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1 INTRODUCTION
Social learning enables multiple robots to share learned experiences
while completing a task. �e literature o�ers examples where robots
trained with social learning reach a higher performance compared
to their individual learning counterparts [e.g, 2, 4]. No explana-
tion has been advanced for that observation. In this research, we
present experimental results suggesting that a lack of tuning of the
parameters in social learning experiments could be the cause. In
other words: the be�er the parameter se�ings are tuned, the less
social learning can improve the system performance.

To test our hypothesis, we generated 50 parameter se�ings us-
ing Design of Experiments (DoE) and tested them in an individual
learning con�guration with a single robot (i.e., with social learn-
ing disabled). �e de�nitive screening DoE was created with the
help of JMP so�ware (SAS Institute Inc, JMP, Version 11.1.0). �e
experiments are conducted in simulation using JBotEvolver [1].
�e experiment requires the robots to learn a foraging task. �e
environment is a square arena. Five pucks are randomly placed in
the arena at the start of a run. �e robots must collect the pucks
and bring them to the nest located in the centre of the arena. Once
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a puck is brought to the nest, it is immediately replaced at a random
location in the environment. �e performance of each robot, i.e. its
�tness, is equal to the number of pucks it collected during a trial
lasting 1000 time steps. �e robots use embedded instances of the
NEAT evolutionary algorithm for on-line learning [3]. �e robot’s
controller is an arti�cial neural network. �e neural network has 11
input and two output nodes. �e input nodes consist of 8 proximity
sensors, a nest sensor, a puck sensor, and a puck carrying sensor;
the output nodes provide the right and le� motor speed.

From the 50 parameter se�ings of the DoE, we selected the 10
se�ings with best performance and 10 with median performance.
We compared the performance of these two groups of se�ings,
where social learning is disabled, with two social learning con�gu-
rations of 2 and 4 robots. Social learning is implemented as follows:
�rst, the robots sequentially evaluate the controllers in the current
generation. �en, the robots exchange information. Each robot
randomly selects another robot from which it receives its current
best controller, i.e. the controller with the highest �tness. �e robot
compares the received controller’s �tness to that of its own worst
controller. �e new controller replaces the worst controller if it is
be�er. �e NEAT algorithm uses the updated list of controllers and
�tness values to create the next generation. When social learning
is applied, these robots have the same parameter se�ings as the
individual learning mechanisms except for the population size. �e
population size for the 2 and 4 robot setup is the population size
from the 1 robot setup divided by the number of robots (e.g., when
the 1 robot setup has a population size of 100, the social learning
experiments used a population size of 50 and 25 for the 2 robot and
4 robot setup respectively).

�e robots operate in their own arena but they communicate
across arenas. Consequently, the performance of the robot is only
due to its own actions and not in�uenced by other robots in the
same arena. Removing this inter robot collision allows for a be�er
comparison between the individual and the social learning experi-
ments. For each experiment, 20 replicate runs are performed with
di�erent random seeds.

2 RESULTS
Our analysis shows that from the total of 21 investigated parameters
from the NEAT learning algorithm, 14 parameters have a signi�cant
impact on the learning performance. �e variable representing the
chance to randomly reset a weight in the neural network has a
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Figure 1: Mean performance with 95% con�dence interval of
the baseline experiments for all DoEparameter settings. �e
y-axis shows the performance, measured as the number of
collected pucks. �e x-axis shows the rank of the parameter
setting. �e results are compiled over 20 replicate runs.

big e�ect on the response and performance is best if it is turned
o�. Moreover, a large population size, a high mutation probability
and a small value for the percentage of top individuals that can be
parents have a signi�cant bene�cial in�uence on the �tness. �is
indicates that a large and diverse population of controllers seem to
be advantageous for the learning rate.

Figure 1 shows the mean performance of the 1 robot perfor-
mance at the �nal generation (generation 200). Performance, i.e.,
number of collected pucks, is plo�ed against the rank of the mean
performance of the 50 parameter se�ings from the DoE. �e data
in �gure 1 con�rms that parameter se�ings signi�cantly in�uence
the performance of the controllers (Pearson’s r(50)= -0.9754128, p
< 2.2e-1).

Figure 2 shows the impact of social learning on performance for
the best and median parameter se�ings. Ranks 1-10 refer to the
best se�ings and ranks 21-30 to the median se�ings. Every se�ing
is tested for a setup with 2 (red) and 4 (blue) robots in 20 replicate
runs. �e impact of social learning is measured as the ratio between
the performance with social learning and the baseline performance.
A ratio higher than 1 means an increase of performance due to
social learning. �ere is a signi�cant positive correlation between
the rank number and the improvement ratio with social learning
(for 2 robots Pearson’s r(20) = .56, p < 0.011; for 4 robots Pearson’s
r(20) = .63, p < 0.003). Figure 2 shows that be�er parameter se�ings
bene�t less from social learning, indicated by performance ratio
values around 1.

3 CONCLUSIONS
With this study we gained a be�er understanding of the bene�ts of
social learning. Existing literature in social learning compares indi-
vidual learning with social learning for only one parameter se�ing.

Figure 2: Performance ratio of 2 (blue) and 4 (red) robots
compared to the baseline experiments. �ey-axis shows the
performance ratio, measured as the mean performance of
2 respectively 4 robots divided by the baseline performance.
�e x-axis shows the rank of the parameter setting (rank 1
is the rank resulting in the highest performance).

Results show an increased performance and increased learning
speed. �is study extended this comparison by using di�erent pa-
rameter se�ings. We showed that the quality of the parameter
se�ings in�uences how much social learning can improve the sys-
tem performance: the be�er the parameter se�ings, the less social
learning can contribute. �erefore, this study serves as a reminder
that tuning the parameters can impact the conclusions drawn from
an experiment. Nevertheless, tuning can be computationally ex-
pensive or not even possible when the optimal parameters may
depend on the unknown environment that the robots operate in.
�erefore, social learning can be a bene�cial approach to increase
performance and serve as an alternative to parameter tuning.
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