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Abstract—This paper addresses the problem of autonomous
scheduling of space objects’ observations from a network of
tracking stations to enhance the knowledge of their orbit while
respecting allocated resources. This task requires the coupling
of a state estimation routine and an optimisation algorithm.
As for the former, a sequential filtering approach to estimate
the satellite state distribution conditional on received indirect
measurements has been employed. To generate candidates, i.e.
observation campaigns, a Structured-Chromosome Genetic Al-
gorithm optimiser has been developed, which is able to address
the issue of handling mixed-discrete global optimisation problems
with variable-size design space. The search algorithm bases its
strategy on revised genetic operators that have been reformulated
for handling hierarchical search spaces. The presented approach
aims at supporting the space sector by tracking both operational
satellites and non-collaborative space debris in response to the
challenge of a constantly increasing population size in the near
Earth environment. The potential of the presented methodology is
shown by solving the optimisation of a tracking window schedule
for a very low Earth satellite operating in a highly perturbed
dynamical environment.

I. INTRODUCTION

Accurately tracking objects in space is of fundamental
importance for both operational satellites and space debris.
As for the former, it is crucial to accurately know the satellite
state to precisely calibrate the instruments, interpret scientific
data, and communicate with ground stations. For the latter,
the debris position and velocity is mainly employed to predict
and avoid impacts with other objects, as well as monitor the
decay and predict the possible re-entry.

In the last years, the number of space objects is rapidly
growing thanks to the enlarged number of terrestrial ser-
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vices that space technology provides. Furthermore, access to
space has become affordable for smaller organisations like
universities, research centres or companies of any size thanks
to the development of low-cost small platforms which have
reached an adequate technology readiness level. In parallel
with this growth, many orbital belts have become congested,
and consequently the space debris, which are prone to a
domino effect known as Kessler syndrome [1], are becoming
a concerning threat. Whereas usually large missions have a
dedicated but expensive tracking network, smaller ones often
rely on amateur stations or third-party services with reservation
slots and time constraints where humans are still involved
in the loop to solve scheduling conflicts. In general, most
space debris are tracked infrequently and with low accuracy
due to the high number of objects and associated observation
schedules to generate. Pushing to the limits the number of
orbiting space objects, the problem of finding efficient methods
to face the growing demand for tracking services has to be
addressed.

In response to the aforementioned modern challenges, the
current work presents a scheduling tool for generating optimal
observation campaigns to track objects in space with the aim
of contributing toward an augmented autonomy, efficiency
and safety in the space sector. The proposed tool aims at
finding the optimal observation schedule for minimising the
uncertainty associated to the spacecraft state taking into ac-
count an allocated budget. From another standpoint, it can be
also employed for reducing the resources needed to meet an
accuracy requirement on the level of uncertainty of the state.

For a candidate observation campaign, the task of track-
ing the space object in a dynamical environment is still
highly complex because it is affected by different sources
of uncertainty. Generally, the initial state knowledge may



be defective and its density distribution often unknown, the
dynamical evolution of the state may depend on partially
known parameters and the measurements may be biased and
affected by random noise. This task is addressed by means
of an orbit determination routine, which is used to evaluate
sensible objective and constraint functions associated to a
specific schedule.

The free variables considered by the routine for generating
candidate observation schedules work are 1) the number of
times a specific ground station is used, 2) in which satellite
pass over the station this has to measure and 3) the number
of observation to perform. Consequently, without simplifying
assumptions, the number of design variables is not constant
among different solutions, and the observation scheduling
optimisation falls under the area of the variable-size mixed-
discrete global optimisation. To deal with dynamically varying
search spaces, a number of additional challenges, such as the
initialisation of new candidates and the presence of a varying
number of constraints, harden dramatically the complexity
of the search algorithm. Among the different algorithms,
one of the most suited to face this kind of problem are
genetic algorithms (GAs) [2] that may overcome most of the
associated issues by means of an appropriated encoding.

A variety of strategies for facing variable-sized global
optimisation can be found in the literature, mostly employed
for space trajectory design [3]–[5].

In particular, the hidden gene adaptation of GA for the
optimisation of inter-planetary trajectories is introduced in [3],
where the maximum number of genes that can describe a can-
didate is set. Then, each candidate is represented using all the
possible genes and an activation gene indicating whether the
gene has be considered or not when computing the objective
and constraint functions. The consequent disadvantage is that
the operations made over the hidden genes result in useless
numerical workload.

