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Abstract To maximize the throughput of a hot rolling
mill, the number of passes has to be reduced. This can
be achieved by maximizing the thickness reduction in

each pass. For this purpose, exact predictions of roll
force and torque are required. Hence, the predictive
models that describe the physical behavior of the prod-
uct have to be accurate and cover a wide range of dif-

ferent materials.

Due to market requirements a lot of new materi-

als are tested and rolled. If these materials are chosen
to be rolled more often, a suitable flow curve has to
be established. It is not reasonable to determine those

flow curves in laboratory, because of costs and time. A
strong demand for quick parameter determination and
the optimization of flow curve parameter with minimum
costs is the logical consequence. Therefore parameter

estimation and the optimization with real data, which
were collected during previous runs, is a promising idea.
Producers benefit from this data-driven approach and

receive a huge gain in flexibility when rolling new ma-
terials, optimizing current production, and increasing
quality. This concept would also allow to optimize flow

curve parameters, which have already been treated by
standard methods. In this article, a new data-driven ap-
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proach for predicting the physical behavior of the prod-
uct and setting important parameters is presented. We
demonstrate how the prediction quality of the roll force
and roll torque can be optimized sustainably. This offers

the opportunity to continuously increase the workload
in each pass to the theoretical maximum while product
quality and process stability can also be improved.

Keywords flowcurve · Kriging · meta-model · metal ·
hot rolling

1 Introduction

The complex process of hot rolling requires very accu-
rate physical models. Several different physical models
are used in hot rolling mills. These models include the
slab or ingot heating at the furnace, where the ther-5

mal behavior is modeled, as well as the rolling pro-
cess itself. The task of the different models is to pre-
dict the thermal and physical behavior of the product

and set important parameters for achieving maximum
product throughput while increasing the quality of the10

final product. There are several process and product
parameters which play important roles. They are inde-

pendent of the plant type and applicable to steel and
aluminum hot mills. Some of them, for example plant
geometries or drive parameters, remain constant during15

rolling. Other parameters may vary during rolling but
are not dominated by the material, e.g., the maximum
possible thickness reduction depends mainly on the ac-

tual thickness and the work rolls currently installed.
The maximum redcution is of course also dependent20

from the friction between the rolls and the material
but this effect is not as huge as the geometrical limita-

tions. Parameters, which depend on the material of the
product, are usually hard to optimize, because (i) the
number of different materials is steadily increasing due25

to market requirements and (ii) measurements of the
process are only indirectly correlated to the material.

The most important parameters for the prediction
of the roll force are the flow curve parameters of each
material. A more efficient method for optimizing these30

parameters is necessary to increase the flexibility and

reduce the cost of the rolling process.

A recent approach uses artificial intelligent tech-

niques for optimization of shape rolling sequences [17].
Especially in the field of cold rolling, several methods35

for simulation and optimization were published [18, 24].

There were also studies, which were based on finite el-
ement methods [25]. In this paper we propose meta-
model based optimization strategies for the task of hot

rolling mill flow curve parameter optimization. Meta40

models, also referred to as surrogate models, simplify
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the simulation optimization as the run times are gener-
ally much shorter than the original function evaluations
[1, 16] and are a proven strategy for global optimization
[15]. The results are compared to classical optimization45

strategies. Hence, this paper addresses the following re-
search questions:

(R-1) Can the rolling process benefit from meta-model
based optimization?

(R-2) How time- and cost efficient is this approach in50

comparison to the established industry proce-
dures?

This paper is structured as follows. Section 2 intro-
duces technical terms and fundamental principles of hot
rolling and the related parameters. It describes the cur-55

rent state-of-the-art approach in industry. Problems re-

lated to the rolling process are described in Sec. 3. Our
methodology is detailed and compared to existing ap-
proaches in Sec. 4. The experimental setup is described

in Sec. 5. Results are presented in Sec. 6. The paper60

concludes with a discussion in Sec. 7.

2 Hot Rolling

2.1 Fundamentals and Technical Terms

Before describing some of the main aspects, the funda-
mental technical terminology will be introduced. Fig-65

ure 1 shows a common hot strip mill for steel. The pro-
cess in general is very similar to an aluminum mill. The
work flow of the process is from the left side to the

right side. The main components are a reheating fur-
nace, a reversing roughing mill, a continuous finishing70

mill, a cooling line, and a downcoiler. The coilbox be-
tween roughing mill and finishing mill is more or less

optional. It is used to achieve better temperature pro-
files and allows a more compact rolling mill.
The process starts with the charging of the furnace.75

Here, slabs which are usually at room temperature are
charged and reheated to temperatures around 1200 deg
C for steel mills and 500 deg C for aluminum mills.

Fig. 1 Hot Rolling mill for steel with coilbox. The roughing
mill consists of one horizontal stand with four rolls, the so-
called quarto stand and an optional vertical rolling stand with
two rolls, the so-called edger (not shown in the figure).

