning of metaheuristics, SPOT is a sophisti-
cated tool capable of handling both continuous and mixed-discrete problems [9].
SPOT spends the available budget in a sequential manner to maximize infor-
mation gain, and is particularly efficient for expensive problems. SPOT finds
improved solutions in the following way (see Algorithm 1): First, the search
space is sampled with an experimental design plan (see Sec. 4.1). With these
samples, a first surrogate model is constructed. Then, an infill criterion is
optimized on the surrogate to find new promising candidate solutions. The
suggested candidates are evaluated with the real objective function, and the
surrogate is updated with the observed information. In the following we will
describe the fundamental steps of the SPOT methodology. A more detailed
description of SPOT can be found in [7].
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Algorithm 1 Sequential parameter optimization
1: t = 0.
2: Initialize a number of k samples Pt = {xi, 1 ≤ i ≤ k}.
3: Select a suitable surrogate model Mt(x).
4: Evaluate Pt on f to get observations Ot = {(xi, yi), 1 ≤ i ≤ k}.
5: while not Termination Criterion do
6: Build a model Mt with Ot

7: Optimize Mt infill criteria to get x∗t
8: Evaluate x∗t on f to get y∗t
9: Update dataset Ot+1 = {Ot, (x∗t , y∗t )}.

10: t = t+ 1.
11: end while

4.1 Initial Design
4.1.1 Strategies for Design of Experiment

The first step of SPOT (see Algorithm 1) is the determination of the initial
data set that will be used to train the first surrogate model. In order to build
a moderately accurate model, the initial design should cover, if possible, the
complete feasible search space. To that end, we rely on sampling methods.

Sampling methods can be classified as deterministic and stochastic methods.
Examples of pure deterministic sampling are grid designs, full factorial designs,
and Sobol sequences [49]. Stochastic methods try to create unbiased subsets
of the original search space. They often optimize a certain criterion such as
D-optimality or I-optimality [37]. This class includes basic random sampling,
stratified sampling (e.g. Latin hypercube sampling) and fractional factorial
designs.

4.1.2 Latin Hypercube Sampling

As a representative of stratified sampling, one of the most commonly employed
methods is Latin Hypercube Sampling (LHS) [35]. LHS creates multidimen-
sional designs. Given the number of samples n, all nr + nz + nd dimensions
are divided into n intervals. LHS samples a point from each stratum. Different
variants for choosing a point in each stratum exist. For example, median LHS
uses the median value of each interval, while random LHS selects a random
point within each interval.

This procedure has to be adapted to also treat categorical and discrete vari-
ables. One of the simplest solutions for ordinal variables is to assume that
all variables are continuous, then using floor, ceiling or rounding operations.
Dummy variables may be employed for categorical parameters. Or else, cate-
gorical parameters may be mapped to ordinal integers.

4.1.3 Factorial Designs

In the field of design of experiments, a set of statistically well profound de-
signs have emerged, which are commonly applied to analyze and optimize in-
dustrial problems. Common designs of this field are full factorial, fractional
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Fig. 1: Example of three different sampling methods in creating an initial design
of size 4 in a two dimensional space: Sobol sequence (red triangles), Latin
Hypercube (black crosses), Full factorial design (blue circles).

factorial, Box-Behnken, and central composite [37]. All these designs are des-
ignated to fit linear models for the response surface methodology, commonly
with second-order and quadratic effects. For example, in a full factorial design
for 2 variables with 2 levels for each design variable, a set of 22 evenly spaced
points is determined. In case of continuous variables, they are determined by
[rmin, rmax]. With this design, we are able to analyse main and second-order
effects. For quadratic effects, center points need to be added. A full factorial
design has the disadvantage of requiring an exponentially increasing number of
experiments with rising number of variables. To prohibit an infeasible number
of experiments, usually optimized fractional factorial or other screening designs
are utilized.

From Fig. 1, one can see that, contrary to LHS and the Sobol sequence, a full
factorial sampling exhibits a particular grid structure that eases distinguishing
the effects of all design variables on the objective function.