A more complex, but efficient adaptation of GA is pro-
posed in [4], [5]. In these cases, a hierarchical multi-level
chromosome structure is adopted in place of the standard
string one. Differently than in the standard formulation of
the GA, the genes of each chromosome are linked by both
vicinity and hierarchy relationships. Compared to the Hidden
genes approach, this strategy has the advantage of not wasting
computational resources performing crossover and mutation
operations on inactive genes. Moreover, this hierarchical for-
mulation can help more meaningful exchange of information
between chromosomes.

In light of these considerations, the observation scheduling
optimisation has been addressed employing a method based
on the hierarchical approach.

This paper is structured as follows. Section II introduces
the scheduling problem and the model formulation for the
optimisation loop. Moreover, it presents the orbit determi-
nation routine run during the call of the objective function
to compute the spacecraft state given tracking measurements.
The proposed optimisation approach is described in section III,
which details the heuristic search algorithm for variable-size

optimisation used in the study. The experimental setup and the
analysis of the test case results are presented in section IV.
Finally, the paper is concluded with a discussion in section V.

II. MODEL

This section presents the model formulation to be employed
by the optimisation routine for the autonomous scheduling
of observations campaigns of space objects from terrestrial
ground stations.

Namely, the general mathematical problem formulation ad-
dressed is introduced in section II-A, followed by the specific
problem scenario and the free variables to be optimised as
discussed in section II-B, while the selection of a specific
performance index to be optimised is discussed in section II-C.
Finally, the orbit determination routine to compute the space-
craft state and its associated uncertainty for a given observation
schedule is introduced in II-D.

A. General Problem Formulation

The addressed problem falls under the area of sensor control
[6], a decision-making process to select the optimal future
actions ui to be performed by a sensor to minimise an
objective function J .

The model is defined with a state space formulation com-
posed by three given density functions

p(x0) (1)
p(xk|xk−1) (2)
p(yk|xk) , (3)

namely: the initial state distribution (1); the transition prob-
ability modelling how the state evolves in time (2); the
likelihood function for the observations (3). Let ui be the
action resulting in the measurement yi(ui), which will in-
fluence the knowledge of the state and its probability distribu-
tion conditional on the observations. Given this formulation,
the optimisation routine aims at finding the optimal action
sequence u∗1:l = [u∗1, . . . ,u

∗
l ] that minimises a performance

index J on a state xf at a target time tf > tl conditional
on the actions and the observations as

u∗1:l = arg min
u1:l∈U1:l

Ey1:l
{J(u1:l, p(xf |y1:l,u1:l))} , (4)

where U1:l is the set of feasible actions. At the time of
optimisation, the measurements’ realisation is not known ex-
actly as they depend on random contingent effects. Hence,
the expectation operator over the measurements is needed to
average out these probabilistic terms.

The conditional probability in (4) is computed in a sequen-
tial fashion with the following two equations. At a generic
observation time tk, the density function of the state condi-
tional on k previously received observations is updated using
the sequential Bayes’ rule as [7]

p(xk|y1:k,u1:k) =
p(yk|xk,uk) p(xk|y1:k−1,u1:k−1)

p(yk|y1:k−1,u1:k)
. (5)



The second term on the numerator, called prediction as it ex-
press how the conditional density evolves between observation
times, is computed with the Chapman-Kolmogorov equation

p(xk|y1:k−1,u1:k−1) =∫
p(xk|xk−1,uk−1) p(xk−1|y1:k−1,u1:k−1)dxk−1 .

(6)
For the latter equation, conditional independence rules clas-
sically involved in partially observable Markov decision pro-
cesses have been exploited to simplify the terms involved. It
is worth to remark that the dependencies on the measurement
yi and the action ui are kept separate and explicit because the
relationship between one action and the sensor realisation is
usually not deterministic, but rather affected by noise.

The developed formulation can be addressed in two ways,
that in this paper will be referred as static and dynamic.
In the static approach, the optimisation works on all the
control actions u1:l at once. On the other hand, the dynamic
approach works on a subset of control steps ahead, moves in
the future according to the chosen control policy, and uses
the obtained measurements as feedback for re-optimising the
subsequent actions. The former approach is more suitable for
offline scheduling, while the latter is appropriate for online
applications when real measurements are available.

B. Problem Scenario

The specific problem addressed in this paper is the au-
tonomous generation of optimal observation schedules in order
to improve the knowledge of a satellite orbit given a network of
tracking stations and an initial estimate of the satellite state. As
a rule of thumb, the more good observations are employed the
more the uncertainty on the state knowledge will be reduced.
However, in real satellite operations, requesting a tracking
station to take measurements of a satellite has an associated
cost. This feature is included in the model requiring the found
solutions to satisfy a budget constraint.