The slab geometries may vary. Usually, they have
an input thickness, hinit, between 200 mm and 300 mm,80

width of 600 mm to 2500 mm and length between 3 m
and 10 m for steel production. For aluminum, the thick-

ness after discharge is commonly around 600 mm be-
cause the temperature loss of aluminum during rolling is
much less than for steel. After discharging, the first ma-85

jor process is to reduce the thickness of the slab by 30
mm to 40 mm. This is done in a so-called roughing mill
(RM). The roughing mill in a conventional hot strip mill

consists of one horizontal stand with four rolls, which is
then called quarto stand and an optional vertical rolling90

stand with two rolls, the so-called edger (not shown in
the figure). The edger is optional and has the task to

reduce the width of the slab and to improve the shape
of the slab especially at both ends.

The reduction from the initial thickness hinit down95

to the target thickness htarget is done in several defor-
mation steps which are called passes. In each of these
deformation steps, the thickness of the slab will be con-

tinuously reduced until the target thickness is attained.
The reduction has to be split to several passes because100

the feasible reduction in one pass is limited. The de-

formation in the roughing mill can be done in both
operating directions. Hence, each pass changes the di-
rection of movement of the slab. The total number of

passes has to be odd, since the slab has to be moved to105

the next process step. After rolling in the roughing mill,
the slab is transferred in the direction of the finishing
mill. If a coilbox is used, the material is coiled first and

then directly uncoiled to start the rolling in the finish-
ing mill. Here, the product is rolled in several stands to110

the final thickness (specified by by the customer) and is

directly cooled afterwards. The additional cooling line
is only used for steel mills. Finally, the product is coiled
in the downcoiler.

One important quality criterion for the final prod-115

uct is the deviation of the actual thickness from the
target thickness htarget. The thickness deviation at the

head of the product is typically a result of the roll force
prediction accuracy of the physical model. The head
of the product is the first part which encounters the120

deformation. In finishing mills we will most often find
thickness gauges after the last stand. These are used to
control the thickness once the head passes the gauge so
the roll force deviation would mainly be responsible for

the head thickness. Additionally, the roll force is used125

as reference for the bending and for profile control and
is therefore also very important for the product profile.

Inline control of the thickness is usually not installed
in other mill types such as plate mills. This is because
the total length of the product is much smaller than130

in mills with coil production, where the total length
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might accumulate to more than 1000m. In that case, a
feedback of the measured thickness during rolling can
be used to adjust the roll gap and therefore the final
thickness. For mill types without inline control, it is135

crucial to improve the roll force prediction in order to
minimize the thickness deviation.

Another aspect is the throughput of the mill, which
should always be maximized. To maximize the through-

put, the number of deformation steps, i.e. the number140

of passes, should be minimized without violating other
constraints. Two of the most limiting parameters when

trying to increase the reduction in each pass are (i) the
maximum roll force capability and (ii) the maximum
roll torque capability of the stand. Therefore, it is es-145

sential to have good models for the prediction of roll
force and torque.

As mentioned above, deviations in roll force pre-
diction will also affect the thickness and therefore the

quality of the product. Because current market require-150

ments cover a very wide range of materials and geome-
tries it is important to increase the model quality for
the roll force prediction for all products which may be

rolled on these mills. Ideally, the roll force prediction
is completely independent of the geometry and other155

parameters and will only depend on the quality of the

material parameters. Each material is usually classified
according to its chemistry. A material database stores
mechanical and thermophysical parameters for the de-

scription of the different properties of each class. These160

parameters are used for the prediction of behavior dur-
ing the deformation process and are therefore of major
importance to the rolling process.

2.2 Flow Curve and Roll Force Model

The flow curve parameters are most relevant for the
roll force model. The flow curve expresses the material
resistance during plastic deformation in dependence on

the chemistry, the temperature, the deformation and
the deformation rate. The deformation ϕ, also called
effective, logarithmic deformation or true strain is ex-
pressed by:

ϕ = ln
h0

h1
.

Here, h0 is the input thickness and h1 is the output
thickness of the pass. The first flow curve formulas were

developed by Geleji and Ekelund around 1950. These
formulas were only linearly dependent on the tempera-
ture and only valid for standard low carbon steel [10].

Afterwards several other formulas were developed with
polynomial components and exponential terms which

also took into account the deformation and deforma-
tion rate. While the first formulas were only valid for
some low alloyed carbon steels, Hajduk developed for-
mulas which were also valid for some medium and high

alloyed carbon steels [9],[8]. A good overview and de-
scription of the different flow curves can be found in
[10, 12, 26]. These formulas model the deformation re-

sistance, kf , in dependence on the deformation ϕ, the
deformation rate, ϕ̇, and the temperature, ϑ. The de-
formation resistance or flow stress expresses the stress
which is needed to sustain a plastical deformation. In

general, the deformation rate can be formulated as:

kf = AKϕKϑKϕ̇,

where A ∈ R+ is a constant factor and the terms K(·)165

represent functions of the corresponding variables ϕ,
ϕ̇, and ϑ, respectively. The most common model for

these formulas was developed by Hensel and Spittel [10].
It was extended at the University of Freiberg. Thus,
these extensions are called Freiberger Approach. The170

extended versions of this flow curve model gives a bet-
ter approximation of the flow stress within high defor-
mation grades. Some of the available flow curve mod-
els, which are typically used in process models for hot

rolling, are presented in Table 1. Their corresponding175

equations read as follows.