4.2 Modeling
4.2.1 Modelling in Mixed-Integer Space

Once the first dataset has been created and observed, it is used to train a
surrogate model that aims to replicate the behaviour of the objective function
(see Algorithm 1). In SPOT, a surrogate model is used to determine promising
candidate solutions. To that end, it aims to learn the relation between problem
variables and the corresponding function’s response.
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Compared to their frequent use for real-valued problems, surrogate model
driven approaches are less often used in mixed optimization [27]. According to
Bartz-Beielstein and Zaefferer [9], few expensive, real-world optimization prob-
lems of this type have been brought to the science community’s attention, e.g.,
in the engineering domain [54, 3, 50, 51], bioinformatics [41], or data science [47].
One reason for the scarce use of discrete surrogate model-based optimization is
the availability of suitable methods. Bartz-Beielstein and Zaefferer [9] identified
six strategies for surrogate modeling in mixed-discrete search spaces: the naive
approach, customized models, inherently discrete models, feature extraction,
mapping, and similarity-based models. These strategies explain how modeling
techniques can be used in the general cases. The six strategies are not mutually
exclusive. Some methods may belong to several categories, or combine different
strategies. Here, we focus on three of the six strategies: the naive approach,
inherently discrete models, and similarity based models since these are more
commonly used.

4.2.2 The Naive Approach

The naive approach to discrete modeling is to ignore the discrete nature of the
search space. Standard continuous methods are applied to solve the optimization
problem. An application of this approach can be found in [8]. There, the
authors faced an expensive parameter tuning problem and employed Kriging
models. Especially if the discrete variables are of an ordinal nature, the naive
approach may be successful. Indeed, this strategy could even be adopted to
deal with categorical variables: Addressing an arbitrary order would create a
one-to-one correlation between categorical variables and ordinal values. Several
potential drawbacks can arise if this strategy is employed for problems that are
too complex:

• Large areas of redundancy in the model’s input space.

• Creation of infeasible solutions.

• Degeneration of performance due to bias caused by a misinterpretation of
variables.

The naive approach is attractive, due to its ease of use and the ability to stick to
continuous variable handling methods. Practitioners have to carefully evaluate
if this option suits the characteristics of the problem under study.

4.2.3 Inherently Discrete Models

There are models that are discrete in their design, and hence need no further
adaptation to discrete variables. For example, tree-based models, like regression
trees or random forests are inherently discrete models. A representative appli-
cation of this strategy can be found in [26], where an optimization process based
on random forest models has been employed for a high dimensional algorithm
tuning problem. On the one hand, inherently discrete models are easy to use,
since they require no additional work to adapt them to discrete problems. On
the other hand, in a mixed-variable case, a tree-based model would not be well-
suited to represent the continuous parameters in the mixture. Also, tree-based
models may not provide the useful features that models like Kriging have. For
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example, uncertainty estimates can be derived from random forests, but unlike
Kriging, these estimates do not go to zero at observed sample locations.

4.2.4 Similarity-based Models

Similarity-based modeling is a promising strategy that is gaining more and more
interest. Here, suitable measures of similarity are used to model discrete data.
With respect to their interpretation and use, the measures are referred to as
similarity measures, dissimilarity measures, distance measures, correlation mea-
sures, or kernels. Although this approach is potentially very powerful, it requires
the definition of proper measures. This may be problematic if these measures
have to fulfil further requirements, e.g., definiteness, and if the problem involves
different types of variables.

Fonseca et al. [19] defined similarity-based models that keep a memory of
solutions and estimate the performance of new samples by comparing them to
that memory. Three models from this class are of particular interest: Radial
Basis Function Networks (RBFN), Support Vector Machine (SVM), and Krig-
ing. Various model-based variants applied to different optimization problems
can be found in the literature, e.g., [22, 32, 26, 38, 17, 23, 4, 58]. Several of these
works involve the development of appropriate similarity measures for discrete
or mixed search spaces.