Because the ground stations involve relatively long reserva-
tion times, in this work the focus will be on the static offline
optimisation for scheduling. Then, the solution generated by
the static approach can potentially be used as first guess
for updating dynamically the schedule on-the-fly with minor
changes, e.g. precise observation times.

The state space model (1)-(3) is described in terms of non-
linear transformations as

x(t0) ∼ p(x0) (7)
ẋ(t) = f(t,x) + w (8)
yj = h(tj ,x(tj)) + εj for j = 1, . . . , l . (9)

Specifically, the transition probability (2) is specified by differ-
ential equations (8) with a Gaussian process noise w, whereas
the likelihood (3) is described by a deterministic observation
model with an additive zero-mean Gaussian noise εi (9).

The specific observation model may depend on the track-
ing station used to take the particular measurement. In the
considered network, each station may have particular features

TABLE I
GENERAL FREE VARIABLE uj SCHEME FOR OBSERVATION OPTIMISATION.

Description Variable Type
Use ground station j Discrete
Number of passages to use Integer
Indexes of passages to use Discrete
Number of observations per passage Integer
Times of observations per passage Continuous

depending on the physical characteristics of the instruments
available in loco. A station GSj is defined by:
• the set of coordinates (lat, lon, alt)j , i.e. geodetic lat-

itude, longitude and altitude over a reference ellipsoid
approximating the Earth;

• the measurements model hj(x), e.g. common alternatives
are range, range-rate, azimuth and elevation measure-
ments;

• reference observation covariance at 90 deg, indicating
how accurate the measurement would be at the best
elevation angle El(x), whereas at lower elevation the
covariance elements degrade as ∼ 1/ sin (El(x)) ;

• elevation mask ELmask > 0 deg, which is the threshold
elevation for observation rejection due to poor signal-
to-noise ratio, high atmospheric refraction and other
degradation effects [8].

After the network definition, the satellite state estimate x0

at the initial epoch t0 is numerically propagated until the final
time tf according to (8) to compute the reference trajectory.
From this reference trajectory and the station definitions, the
set of the following derived quantities is computed for each
ground station:
• number of passages pjmax in the j-station field-of-view,

mainly depending on the simulation time-span, station-
spacecraft relative geometry, and satellite initial orbital
parameters;

• contact window times for each passage when observations
could be taken, i.e. when El(x) > Elmask;

Consequently, in the notation of sensor control, the free
variables are u1:l = [u1, . . . ,uj , . . . ,ul], where the control
uj is associated to the ground station GSj . In the most
general formulation, uj is composed of the variables defined
in Table I, whereas the specific formulation adopted in this
paper is described in section III-B.

Hence, the optimal scheduling problem aims at finding
the optimal sequence of ground stations, specific passages,
and number of observations to reduce the objective function.
The combination of different ground stations, variegated ob-
servation types, multiple passes, and multiple measurements
within a pass help improving the overall system observability.
A graphical 2D simplified depiction of a possible solution
candidate is reported in Fig. 1. In this work, the performance
index is a measure of the uncertainty on the final state.

C. Uncertainty Measure

The aim of an observation campaign is to obtain an accurate
knowledge of the satellite orbit. Quantifying the accuracy of
a computed state estimate is a non-trivial task being the true
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Fig. 1. Graphical 2D representation of satellite single passage over network
of ground stations. The dark faded blue field-of-view indicates that a station
is used to take measurement, whereas the light faded blue indicates that the
station is not operated.

value unknown. Several alternatives have been considered in
the development of the scheduling tool [8]. One common
uncertainty measure is the root-mean-square error of the obser-
vation residuals; however, small residuals do not necessarily
ensure a good orbit accuracy as several components of the
states may be unobserved, depending mainly on the measure-
ment type. Another alternative is to compare orbit solutions
resulting from different state estimation techniques; however,
this comparison should be performed in each loop of the
optimisation routine resulting in an increased computational
burden. Finally, the covariance matrix associated to the state
estimate indicates how spread around the computed state
estimate the density function is and, usually, it is computed
directly during the filtering process. The covariance matrix
is generally an optimistic indicator highly dependent on the
selected (if any) process noise. On the other hand, in schedule
optimisation only a relative indication of the accuracy between
two observation campaigns is of interest, and the process
noise can be kept constant in each model evaluation of the
optimisation loop.