kf = kf,0A0A1e
m1ϑA2ϕ

m2e
m4
ϕ A3ϕ̇

m3 (1)

kf = A0e
m1ϑϕm2e

m4
ϕ ϕ̇m3 (2)

kf = A0e
m1ϑϕm2e

m4
ϕ (1 + ϕ)

m5ϑ em7ϕϕ̇m8ϑ (3)

kf = kf,0A1e
m1ϑA2ϕ

m2A3ϕ̇
m3 (4)

The multipliers Ai (i = 0, 1, 2, 3) can be reduced to

one parameter, A. The parameters mj (j = 1, 2, . . . , 8)
are defining the exponential behavior of the materials
in dependence of the temperature ϑ, the deformation180

ϕ, and the deformation rate ϕ̇. The parameters ϑ, ϕ,

and ϕ̇ are defining the working point in each deforma-
tion. The value kf,0 used in the equations (1) and (4)
is the basic deformation and is calculated by empirical

formulations based on the chemistry. Each material is185

classified according to its chemistry and gets its own
parameter setM with parameter values m1 to m8 and

A0 to A3, respectively. Usually, there is one parameter-
set M for each material, which is then valid for a spe-
cific equation only. Besides the parameter values for190

the models also the valid region of these parameters is

stored. Summarizing, the parameters kf , ϕ, ϕ̇, and ϑ,
the multiplicators Ai,mj , (i = 0, 1, 2, 3; j = 1, . . . , 8),
and related functions kf,0,Kϕ,Kϕ̇,Kϑ, are used.

Nowadays, hundreds of different materials are known.195

The parameter kf is almost linearly correlated with the
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Table 1 Overview of typical equations for the regression of
the material flow stress. The multipliers Ai are reduced to
one parameter, A. Parameters mj are defining the exponential
behavior of the materials in dependence of the temperature ϑ,
the deformation ϕ or the deformation rate ϕ̇ which defines the
working point. Parameter kf,0 is defined by a simple equation
based on the chemistry. Entries in the column ”Equation”
refers to the equations defined on p. 3.

Eq. Name #Params Parameter List

(1) Freiberg 1 5 A,m1,m2,m3,m4

(2) Freiberg 4 5 A,m1,m2,m3,m4

(3) Freiberg 8 7 A,m1,m2,m4,m5,m7,m8

(4) Hensel
Spittel

4 A,m1,m2,m3

roll force and roll torque. Thus, the model prediction

quality and herewith the process stability and prod-
uct quality are correlated to the parameter-setM. It is
therefore important to optimize those parameters in or-200

der to increase the model quality and to ensure a stable
process with maximum throughput and product qual-
ity. A standard procedure for obtaining these parame-
ters is the measurement of the deformation resistance

in a laboratory. Those measurements can be used for a205

regression onto one of the formulas shown in Equations
(1) to (4). Of course, other formulas exist, and might

be used for regression. Especially when trying to model
the deformation of micro alloyed or high alloyed steel
or when complex materials with phase transformations210

should be described these other models might be more
suitable.

2.3 Description of the analytical model

The analytical model used for the calculation of the roll

force is based on the elementary rolling theory [12, 27].215

Some of the limitations of that theory are compensated
with correction functions. For example, one of the re-
quirements for the elementary theory is that during

each pass there is a complete plastic deformation of the
whole material. For products with thickness above 500220

mm this is clearly not given. Therefore, a compensation

curve, which is empirically determined, is applied. For
the calculation of the roll force in each pass the defor-
mation zone is divided into single stripe-like elements
and the force balance for each stripe is calculated. The225

solution yields to the basic differential equation of the
plastically deformation theory which was developed by
Karman in 1925. When calculating the roll force for

one pass, the flow resistance has to be considered. This
flow resistance kf is material dependent and is influ-230

enced by the parameter values of ϕ, ϕ̇ and ϑ. Further-

more, the forces induce temperature into the material
so the calculation of the next pass depends on the pre-

vious passes. Optimizing the flow curve by analyzing

the rolling results is not sufficient. If the parameter of235

the flow curve changes, the whole process has to be sim-
ulated again and then the calculated roll forces based

on the new flow curve can be compared with the orig-
inal feedback, i.e., measurements of roll force, torque,
temperature, and speed. Additionally, it is also not suf-240

ficient to optimize the result of a single product be-

cause the parameters ϕ, ϕ̇ and ϑ may not vary enough
to achieve stable results. Therefore it is preferable to
consider a campaign with a wide variation of product

geometries, temperature ranges, and deformations.245

2.4 Standards in Industry

Currently, the available concepts for the optimization of
flow curve parameters are mostly dealing with determi-

nation of those parameters in laboratory rather than
optimizing those parameters with real process data.250

Traditionally, the parameters are measured with small
samples of one piece in laboratory and are then gener-

alized for every material which is close to the sample
in terms of material composition. Some companies are
modifying the flow curve parameters with linear mod-255

els. That is, they are determining the prediction accu-
racy of their model and are varying some of the influ-
ence parameters. Most of the research in this area is on
the development of suitable flow curve equations espe-

cially for high and micro alloyed steel [11, 19, 28] rather260

than using a data driven approach for the optimization
of those parameters.