As these previous developments indicate, similarity-based models like Krig-
ing are very promising approaches towards handling mixed and discrete vari-
ables. Hence, we focus on Kriging in the following.

4.2.5 Handling Factor Variables in Kriging Model

Kriging is a similarity-based model and assumes that the data follows a multi-
variate Gaussian distribution, where errors are spatially correlated. A detailed
and comprehensible description of Kriging is given by Forrester et al. [20].

We consider a simplified variant of the optimization problem defined in Eq. 1:

min
~x∈Rn

f(~x)

and no equality and inequality constraints are used. Importantly, the spa-
tial correlation of the data is encoded within a kernel, or correlation func-
tion. A frequently employed correlation function that models the correlation
between samples (or candidate solutions) is the Gaussian kernel k(x, x′) =
exp(−

∑n
i=1θi|xi − x′i|2). Here, n is the number of modelled variables (search

space dimension), and θi is a parameter of the kernel (determined by Maximum
Likelihood Estimation (MLE)). Furthermore, x as well as x′ are potential candi-
date solutions (or samples). Employing such a kernel, a Kriging model produces
the following predictor:

ŷ(z∗) = µ̂+ kT K−1(y− 1µ̂), (2)

where y are the training observations, ŷ(z∗) is the predicted function value of a
new sample z∗, µ̂ represents the process mean determined by MLE, 1 is a vector
of ones, K is the matrix that collects all pair-wise correlations of the training
samples Z, and k is the column vector of correlations between the set of training
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samples Z and the new sample z∗. After appropriate training, such a predictor
may be employed to replace an expensive objective function.

The success of Kriging in the field of real world application problems mostly
relies on the possibility to estimate the uncertainty of the predictor. This fea-
ture assumes a prominent role in applications in which the limited number of
observations that can be performed inhibits an exhaustive exploration of the
search space. In these cases, the estimate of the uncertainty can be used to
balance exploration and exploitation by computing the expected improvement
(EI) of candidate solutions [36]. The uncertainty of the model is computed with

ŝ2(z∗) = σ2
process(1− kT K−1k), (3)

where σ2
process is the process variance, determined by MLE. If the uncertainty

is zero, the EI is also zero. Else, the uncertainty is non-zero, and the EI is

EI(z∗) = yimpΦ
( yimp

ŝ(z∗)

)
+ ŝ(z∗)φ

( yimp

ŝ(z∗)

)
,

where yimp = min(y)− ŷ(z∗). Φ() indicates the normal cumulative distribution
function. Respectively, φ() is the probability density function.

It has to be noted, that the above description of Kriging presents an interpo-
lating model, which assumes zero error at already observed locations. Clearly,
this does not take noise or uncertainty into account. One way to account for
noise is to introduce the so-called nugget effect. This essentially adds a constant
value η to the diagonal of the kernel matrix K. The parameter η is determined
by MLE. The nugget effect enables the model to regress the observed data, and
hence smoothen noisy observations.

Until now, we discussed Kriging in the context of real valued search spaces.
It is also applicable to ”mixed” search space, where an appropriate kernel is
available. With respect to mixed or discrete problems, Kriging is actually very
flexible. By changing the kernel (or correlation) function, any search space
may be modeled with Kriging [59, 9]. The flexibility of this modeling method
renders Kriging one of the most promising mixed variable models. Take for
example a typical problem characterization from algorithm tuning: parameters
like mutation rates may be real valued, the choice between different mutation
operators may be a categorical parameter. Hence, if xi (the i-th dimension of a
parameter configuration ~x) is a factor variable, Hamming distance can be used,
otherwise the absolute deviation may be used for real-valued variables. The
reader is referred to the discussion in [9].