For these reasons, the covariance has been chosen as the
suitable measure of the state accuracy for the scope of this
tool. Specifically, the trace of the covariance is selected as
performance index to express how confident we are on each
element of the state vector, expressed as

J = Tr
{

cov(xf |y1:l,u1:l)
}

. (10)

The covariance matrix in (10) is computed through a filtering
algorithm as described in the next section.

D. State Estimation

To estimate the state of an orbiting satellite and its as-
sociated uncertainty, quantified by means of the covariance,
an orbit determination routine has been employed. Generally,
this approach merges the knowledge coming from different
sources of information: the initial estimate of the state and its
probability distribution at a reference epoch (7); the system
dynamical equations of motion (8), describing how the state
evolves in time; noisy observations of the state at discrete
epochs (9), again with error εi assumed zero-mean Gaussian.

Among the different families of state estimation methods,
a sequential filtering algorithm has been adopted. Essen-
tially, any sequential filtering algorithm is composed of two

fundamental steps: the time-update, in which the dynamical
knowledge is used to propagate the state estimate and its
associated probability distribution between observations times;
the measurement-update, in which the a-priori estimate com-
ing from the time-update propagation is combined with the
observation feedback to improve the state knowledge.

In this research, a square-root unscented Kalman Filter (SR-
UKF) [9] has been employed to perform state estimation.
As any Kalman Filter, the SR-UKF employs a Gaussian
approximation of the density functions to keep the filtering
process computationally tractable. However, the normality
condition is not imposed by linearisation of the dynamical
and observation model as in the more traditional alternatives
of the Kalman Filter, but rather by the unscented transform
which fits a Gaussian density to a set of deterministic samples
representing the true distribution. This transform usually re-
sults in improved estimation accuracy at equal computational
complexity with respect to methods employing linearisation.
The square-root variant propagates directly the square-root of
the state covariance rather than the full-matrix resulting in
improved numerical stability.

As said, in the addressed static setting the realisation of
measurements is not known at the time of the optimisation,
and the expectation operator is required to smooth out the
random effects that may affect the objective. A Monte Carlo
approximation of the expected value would require multiple
runs of the filter with different observation noise realisations
per each model evaluation, resulting in a relevant increase of
the computational time, linear with the number of samples
used. However, in the Kalman measurement-update, the state
covariance update depends on the observation covariance
which quantifies how accurate the received measurement is,
but not on the actual observation value, which influences
only the new state estimate. In other words, the observation
realisation determines only the peak of the Gaussian p(x|y),
while its spread around the mean is influenced solely by
the predicted and observation covariance matrices. Only as
a secondary effect, the updated state estimate will affect the
state covariance at later steps of the filter.

Given these premises, the expectation of the performance
index on the covariance will be approximated by a single filter
run using a zero-noise realisation of the measurements. This
approximation speeds up considerably the model evaluation
and it is considered consistent for scheduling applications.

III. OPTIMISATION

This section introduces the methodology adopted for min-
imising the uncertainty associated to the final state of an object
in space as resulting from different observation campaigns.
Depending on the network definition and the time span of
the tracking window, the object may fall in the stations’ field
of view (FOV) multiple times. Given these premises, the
design variables are the number of times a specific ground
station is employed, in which satellite pass it is used and the
budget available for each measurement window. Therefore,
this optimisation problem involves a different number of



design variables between solution candidates. The objective
is the uncertainty associated to the state of the satellite at the
end of the tracking window.

The objective definition introduced in section II-C is further
discussed in section III-A. The problem formulation is pre-
sented in detail in section III-B and a throughout explanation
of the the algorithm proposed is given in section III-C.

A. Cost Function

The cost function is the performance indicator J specified
in (10). It is the sum of the positive diagonal elements of the
covariance of the final state of the tracking window conditional
to the previous observations and actions. Being the sum of only
positive terms, the theoretical minimum is zero, i.e., the case
of perfect knowledge of the satellite state.

Generally, the more observations are used the more reliable
the computed estimate is, hence the lower the value of the cost
function will be. As discussed, this new information comes at
a cost in a real-life scenario, which is imposed as constraint
as explained in the next section.

B. Formulation as a Structured Chromosome

The adopted formulation aims at reducing the number of
free variables generally considered (see Tab. I) and condensing
the information making use of the concept of hierarchy. In
the current paper, the number of ground stations to use and
the number of passages in which these are activated are free
variables as well. This implies that the number of decision
variables representing the candidate solution is not fixed.
Hence, traditional global optimisation methods can not be
applied.