3 Problem Description

According to our best knowledge, flow curve parameter
determination in laboratory as described in Sec. 2 will265

require several weeks and costs several thousand Euro

for the required materials. Sometimes, this is not af-
fordable and therefore not a suitable way to determine
those parameters. Hence, we are looking for a cheaper
approach to parameter estimation.270

Due to their highly nonlinear behavior, the flow
curve equations cannot be solved directly. Furthermore,
a different roll force would result in a different temper-

ature balance of the product and thus the temperature
in the next pass differs from the original calculation.275

Because these aspects cannot be neglected, we have to
simulate a whole scenario when testing new parameter

sets for the flow curve of a specified material. The cal-
culations of the roll forces and roll torques within this
simulation are afterwards compared with the measure-280

ments to get a quality criterion for the new parameter
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set. The detailed description of the simulation scenario
is presented in Chapter 4.

It is important that the simulation scenario behaves
in the same way as the online process. Therefore, the285

simulation uses feedback of the measured speed, the
reduction, and temperature to calculate the new set-
tings. This enables the simulation to achieve the same

working point as in the online process. Another prob-
lem can be the amount of data. The simulation of a290

whole batch where only one material group was rolled

consists of thousands of different deformation steps and
will therefore be highly expensive in terms of simulation
time. Several optimization algorithms require bound
constraints of the optimized parameters. In our case,295

parameters A and mi are dependent on each other. The
only limitation which can be set is a plausible region for
the resulting value kf of the basic deformation. In hot

mills, the maximum basic deformation value for kf is
usually below 300 N

mm2 , but always positive. Then, for a300

given maximum working range of the deformation, de-

formation rate, and temperature, the feasibility of the
parameter set can be tested.

Due to the fact that every company has usually its
own classification system it might be that materials305

which are grouped together in one company are sepa-
rated in other companies. In this case, the optimization,
which has been done in the first company cannot be di-

rectly used for other companies and has to be renewed
every time.310

Summarizing, it is desirable to optimize the process

in order to
– reliably estimate valid flow curves,
– reduce lab costs,
– save time,315

– determine parameters in their working environments,
and

– make the process more flexible and adapt to new

(material) changes quickly.

4 Methodology320

4.1 Simulation environment

The environment of the online process is shown in Fig. 2.

First of all the model gets information about the prod-
uct which includes initial geometry data, discharging
temperature data, and information about the chemistry325

of the product. The discharge temperature is an ini-

tial temperature field for the product. One part of the
rolling model calculates the temperatures losses during
the whole process. Finally, the important parameter ϑ

is a result of the temperature losses from discharge to330

that point of the process. Furthermore, target data is

Fig. 2 Model environment in the real-world process for each
pass: The product and customer data such as material de-
scription, initial and target geometry (1) are combined with
operator data (2) and are fed to the model which calculates
all required settings (3) for the next rolling pass (setup for
next pass). After rolling of this pass the model gets feedback
(4) of the just rolled pass and combines this information for
the recalculation of the previous pass and for the next calcu-
lations (2-4). Additionally, changes from the operator for the
next pass are send to the model. The product and customer
data are only product and not pass dependent and may only
be send once. To enable a simulation of this process every in-
and output of the model is stored in a database.

Fig. 3 Model environment for the offline simulation. The
data which has been collected in the real word process is
send to the model which calculates a new setup for the next
pass. This setup may be different from the original one. But
because of the fact that we also store the feedback from the
drives and gauges the model will receive also the original set-
ting and recalculates the pass as it really has been rolled.

also coming from the customer. Both data can be seen
as constant and are denoted with Nconst , i.e., the opera-
tor cannot change them as they are part of the produc-

tion planning system which handles the orders of the335

mill owner. Afterwards, the Nconst is used to calculate
the first settings for the mill and this result is shown to

the operator. The setting consists of roll gap settings,
speed settings, geometry, temperature and time calcu-
lations. With this data the first planned settings NSet,340

which also include the parameter ϕ, ϑ and ϕ̇, are calcu-

lated and are shown to the operator. The operator can
interfere and modify the way this product is rolled. This
is referred to as rolling strategy. This rolling strategy

defines how a product is rolled which includes rolling345

speed, number of passes, deformations, speed settings,
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possible rolling breaks and much more. These strategies
may also be specific constraints like absolute reduction,
deformation ϕ, force, torque, but also other restrictions
to the process like drive limitations.350

If the operator is satisfied with the settings NSet

calculated by the model, the settings are sent to the
plant where the first pass is rolled. After this pass,

all measurements collected during rolling which include
forces, torques, speeds, temperatures, gap settings, de-355

lay times, and several more data, are sent to the model

and the database but are also shown to the operator.
Now, the operator and also the model can adapt the set-
tings for the next passes and react to any unexpected
behavior of the mill. Usually, no big changes are made360

by the operator and the rolling of the further passes is
started directly. Again, for each pass the settings are
sent to the plant and the feedback of measurements is

received from the plant. For analysis and offline simu-
lations all inputs and outputs are stored in a database.365

This database is the basis of the offline simulation
shown in Figure 3. Here, we feed the same model which

was used in the online process with the data stored dur-
ing the real-world process. Therefore we can guarantee
that the model reacts in the same way as it would react370

in the rolling process. The data, which was coming from
the operator and the geometry data are taken from the
database. Hence, the model will not recognize if it is

used for an offline calculation or for an online scenario.
Although it may calculate different settings for the pro-375

cess, it will receive the original feedback from the plant
and calculate everything based on the original settings.