4.3 Optimization Algorithms for the Metamodel
As shown in Algorithm 1, the next step in the SPOT methodology, after con-
structing a model, consists in the employment of optimizers that search for
promising candidate solutions. Standard techniques from mathematical pro-
gramming [56], so-called Mixed-integer non-linear programming methods [18]
are commonly not applicable to deterministic optimization of real-world appli-
cation problems. These methods, such as outer approximation [16], branch and
bound [11], and generalized Benders decomposition [21] have difficulties with
the mixed design space, multi-modality, uncertainty in the observations, and un-
known black-box properties. A consolidated alternative consists in the employ-
ment of metaheuristics for mixed-discrete optimization [31]. These strategies



Sequential Parameter Optimization 12

propose to heuristically determine solutions that improve the objective function
value.

In cases where mathematical programming techniques are not flexible enough
to yield satisfying results, heuristic search for solutions that improve the objec-
tive function value can lead to interesting results. Metaheuristics for mixed-
discrete optimization are generally categorized in two classes:

• Hierarchical Approaches solve problems with continuous variables together
and discrete variables by considering the original optimization as a bi-
level problem. The discrete variables are optimized by the upper level
optimization process and the continuous parameters are optimized in the
lower level. [34, 53]

• Simultaneous Approaches optimize discrete and continuous parameters si-
multaneously. In this approach, we consider that a similarity of parameter
vectors due to an appropriate metric is equivalent to being positively cor-
related to the similarity in function values [44, 31].

In the following we will highlight the peculiarities of an algorithm from the class
of simultaneous approaches. These algorithms are a better choice for our pur-
poses. They need fewer observations and consider correlations between discrete
and continuous variables. This is in contrast to the hierarchical approaches
where variables of different type are strictly separated from each other. Partic-
ularly, we will discuss the Mixed Integer Evolution Strategy (MIES) proposed
in [31].

4.4 MIES
Evolution Strategies (ES) are metaheuristics that follow the concept of natural
evolution. An individual in an ES contains the information about one solution
candidate. This individual is subject to recombination, mutation and selection
operations. By evolving sets, or populations of individuals, the ES tries to find
improved solutions.

In MIES, an individual contains information about real-valued variables,
ordinal integer variables and categorical variables. Parameters of the probability
distribution used in the mutation operator (such as standard deviations or step
sizes) are also stored in the individual for the purpose of self-adaptive parameter
control. The latter parameters are referred to as strategy parameters. As a
consequence the domain of an individual I can be expressed as follows:

I = R1 × ...×Rnr × Z1 × ...× Znz ×D1 × ...×Dnd ×As (4)

with As = Rnσ+nζ
+ × [0, 1]np being the domain of the strategy variables. Corre-

spondingly, an individual of a population can be represented as:

~a = (r1, ..., rnr , z1, ..., znz , d1, ..., dnd , σ1, ..., σnσ , ζ1, ..., ζnζ , p1, ..., pnp) (5)

The so-called design variables r1, ..., rnr, z1, ..., znz, d1, ..., dnd determine the ob-
jective function value and thus the fitness of the individual. The strategy vari-
ables σ1, ..., σnr are standard deviations used in the mutation of the real valued
variables, and ζ1, ..., ζnz denote mean step sizes in the mutation of the integer
parameters. Finally, p1, ..., pnp denote mutation probabilities (or rates) for the
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nominal discrete object parameters. MIES is considered a self-adaptive process
because the strength of the mutation parameters continuously evolves during
the optimization. Hence, the mutation strength itself is also governed by an
evolutionary process. The philosophy behind self-adaptation is that the evo-
lutionary process can solve two problems simultaneously: the determination of
the best strategy variables, and the determination of the best object variables.
More details on self-adaptation can be found in Chapter 11.