In this framework, an adapted genetic algorithm for han-
dling structured chromosomes of different lengths has been
proposed. The search space has been formulated in a hi-
erarchical way by imposing dependencies between genes.
Consequently, the operators do not act on single selected
genes but on all the chromosome’s structure depending by
the selected one.

While, in standard GAs, a chromosome (solution) is rep-
resented by a single string of genes all at same unique
level, in the presented algorithm a chromosome consists in
a matrix containing the information of the values of the
genes and, in addiction, their position in the hierarchy of
the chromosome. Every gene belongs to a gene class which
contains crucial information for collocating it in the rest of the
chromosome: data type, children, and bounds (lower LB and
upper UB). Particularly, three levels constitute the hierarchical
structure. The gene class Ground Station forms the top of
the hierarchical structure. The value of this gene indicates
the number of different satellite passes in which the specific
ground station will be used to measure the satellite state. In
a chromosome, the number of genes of this class is fixes
and equal to the number of ground stations in the considered
network. However, for a fixed satellite orbit and tracking
window, the number of times the satellite falls in the FOV
of each tracking station is generally different, depending on

TABLE II
DECISION VARIABLES OF THE OBSERVATION SCHEDULING

OPTIMISATION.

Gene Variable Lower Bound Upper Bound
Ground Station Integer 0 ∀ GSj {p1max, . . . , p

j
max, . . . , p

GS
max}

Orbit index Discrete 1 ∀ GSj {p1max, . . . , p
j
max, . . . , p

GS
max}

Budget Real 0 ∀ GSj 1 ∀ GSj

the station coordinates. Hence, the bounds that define this
gene’s value depend on the specific station considered. The
second level of the hierarchy consists in the gene class Orbit
index (OI). This variable specifies the passage index of the
satellite in the FOV of the associated station to allocate the
budget for measurements specified by the subordinated gene
class Budget for Measurements (BfM). Obviously, a one-to-
one link between the bounds assigned to Ground Station and
Orbit index genes exists. The specific problem formulation
discussed is schematised in Table II. As mentioned, the more
the observations taken the more reliable the estimate should
be. To simulate a real-life scenario, a budget limitation that
constraints the number of observations has been imposed. A
cost associated to each observation is introduced to model
the real budget which should be allocated for an observation
campaign. The BfM gene class indicates the percentage of
the total available budget allocated for a set of measurements
performed by a given station at a given passage of the satellite
in its FOV.

The relation between the decision variable in the BfM
optimisation formulation and the value requested by the model
Number of Measurements (NoM ), i.e., how many observa-
tions to take within a satellite pass, is expressed by the
equation

NoM =

⌊
BfM

cost

⌋
,

where the cost could differ depending on the station and type
of measurement.

The presented algorithm can potentially manage networks
of variegated stations performing measurements of different
nature and, hence, distinguished by different observation ac-
curacy. In this cases, the unitary cost of employment of
different GSs may also differ. In the perspective of applying
this optimiser to such networks, an indirect budget measure
of the number of measurements has been preferred to a more
straightforward one.

One additional information for computing the objective
function has to be provided: the times within the observation
window at which the measurements have to be taken.

This information is not optimised but computed heuristically
as the values of the quantiles of a normal distribution with
mean 0.5 and standard deviation 0.16 at the points that evenly
space the relative time interval [0, 1] NoM times. Indeed,
the relative time interval of a satellite pass [0, 1] is defined
such as 0 is the first time when the satellite rises the local
horizon, whereas 1 is the time when the satellite sets below
the local horizon. This heuristic aims at concentrating the



measurements around the maximum elevation point, which
in the adopted relative time definition corresponds to 0.5, to
exploit favourable visibility conditions.

C. The Algorithm

The adopted algorithm is a population-based genetic opti-
miser that employs two operators to pursue the search of the
global optimum: the crossover and the mutation. These opera-
tors, nowadays established in stochastic fixed-length mixed-
discrete optimisation, are redefined in order to manipulate
candidates characterised by different length and structure.
Then, these strategies are integrated in the classical GAs
structure [10]. In the current section, a brief description of the
important aspects of the optimisation process will be given.

1) Respect of constraints: The optimiser has to deal with
bounds and incompatibility constraints that considerably re-
duce the search space. For example, the number of times
the object falls in the FOVs of the different GSs is different.
This means that the upper bound imposed to the gene classes
Ground Station and Orbit index cannot be one value but
rather a set of values. Furthermore, another problem is that
the genes of the gene class Orbit index dependent from the
same Ground Station gene cannot assume the same value.
An additional limitation is imposed to the gene class Budget
for measurements to not exceed the overall budget. Hence,
creating feasible solutions is not a trivial problem. Therefore,
an ad-hoc strategy for defining the initial population has been
developed.