For a product with 19 passes the model is triggered
20 times. The first trigger creates the initial setup and
all other triggers are feedbacks for the 19 passes with380

which the original products were rolled. The only differ-
ence are the parameters used for the calculation of the
roll force. Therefore, we have a calculated and measured
value for the force and torque for each product and pass

for every run. After each simulation run, the parame-385

ters may be changed and results of different parameters
may be compared. This enables the optimization of the

flow curve parameters. Minimization of the Root Mean
Square Error (RMSE) of the predicted roll force is the
optimization objective.390

4.2 Surrogate Modeling

If the simulation runs or the original problem in general

are very expensive in terms of evaluation it would be
very time consuming to perform parameter optimiza-
tion on those original scenarios. Therefore, we use a395

surrogate-model based optimization approach. Surro-

gate models are supposed to replace the original, expen-

sive simulation model and are expected to be cheaper

to calculate.

The analytical models, as introduced in Sec. 2.2,400

are cheaper to evaluate in comparison to the finite ele-
ment method models. In this paper, the term surrogate

model is used to describe data driven models, which are
built from an analytical model. Therefore, the simula-
tion runs on the analytical model with a specified set of405

products is the expensive model. The products which

are simulated usually belong to the same material group
and have previously been rolled in a series on a real
rolling mill. Each product is calculated as it would be

done during rolling. Therefore, time delays which oc-410

curred during the real production are also taken into
account.

Our data is sourced from a reversing aluminum hot
mill, which has typically around 19 passes. Hence, we

have more than 20 calculations for each product be-415

cause the model is triggered after finishing each pass.
The data of each pass is sent to the model, which may

react on unpredicted circumstances.

In general, data-driven surrogate models can be any
kind of models, e.g., artificial neural networks, linear420

models, Kriging, random forest and others. A detailed

overview of surrogate model based numerical optimiza-
tion is presented by Jin [13] and Jones [15].

One framework for surrogate-model based optimiza-
tion is sequential parameter optimization (SPO) [3].425

SPO combines methods from classical DoE and modern

Design and Analysis of Computer Experiments (DACE) [2,
4] based on Kriging models.

Algorithm 1 presents the pseudo code of SPO, as
adapted for the application of hot mill parameter opti-430

mization. Note, that we will use the notation
(
x(i), y(i)

)

for the data from the i-th pass which is passed to the
surrogate model. During the first stage of experimenta-
tion, SPO explores the search space of the optimization

problem A, which is treated as a black box. A set of in-435

put design points x is passed to A. Usually these are
created by a space filling design, e.g. Latin hypercube

sampling. Each call of the objective function produces
some output y regarding its performance.

SPO now tries to determine a functional relation-440

ship between x and y. SPO thus uses a model Y (x) as

surrogate for the hot mill simulation model A. As men-
tioned above, the chosen model type is Kriging Kriging
is frequently used for surrogate-model based optimiza-
tion, because it provides a powerful and flexible predic-445

tor. It also provides an estimate of the variance or error
of each prediction. The observations are interpreted as
realizations of a stochastic process. A gaussian kernel is

used to model the correlation between observations [23].
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Algorithm 1: SPO-based hot mill simulation
tuning.

// phase 1, collect initial knowledge about the

optimized process:

1 let A be the hot mill simulation model we want to
tune;

2 generate an initial design DES = {x(1), . . . ,x(n)} of n
parameter vectors;

3 let k = k0 be the initial number of replications for
determining estimated responses;

4 foreach x ∈ DES do

5 run A with x to determine the estimated response
y of x;

// phase 2, building, using and improving a

surrogate model:

6 while stop criteria not reached do
7 build surrogate model Y (x) based on DES and

{y(1), . . . , y(|DES|)};
8 optimize the model w.r.t some cost function and

constraints, thus produce a set DES’ of d new
parameter vectors ;

9 run A with each x ∈ DES’ to determine the
response;

10 extend the design by DES = DES ∪DES’;

// phase 3, final exploitation and fine tuning:

11 use local optimizer for the best p parameter sets
x1...p ∈ DES, without constraints

In the sequential improvement loop SPO optimizes450

the surrogate model Y (x) over the considered space of
input variables by means of a cost function. Once the

new set of design points DES’ has been selected, the
required evaluations of DES’ are performed. Based on
DES’, the surrogate model Y (x) is updated.455

In step 8 of Algorithm 1, a search on the surro-
gate model is performed. Here, the constraints of the

mill parameterization problem have to be considered.
As the constraints are not expensive to evaluate, they
are evaluated together with the surrogate model itself.460

For the inequality constrained optimization, we use the
popular method developed by Powell [21, 22], which
does not require any derivatives of the objective func-
tion to be available. During this optimization step 8,

the next point x to evaluate in the sequential loop of465

SPO is determined. For expensive, global, black-box
optimization Jones [14] introduced efficient global opti-

mization (EGO). EGO exploits the information given
from a Kriging model, i.e., the predicted mean and vari-
ance, to compute the expected improvement (EI) of a470

given solution. EI can hence be used as a cost function
during step 8, as an alternative to the predicted value
of the Kriging model.