The first population P(0) of µ individuals is generated by uniform random
sampling from I. Then, the main loop of the MIES algorithm starts. In a first
step, the algorithm generates the set of λ new offspring individuals with the fol-
lowing procedure. Two parents are randomly selected from the population and
an offspring is generated by recombination and mutation. The recombination
operator can be subdivided into two steps, selection of the parents and recom-
bining the selected parents. The two parents c1, c2 ∈ I are selected randomly,
from the parental generation for each of the offspring individuals. In MIES,
two different types of recombination are used: dominant and intermediate [45].
The first one is adopted for solution variables and consists of a random selec-
tion of one of the corresponding parental parameters for each offspring vector
position. The latter is used for recombining the strategy parameters and com-
putes the mean of both parental vectors. The mutation of the offspring relies on
operators acting differently on real, integer and discrete variables, all respect-
ing the requirements for a mutation strategy in the search spaces: Accessibility,
Feasibility, Symmetry, Similarity, Scalability, and Maximal Entropy [31].

The MIES achieves this by adding normal distributed noise to real-valued
variables. For integer variables, the distribution is based on the difference of two
geometrical distributions. Categorical variables are simply re-sampled (uniform
randomly) with some probability p [31].

In the next step of the iteration, the λ offspring individuals are ranked on
the basis of the objective function. The µ best individuals out of the union
of the λ offspring individuals and the µ parental individuals are selected. The
generational loop is repeated until the number of evaluation exceeds the budget.

5 Case Study: Optimization of Composite Multi-
layered Plate

In this section, a mixed-discrete problem based on a real-word application is
discussed. The problem consists in the design optimization of a composite multi-
layered plate. Our idea is to demonstrate the difficulties that researchers and
practitioners encounter when facing black-box, time-consuming, mixed-discrete
problems under uncertainty trough an illustrative example. A performance
comparison between the MIES and a general purpose optimizer is also given.

5.1 Overview
The objective of the optimization problem is to find the materials (represented
by categorical variables) and lamination angles (continuous variables) in order
to minimize the bending of a loaded plate composed of 5 layers.

The available materials and their properties are reported in Table 1. As
one can see, the list includes orthotropic and isotropic materials. In case of
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orthotropic materials, the stiffness of the material is crucially affected by the
lamination angle. Contrarily, isotropic materials have equal in-plane and out-of-
plane Young’s Modulus. Hence, the lamination angle of isotropic materials does
not affect the material behavior. The use of both types of materials consider-
ably increases the difficulty of the problem from the modeling perspective: The
importance of the continuous parameters depends on the value of the categorical
variables.

The plate has been loaded by a lifting load, which is linearly distributed
along the length of the plate applied on the nodes in the centerline. An encastre
at the root of the plate has been enforced as shown in Fig. 2. With the intent to
reproduce uncertainty due to manufacturing tolerances and measurement condi-
tions, perturbations to the nominal values have been added to both lamination
angles and load magnitudes.

The purpose of this test case is to point out the difficulties of handling
an “expensive” (≈ 10 seconds for each run), multi-modal, mixed-integer, ”high-
dimensional” (5 continuous + 5 categorical variables) problem under uncertainty
with an extremely limited budget (150 evaluations).

Fig. 2: Load and boundary constrains applied to the multi-laminate plate.

5.2 Optimization problem
The objective of the problem is the minimization of the displacement along the
loaded axis of one of the vertices of the multi-layered plate tip st (red point in
the corner of the plate in Fig. 3). The optimization problem is defined as:

min
x∈R5,y∈D5

f(x, y) = st

subject to


ri ∈ [−89, 90], 1 ≤ i ≤ 5
D5 = D1 × ...×D5

di =
{
d1

i , ..., d
12
i

}
, 1 ≤ i ≤ 12

,

where d1
i , ..., d

12
i are the 12 available materials [13]. The first 5 variables corre-

spond to the lamination angles, the latter five describe the material of each ply
as categorical variables. The categorical variables are mapped to integers from
1 to 12 to allow a numerical optimizer based on Differential Evolution (DE) [2]
to handle them.