2) Initial population: First step in the presented algorithm
consists in the definition of the initial set of candidates
(population). In classical global optimisation, this often relies
on techniques that aims at maximising the information gain
by distributing the samples in the search space according to
some strategy. However, none of them can be blindly adopted
in variable-size optimisation problems [2]. In the observation
scheduling optimisation problem, an iterative algorithm that
creates feasible candidates has been developed. The creation
starts from the gene at the top of the hierarchy and defines the
value using random uniform sampling on the range of feasible
values. Once a value has been assigned to a gene, the ranges of
the possible values for all the dependent genes are recomputed
in order to guarantee their feasibility.

3) Crossover: Crossover is an operator that exchanges
genes between two different chromosomes (parents) to pro-
duce two new candidates (children). This operator transfers
the information contained in the parents chromosome to the
children, with the goal of preserving in the offspring the
relevant characteristics that determine a positive performance.

In classical fixed-size algorithms, all the genes lie on the
same level and have a well defined position and meaning,
with genes in the same position of different chromosome
strings representing the same variable. This is not the case
for structured chromosome. In fact, swapping genes among
parent chromosomes on the basis of their position may result in
selecting genes that represent different variables and creating
unfeasible, or even meaningless, solutions. For this reason a

different strategy for selecting genes to swap based on their
class has been proposed by [5].

The crossover operation is permitted only on genes belong-
ing to the same class. This approach guarantees a seman-
tically correct crossover where the picked gene, as well as
the dependent genes, are swapped. Furthermore, the adopted
crossover operator aims at maximising the information ex-
change per crossover operation. However, in the preliminary
stage of this research, the strategy proposed in [5] appeared
to be too destructive, making the information contained in the
parents disappear over the generations. For this reason, here
the number of exchanging genes of each class is computed
considering the structure of the two parents chromosomes.
This helps to homogenise the crossover operation all over the
hierarchy of the chromosome (see Algorithm 1). Moreover, the
already swapped genes are removed from the list of eligible
genes for crossover. This helps to prevent the repetition of the
crossover operation on the same genes which would reduce
the exchange of information. It is worth to mention that,
although the crossover on genes related to the same GS and
OI is encouraged, the probability of exchanging of information
between uncorrelated genes is preserved. The feasibility then
is not guaranteed and the candidates are always checked
and, if needed, repaired. The procedure adopted, described
in Algorithm 1 and depicted in Fig. 2, is then able to create
meaningful children that respect the hierarchical structure of
the parents. However, the respect of bounds or constraints is
not guaranteed and a step of repair is necessary for evaluating
the response of the candidates.

4) Fitness assignment and selection: An essential aspect
that has widely recognised to be affecting stochastic optimi-
sation performance is the selection operator. The principle
behind evolutionary algorithms is that it is more likely that
new proposed solutions inherit their characteristics from good
performing candidates rather from bad ones. However, the way
this result is achieved strongly affects the algorithm search
in terms of exploration and exploitation capabilities. For this
reason, both the fitness assignment and the selection strategy
have to be carefully chosen in regards of the problem faced. In
the observation scheduling optimisation problem the objective
function can assume a wide range of values that can differ
for several orders of magnitude, or even be impossible to
compute because of model divergence. In light of this, it has
been decided to use a filtering ranking fitness assignment.
This filters all the solutions differing of more than 3 orders of
magnitude from the best performing of the current population.

As selection operator, the tournament selection with tourna-
ment size equal to 6 has been used. In addiction, the best 10%
members of the population are persevered immutably. Indeed
this can potentially save computational resources preventing
the algorithm to re-discover solutions already investigated.

5) Mutation: The mutation operator is characteristic of
most population-based optimisers. Although it is a throughout
studied operator in continuous optimisation, it has not been
investigated extensively in mixed-discrete problems.