In step 11, the well known downhill simplex algo-
rithm introduced by Nelder and Mead [20] is used to im-475

prove the best found results by a local optimization pro-
cedure. We choose the downhill simplex implementation

in the nloptr R package. During local refinement, con-

straints are disregarded because they no longer play a
role in the region of good solutions.480

5 Experimental Setup

In our case, the parameter optimization was based on
Equation (1). The feasible range was 0 ≤ kf ≤ 300.
That is, solutions that result into negative kf values or

kf values larger than 300 are considered to be infeasible.
The usual working point for our test data was in the
following range:

0 ≤ ϕ ≤ 0.5, 0 ≤ ϕ̇ ≤ 600, 500 ≤ ϑ ≤ 600.

With that said, the optimization problem to be solved

in this study is defined as follows:

– Parameters to be changed are the flow curve param-

eter vector m and the consolidated parameter A of485

the flow curve.
– The deviation of simulated roll force from the mea-

sured roll force is minimized.

– Computational constraints: The evaluations of the
objective function is expensive. (see Section 4.2)490

The parameters which represent the search space and
were subject to optimization in this study are summa-
rized in Table 2.

To evaluate the success of the optimization, the re-
sulting parameter set is compared to a well-known, es-495

tablished parameter set used in practice so far. This

old parameter set has been determined by experts ac-
cording to best knowledge from literature on similar
materials.

We have chosen the SPO toolbox (SPOT) to con-500

duct the experiments [5]. SPOT itself has parameters
as well that are set according to the authors experience:
– The chosen surrogate model is Kriging, based on

code by Forrester et al. [7].
Parameter: seq.predictionModel.func.505

– The initial design consists of 40 candidate solutions,
which are created by Latin Hypercube Sampling

(LHS).
Parameter: init.design.size.

Table 2 Upper and lower bounds for the parameter set M
introduced in section 2.2 which was used during the optimiza-
tion. All parameters are of type FLOAT.

Factor Low High

A 0 2
m1 -0.01 0
m2 -0.3 0.4
m3 0 0.2
m4 -0.1 0.1
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Table 3 Spot settings. A detailed description of each param-
eter can be found in 5

Parameter Value

seq.predictionModel.func spotPredictForrester
seq.predictionOpt.func spotModelOptim
seq.predictionOpt.method "NLOPT_LN_COBYLA"

seq.predictionOpt.budget 1000
seq.predictionOpt.restarts TRUE
seq.design.size 200
seq.design.new.size 1
init.design.size 40
init.design.repeats 1
auto.loop.nevals 40/50/100
seq.infill spotInfillExpImp/NA

– Overall, we varied the number of evaluations of the510

objective function (hot mill simulation) with vary-

ing sequential design. We choose the sequential de-
sign either consist of 10 evaluations of the objective
function or 60 evaluations of the objective function.
Therefore we had 50 or 100 evaluations in total.515

Parameter: auto.loop.nevals.
– Since the objective function is deterministic each

solution is evaluated exactly once.

Parameter: init.design.repeats.
– In each sequential step, one new solution is evalu-520

ated on the target function.
Parameter: seq.design.new.size.

– The sequentially created models are optimized by
Latin Hypercube Sampling (LHS) and Constrained
Optimization by Linear Approximation525

(COBYLA). The COBYLA implementation from
the NLOPT library, included with the nloptr R-
package is used.

Parameter: seq.predictionOpt.method.
– The sequential step LHS evaluates 200 points with530

the model.
Parameter: seq.design.size.

– COBYLA has a budget of 1 000 evaluations of the
surrogate model, and will restart if it converges pre-
maturely.535

Parameter: seq.predictionOpt.budget and
seq.predictionOpt.restarts.

Table 3 summarizes the these chosen values for each
parameter.

6 Results540

Figure 4 shows the flow chart of the optimization. Through-

out this section the notation of the simulations is D +
n · L where D is the sum of the initial design size (I)
and the sequential design size (S), n is the number of

optimized points in the local optimization and L is the545

number of evaluations on a single point. Since the ini-

Initial Desgin

Sequential Design

Local Optimization

Use Local 
Optimization?

Use Seq. 
Design?

Yes

No

Yes

End Optim

No

Start Optim Use Initial 
Design?

No

Yes

No

Yes

Stop criteria 
reached?

Select Next 
Point? No

Yes

I

S

L

n
x

Fig. 4 Flow chart of the simulation presented in this section.
First of all an initial design (I) is evaluated followed by an
sequential design (S). Afterwards a local optimization (L) is
performed.

tial design size, if used, is always 40 the size of the se-
quential design can be directly seen from this notation.

When referring to a 50 + 5x100 simulation the initial
design size is 40, the sequential design size is 10 and550

a local optimization for the best 5 points is performed

with 100 evaluations on each point.

6.1 The influence of EI

The first question, which arises when analyzing the sim-
ulation results, is whether we can benefit from the ex-555

pected improvement infill criterion. Therefore, a sce-

nario with initial design size I=40, sequential design
size S=10 or S=60 and 10 repeated evaluations was
chosen. The experiments with a sequential design size

of 60 outperformed the experiments with a sequential560

design size of only 10. No statistically significant dif-
ference between the experiments with EI and without
EI can be seen so EI seems not to improve the results

even with larger sequential design. In fact it is quite the
reverse: The performance of the model-based optimiza-565

tion decreases if EI is used. This is owed to the fact that

the total number of evaluations is higher.
The experiments with a sequential design size of 10 had
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(a) Analysis of the Krig-
ing simulation with an Ini-
tial Design Size of 40 and
a sequential design Size of
10 and 60. Shown are the
results for the SPOT runs
with and without EI based
on 10 and 60 evaluations
in the sequential design
phase. The number in the
labels are indicating the to-
tal number of evaluations
on the original problem.
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(b) Analysis of the results
after local optimization of
the previously results found
with Kriging. Shown is the
best point in each seed after
100 local optimization runs
of the 5 best points.