Since the mass of each ply has been fixed, the thickness will be dependent
on the material density.
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Table 1: Properties of the Material used in this study.
Properties Young’s Young’s In-plane Poisson’s DensityModulus 0 Modulus 90 Shear Modulus Ratio
Symbols E1 E2 G12 v12
Units GPa GPa GPa g/cc
CF Vf 50% 70 70 5 0.10 1.60
HMCF Vf 50% 85 85 5 0.10 1.60
E glass Vf 50% 25 25 4 0.20 1.90
Kevlar Vf 50% 30 30 5 0.20 1.40
Std CF Vf 60% 135 10 5 0.30 1.60
HMCF Vf 60% 175 8 5 0.30 1.60
M55** Vf 60% 300 12 5 0.30 1.65
E glass Vf 60% 40 8 4 0.25 1.90
Kevlar Vf 60% 75 6 2 0.34 1.40
Boron Vf 60% 200 15 5 0.23 2.00
Steel S97 207 207 80 0.3 7.85
AL L65 72 72 25 0.3 2.7

5.3 Methodology
To perform the optimization process, we take advantage of surrogate modeling
techniques and rely on the SPOT R package. The experiments have been con-
ducted employing MIES and DE as optimizers (on the surrogate model). As
shown in the previous sections, MIES is dedicated to handling mixed variables,
including categorical variables. Contrarily, DE is not designed to handle dis-
crete or categorical variables. In order to compute an accurate estimation of
the plate maximal displacement, the finite element analysis solver Abaqus [24]
has been employed. Therefore, the optimization problem requires a coupling
between SPOT and Abaqus.

The process follows the algorithm described in Algorithm 1: Initially a de-
sign is created by LHS. All the candidates in the design are then evaluated with
the objective function (via Abaqus). This function receives the candidate solu-
tions that describe the characteristics of the plate and feeds the corresponding
displacement back to the optimizer. Nevertheless, to simulate the uncertainty,
the nominal lamination angles and loads magnitudes are perturbed randomly by
Gaussian perturbations with mean 0 and variance respectively 1 and 0.1. The
candidates and the function responses are used to train a Kriging model. Then,
an optimizer searches for the most promising candidate solution by optimizing
an infill criterion based on the model. Here, the criterion is the expected im-
provement. Based on the assumption of expensive function evaluations, a very
small budget of 150 function evaluations has been used.

Table 2: Optimal design achieved using DE and MIES.
Optimal design Displacement x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
DE 169.49 0.35 15.04 -23.496 5.18 75.43 9 4 9 7 6
MIES 303.34 -5.79 -89.00 -89.00 -35.27 -7.15 7 1 7 9 7
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5.4 Results
The obtained results clearly highlight that mixed-discrete problems present pe-
culiar challenges. Such issues are unlikely to be resolved by continuous opti-
mizers. A convergence plot is shown in Fig. 5. It can be seen that the best
configuration found by MIES outperforms the one found by DE. Although the
processes have been started from the same design, the results differ by around
80% (Tab. 2).However, to have a statistically meaningful comparison, we should
repeat the analyses with the two best designs in order to quantify the effect of
the uncertainties.

The displacements of the two best plate configurations are shown in Fig. 3
with the same scale and magnification factor. Figure 4 shows that the configu-
rations differ significantly, concerning both the uous and categorical variables.
Particularly, it is worth to focus on the effect of the lamination angles: The
configuration found using DE presents materials that are mostly aligned with
the plate. This configuration would lead to the maximal uniaxial stiffness. In
this case, the displacement would be equal for all the nodes lying on the tip.
However, the object of the optimization is the displacement in the corner of the
plate, which is at some distance from the centerline of the plate. This means
that another minimum is present, besides the local minimum resulting from the
maximization of the stiffness in the direction of the plate. The second minimum
is the global one. It consists in the perfect balance between the stiffness in both
the directions in the plane of the plate. The balance is determined on the basis
of the ratio between the length and the height of the plate. As a result, the
overall displacement at the tip will be higher but the displacement at the corner
will be lower.