Here, it is necessary to differentiate the genes to properly



Initialise the children as the copy of the parents;
L← lengths (Chromosomes);
maxExchanges← min(floor(L/2));
prob← genes belonging to each gene class

number of genes ;
geneToExchange←

sample([GS,OI,BfM],probability=prob,maxExchanges);

sort geneToExchange to crossover the higher levels
first;

for i ∈ geneToExchange do
pick gene from first parent;
Get the GS related to the selected gene;
SelectSameGS ←

sample([TRUE,FALSE],probability=[0.9,0.1],1);
if SelectSameGS = TRUE then

if i = GS then
pick the gene related to the same GS from

second parent;
end
if i = OI then

pick the gene related to the same GS from
second parent;

if exists a gene related to the same OI in the
second parent then

pick that gene;
end
else

randomly pick another one of the same
class from second parent;

end
end
if i = BfM then

pick the gene related to the same GS from
second parent;

Get the OI related to the selected gene;
if exists a gene related to the same OI in the
second parent then

pick that gene;
end
else

randomly pick another one of the same
class from second parent;

end
end

end
else

randomly pick another one of the same class
from second parent;

end
Remove the selected genes and the dependent ones

from the pool of eligible for crossover;
Swap the selected genes between the children;

end
Algorithm 1: Crossover for observation scheduling optimi-
sation.

Fig. 2. Visualisation of two passages of crossover operation. At the be-
ginning of the operation, two genes (dark-green shaded area) are chosen
to be exchanged among the all possible ones (jade-green shaded area). As
consequence, the whole dependent gene structure is also selected (light-green
shaded area). Finally, selected genes are swapped to create the temporary
children. The crossover operations restarts from the just created candidates.
However, in the second passage, the eligible genes are reduced of the already
swapped ones.

mutate them accordingly to their type. Integer and discrete
variables can assume a restricted number of values. In ad-
diction, in the case of discrete variables, there is no sorting
criteria available. Then, operators based on perturbations to the
original value can not be applied. In this work, the basic of the
mutation operator has been borrowed by [11]. The mutation
of the offspring relies on operators acting differently on real,
integer and discrete variables, all respecting the requirements
for a mutation strategy in the search spaces: Accessibility,
Feasibility, Symmetry, Similarity, Scalability, and Maximal
Entropy [11]. If mutation is activated, the operator achieves
these requirements by adding normal distributed noise to real-
valued variables. For integer variables, the distribution is based
on the difference of two geometrical distributions. Categorical
variables are simply re-sampled. The strategy parameters
controlling the activation probability and the magnitude of
mutation are fixed all over the optimisation as:

σcontinuous = (UB − LB)× 0.1

σinteger = (UB − LB)× 0.33

σcategorical = 0.1,



and therefore are different not only between gene classes but
also in regards to the referred GS.

The mutation operator also considers the hierarchy. Then,
not only the value of the gene but also the dependent genes are
mutated. As in the case of the crossover operator, constraints
might be violated, and repair may be necessary.

IV. RESULTS

In this section, the developed tool is tested in a quasi-
realistic scenario for the tracking of a satellite in a very low
Earth orbit (LEO), where the dynamics is highly nonlinear due
to strong perturbations other than the first-order gravitational
attraction of the Earth.

In the current test setting, nine ground stations are modelled
and employed. The station coordinates have been exported
in data kernels compatible with NASA’s SPICE toolkit to
compute their inertial state at different epochs through high-
fidelity prediction routines [12]. Other than their coordinates,
the other quantities are set equally for each tracking station,
although in a more realistic test case the user can define them
differently. Specifically, each ground station can observe the
station-satellite range, azimuth and elevation, with the obser-
vation covariance at the maximum elevation set as diagonal
with elements equal to 1.0e−5. The elevation mask is set to
0.05 rad. The unitary cost per observation is set to 0.02. Hence,
a maximum of 50 measurements can potentially be performed.

As for the dynamical model, several forces are taken
into account for simulating faithfully the satellite motion
in LEO [13]: the gravitational force modelled employs the
EGM96 geopotential model up to degree and order 10; at-
mospheric drag according to Jacchia-Gill model; third-body
disturbances due to the Moon and Sun gravitational pull; solar
radiation pressure (SRP) with a conical shadow model.

A GOCE-like reference satellite is considered in a tracking
window which starts the 2018 October 29 12:00 UTC, and it
ends the 2018 October 29 20:00 UTC. The initial state estimate
in Keplerian elements is

x0 = (a[km], e[-], i[rad],Ω[rad], ω[rad], θ[rad])

= (6608.17, 1.61e−3, 1.685, 5.662, 1.199, 1.589) .

After conversion to Cartesian coordinates, this estimate is the
mean of the Gaussian initial state distribution with covariance

cov(x0) = diag(1.0e−2 km, 1.0e−2 km, 1.0e−2 km,

1.0e−4 km/s, 1.0e−4 km/s, 1.0e−4 km/s) .

The drag cross-section is set to 15.0 m2. The mean solar flux
considered is 106.4 in solar flux units, with a mean SRP cross-
section of 1.625 m2 and a SRP coefficient of 1.3.