Fig. 5 Comparion of the results for Kriging with and with-
out Expected Improvement after sequential design 5(a) and
after the local optimization. The blue dotted line shows the
reference value for the original parameter set. 5(b).

a median RMSE of 1235 (no EI) and 1352 (EI) and the
experiments with the greater design size of 60 had a570

median RMSE of 644 (no EI) and 1016 (EI). The re-

sults are summarized in Figure 5(a) . To answer the
question of the influence of EI it was shown that EI
seems to drop or at least not improve the optimization.
The major improvement seems to come from the initial575

design and the local optimization afterwards which is
subject of the study in the next section.

6.2 Influence of the local optimization and initial

designs

The same comparison as in the previous section was580

made for the additional refinement of the best-found

results with local optimization. Here, the best five pa-
rameter sets found by the Kriging-based optimization
were selected and optimized with a Downhill Simplex

approach. Each of the five parameter sets received a585

budget of 100 evaluations for further improvement. The
local optimization improved the median of the RMSE
to below 500 in all experiments whereby only one ex-

periment without the local optimization had a resulting
RMSE below 1000. This was the case for an initial de-590

sign size of 40, a sequential design size of 60 without EI.

The local optimization yields the major improvement
independent of the budget of the model-based optimiza-
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Fig. 6 Comparison of simulation results for an initial de-
sign of 40 points with different local optimization afterwards
against a pure local optimization with a random starting
point. As a reference box also a result for a simulation
with a sequential design and local optimization is shown
(50+5x100). The boxplots are representing the results for 10
different seeds. The number of parameter evaluations in case
of a previous initial design is 40 + 5 × L, where L denotes
the number of local optimization steps. The blue dotted line
shows the reference value for the original parameter set.

Table 4 Numerical values for the boxplots shown in Figure 6.
Shown are the number of evaluations in the initial and se-
quential design and during the local optimization. Box plot
parameters listed are minimum, lower quartile (Q1), median,
upper quartile (Q3) and maximum value.

Init. Seq. Local Min Q1 Median Q3 Max

40 5x100 342 352 363 374 401
40 1x100 352 378 437 498 527
40 1x500 331 331 334 340 350
40 10 5x100 342 352 361 374 401
40 10 1x490 331 331 338 351 376

100 390 479 585 652 787
140 348 442 506 580 731
300 331 366 390 470 523
540 331 331 345 371 400

tion. The results are shown in the right of Figure 5(a).

Thus, the question is whether model-based optimiza-595

tion can be skipped, and whether a local optimization
directly after the initial design is more profitable. In
addition, it was also checked whether it can be benefi-

cial to choose a completely randomized start points for
the local optimization. The results of this investigation600

are shown in Figure 6. To have a decent comparison

the number of evaluations should also be taken into ac-
count. The boxplot is showing the statistic for the best
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Table 5 Experiments, which were performed to analyze the
impact of the initial design and local optimization.

Name Description Evaluations
40+5x100: Initial design of 40 points

with 100 local optimization
steps of the best 5 points.

540

40+1x100: Initial design of 40 points
with 100 local optimization
steps of the best point.

140

40+1x500: Initial design of 40 points
with 500 local optimization
steps of the best point.

540

50+5x100: Initial design of 40 points,
model-based optimization
with 10 points, and 100 local
optimization steps of the best
5 points.

550

50+1x490: Initial design of 40 points,
model-based optimization
with 10 points, and 490 local
optimization steps of the best
point.

540

100 Local: Random start point with 100
local optimization steps.

100

140 Local: Random start point with 140
local optimization steps.

140

300 Local: Random start point with 300
local optimization steps.

300

540 Local: Random start point with 540
local optimization steps.

540

point produced by each of the 10 random number gen-

erator seeds. To analyze the importance of the initial605

design and the local optimization the experiments from
Table 6.2 were performed.

The completely local optimization (with random start
point) performs similarly good as the two approaches

where the five best points are each optimized locally.610

The clearly best approach seems to be (40 + 1× 500).
As a result of the investigation in this section it can be
concluded that it is more profitable to optimize just the

single best point found in an initial design.

6.3 Impact of the fitness landscape615

However, the completely randomized, local approach
is not much worse. This indicates that the problem
landscape is rather simple. If the landscape would be

univariate the optimizations would always result in the
same best parameter set independent of the seed. We620

can see that there are huge differences in the parameter
set which are shown in Table 6. This gets more clear if

we keep in mind that the first parameter is a multi-
plicative component and is therefore linearly correlated
to the flow resistance. The corresponding contour plot625

is shown in Fig. 7. While the contour plot depicts sev-
eral basins in the fitness landscape, they are all of some

Table 6 Parameter comparison for local optimizations with
an arbitrary starting point and a budget of 540 evaluations.
Only seed 2 stopped earlier, i.e., after 431 evaluations. Shown
is the best parameter of each seed with the corresponding
RMSE value. The parameters are used to calculate the flow
stress according to 1.