In fact, in the configuration resulting from MIES, two plies are laminated
with angles that are orthogonal to the direction of the plate. In light of this
observation, we can say that this problem is clearly multi-modal in regard to
the continuous variables. The multi-modality of the function derives from the
dependence of both the mechanical properties and the ply thickness on the
chosen material. This is also reflected in Fig. 6, where the interactions of four
important variables are depicted. In each plot, two variables are varied while
the remaining two are fixed to their optimal values. The red dots represent
the observed values. The dataset used to train this model is composed of the
observations made during the optimization process using MIES. In Fig. 6 a) and
b), the interaction between the lamination angles and the materials for both
the plies are shown. In both the cases two distinct regions of well-performing
configurations are present. In Fig. 6 c) and d), the interaction between the
materials and their lamination angles of the two plies are represented. The
figures clearly show a complex and multi-modal search landscape. In light of
these considerations, one can see the complexity involved in this, apparently,
simple problem.

In the last section of this chapter, an example of the application of SPOT on
a real-world optimization problem has been reported and analysed. The com-
plexity of mixed-discrete real-world optimization problems has been addressed
in this chapter. Despite the difficulties, more efficient ways to handled them
have been developed. Nevertheless, despite the cutting-edge algorithms, these
problems still appear very complex to tackle.
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Fig. 3: Contour of the displacement in the loaded direction in the best configu-
rations obtained employing DE (a) and MIES (b).

Fig. 4: Best lamination configuration (lamination angles, materials and thick-
ness) obtained employing DE (a)and MIES (b).

Fig. 5: Evolution of the best observation during the optimization processes.
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Fig. 6: Visualizations of the objective function landscapes in respect of variable
combinations concerning Ply1 and Ply5. For each individual plots, variables
that are not shown are fixed to the respective optimal values. a) Material
and Lamination angle of Ply1. b) Material and Lamination angle of Ply5.
c)Lamination angles of Ply1 and Ply5. d) Materials of Ply1 and Ply5.
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[8] T. Bartz-Beielstein and S. Markon. Tuning Search Algorithms for Real-
World Applications: A Regression Tree Based Approach. In G. W. Green-
wood, editor, Proceedings 2004 Congress on Evolutionary Computation
(CEC’04), Portland OR, pages 1111–1118, Piscataway NJ, 2004. IEEE.

[9] T. Bartz-Beielstein and M. Zaefferer. Model-based methods for continuous
and discrete global optimization. Applied Soft Computing, 55:154 – 167,
2017.

[10] A. Bergman and M. W. Feldman. Recombination dynamics and the fitness
landscape. Physica D: Nonlinear Phenomena, 56(1):57–67, 1992.

[11] B. Borchers and J. E. Mitchell. An improved branch and bound algorithm
for mixed integer nonlinear programs. Computers &amp; Operations Re-
search, 21(4):359–367, 1994.



REFERENCES 20

[12] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[13] P. composites Ltd. Mechanical properties of carbon fibre compos-
ite materials. http://www.performance-composites.com/carbonfibre/
mechanicalproperties_2.asp. Url date: 2018-07-01.

[14] C. Ding, X. He, H. Zha, and H. D. Simon. Adaptive dimension reduc-
tion for clustering high dimensional data. In Data Mining, 2002. ICDM
2003. Proceedings. 2002 IEEE International Conference on, pages 147–154.
IEEE, 2002.

[15] N. R. Draper and H. Smith. Applied regression analysis, volume 326. John
Wiley & Sons, 2014.

[16] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for
a class of mixed-integer nonlinear programs. Mathematical programming,
36(3):307–339, 1986.

[17] R. Filomeno Coelho, M. Herrera, M. Xiao, and W. Zhang. On-line
metamodel-assisted optimization with mixed variables. In J. Magalhães-
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J. H. Reiber. Mixed integer evolution strategies for parameter optimization.
Evolutionary computation, 21(1):29–64, 2013.

[32] R. Li, M. T. M. Emmerich, J. Eggermont, E. G. P. Bovenkamp, T. Bäck,
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