The geometry of this satellite passes above the considered
network of tracking stations is visualised in the sky plots in
Fig. 3, which show the azimuth and elevation of the satellite
when it is over the stations’ local horizon. Respectively, the
nine ground stations see the satellite in 2, 1, 1, 1, 2, 1,
5, 3, and 5 passes. At it can be seen from this graphical
representation, the maximum elevation angle ≈ 71 deg is
achieved over the tracking station GS-9, which in addition
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Fig. 3. Sky plots of satellite passes over ground stations, with concentric
circles indicating different elevation levels, while the angular quantity repre-
sents the azimuth measured eastwards from the local north. Different colours
indicate different satellite passes over the same station.

sees the satellite in multiple passes. Good elevation angles
≥ 50 deg are also realised above stations GS-3, GS-4, GS-8,
whereas the worst ones correspond to station GS-2 and GS-
5. Hence, it is expected that the optimisation routine would
preferably select measurements at higher elevation angles as
in the implemented model the observation covariance degrades
when the elevation decreases.

The results produced by the observation scheduling optimi-
sation have been compared to the ones resulting from a random
search, considered as baseline. Both the search strategies
have been repeated 50 times to obtain statistically significant
results. The optimisation process has been limited to 1000
generations with population size equals to 30. Considering the
elitism, this results in 27,003 objective function evaluations
per run. The random search has been performed generating
3e5 solutions employing the same algorithm adopted for
creating the initial population in the optimisation. The results,
depicted in Fig. 4, clearly show that the proposed algorithm
statistically outperforms the baseline. Particularly, in the worst-
case run of the presented method, less than 200 generations
are needed to outperform the best-case run of the Random
search. The multimodality and difficulty of the search space
can be appreciated from the visualisation of the best solutions
depicted in Fig. 5.

Analysing the obtained optimum solutions, it can be further
seen how complex and multimodal the search space is. Due
to a strong interaction between the variables, addressing their
effect on the objective is not trivial. However, characteristics
shared by the majority of the found solutions arise clear from
the analysis of Fig. 5 that offers a visualisation of the best-
found candidates. Notably, all the optimal schedules mainly
use the ground stations associated to the highest elevation
angles, as indicated previously in this section. Specifically, the
convenient stations GS-1, GS-3, GS-8 and GS-9 are employed
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Fig. 4. Evolution of the best found result over the iterations and random
search results.
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Fig. 5. Visualisation of the best solutions found in the optimisation runs.
On the vertical axis, the J value and the Orbit indexes at which every Gs is
used are reported. The colour represents the budget allocated to the specific
observation, the darker the colour the more the measurements done.

in almost all solutions, while the low elevation ones GS-
2 and GS-5 are almost never selected. This indicates that
the optimisation tool is able to find and select the most
important features while discarding the bad characteristics
starting from a random population in complete autonomy,
despite the multimodality and complexity of the search space.

V. CONCLUSIONS

This paper presents a novel approach to generate optimal
observation schedules which improve the knowledge of the
state of objects orbiting the Earth. This work is a contribution
to the crucial need for methodologies to efficiently and au-
tonomously track a constantly increasing number of objects,
operational and non, in space.

The addressed problem has been framed under the math-
ematical formulation of optimal sensor control. This optimi-
sation problem consists in finding the optimal sequence of
actions to minimise a performance index on the state probabil-
ity distribution conditional on the received measurements. The
objective index requires the computation of probabilistic infer-
ences, which are formulated with Bayes’ rule and solved with a

square-root Unscented Kalman Filter, a sample-based filtering
approach with enhanced numerical stability. The searching
strategy has been formulated as a variable-size mixed-discrete
global optimisation. To face its complexity, a Structured-
Chromosome Genetic Algorithm optimiser, characterised by
revised genetic operators, has been developed and employed.

The proposed framework has been tested on the quasi-
realistic scenario of optimal tracking of a LEO satellite evolv-
ing under the effect of strong dynamical perturbances, in which
nine ground stations were available and limitations on the
possible number of measurements were imposed. The results
indicate that the presented methodology can successfully and
efficiently enhance resources allocation strategies in space
object tracking problems.

The algorithm has been implemented to work with any
dynamical and measurement model, and any station network,
such that different test cases can be tested in future. In
addition, future work will focus on the generation of solutions
with multiple budget levels to generate Pareto fronts for a
tracking window comparing different levels of accuracy and
allocated budget. Finally, a dynamic approach that uses the
static observation schedule as first guess could be developed
to improve the solution optimality in online applications.
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