Seed A m1 m2 m3 m4 RMSE
Unit e-03 e-02 e-02 e-02 kN

1 1.2 -4.8 -0.2 8.2 2.6 331
2 1.2 -4.8 -0.3 8.1 2.6 331
3 0.9 -4.6 -2.7 11.0 2.8 339
4 1.2 -5.0 -5.7 9.8 2.3 335
5 1.0 -5.3 -18.0 14.0 1.8 371
6 0.7 -4.2 -3.2 11.0 2.9 359
7 0.8 -3.5 16.0 5.9 3.9 400
8 1.2 -4.8 -0.5 8.2 2.6 331
9 1.4 -5.5 -6.0 11.0 2.7 352

10 2.9 -5.7 0.8 -0.58 0.95 461

0
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Fig. 7 Contourplot for parameters A and m1. All other vari-
ables are kept constant at the same value as for the best case.
A random Forest model was created with all available simula-
tion results and is used here for the prediction of the RMSE,
denoted by the background coloring. Each black point indi-
cates the result of a simulation. The red triangle marks the
simulation with the best RMSE.

considerable size. Note that the contour plots of other

parameter combinations result into even simpler land-
scapes, most giving the impression of being unimodal.630

6.4 Significances and plausibility of the findings

We have some knowledge about the shape of the flow
curves as well as the correlation to temperature and
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Fig. 8 Deformation plot with the original parameter set and
the optimized parameter set. Parameters ϕ̂ and ϑ are fixed.
For the red lines the temperatures are 300 deg C, the blue
lines representing temperature of 400 deg C and the black
lines representing temperatures of 500 deg C. ϕ̂ has values of
0.1, 10 and 200.

deformation. Thus, we can check if the optimized pa-635

rameters are describing the expected behavior. The pa-
rameter ranges for optimization were chosen in such a

way that inverted behavior would have been possible.
Consequentially, those parameters have to be plotted
and compared to standard parameters. Figure 8 shows640

a plot of the deformation resistance against the defor-
mation for different parameters of the deformation rate
and temperature. It can easily be seen that the general
shape of the optimized parameter set is matching the

shape of the original parameter set.645

6.5 Comparison of the resulting roll force deviations

Figure 9 shows the deviations of the pure model roll

force (red), the adapted roll force (blue) and the mea-
sured roll force (green) of the original parameter set,
before optimization. Figure 10 shows the same for the650

optimized parameter set. The model roll force is highly
correlated with the calculation of the parameter kf which
was described above. The calculation of the roll force
was done in a production scenario. According to previ-

ous knowledge of the rolling process the system learned655

the roll force deviation for this material and made an
online regression for the correction of the calculation.

Furthermore a pass to pass adaption was used to cor-
rect the roll force deviation. That is the reason why the

Fig. 9 Roll force of pure model (red), model with online
adaption (blue) and measured roll force (green) with origi-
nal parameter set. The online adaption is typically a simple
regression based optimization which learns the difference be-
tween model and measured of the last 2 month of production.
Additionally the difference of the last pass between prediction
and measurement is taken into account. The adaption is used
as an additive offset to the model prediction. Because it can
be reseted and should only dynamically react on slight devia-
tions from unknown source the correction amount is limited.
This limitation can be seen especially in passes 12-14 where
we still haven a residual error. The missing measurement in
pass 15 is due to a special strategy and problems during the
measurement preparation in this pass.

adapted roll force is often close to the measured roll660

force. Due to limitations to the adaption system some

large deviations remain, especially when the model roll
force estimate is way off.

Typically, model corrections of up to 30% are tol-

erated in the online scenario. This limitation is used665

because something else has to be wrong if calculation
errors are exceeding this value. Furthermore, the adap-

tion is reset from time to time. In case of the original
parameter set, the deviation were more than 30% and
therefore we still have a residual deviation for the rolling670

force.

In both figures, Fig. 9 and Fig. 10, the values for the
pass number 15 are missing. This is due to a special
strategy during rolling of this material. In this early

stage of commissioning there were still some difficulties675

during measurement preparation.

Usually, pure model deviations without any opti-
mization of about 10% are tolerated and deviations of
less than 5% are considered to be good.

In Figure 11, the roll force deviation of the model680

with the original, standard parameter set is shown. Next
to it, the roll force deviation of the model with the new
parameter set is plotted. It can be seen, that the devia-

tion is very good in the first passes but still shows some
deterioration in the last passes. This phenomenon ac-685

counts for wrong temperature calculation and the pro-

cess was often delayed which was not correctly modeled
during this phase of the process. If these parameters are
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Fig. 10 Roll force of pure model (red), model with online
adaption (blue) and measured roll force (green) after opti-
mization. Here we have used the parameters of our offline
simulation, i.e., the result of the local optimization. This fig-
ure clearly demonstrates that the performance of the model
has vastly improved and that the online regression could have
been switched off.
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Fig. 11 Absolute roll force deviation plotted for each pass.
The error is plotted as the difference Measured Force -

Calculated Force. Since there are too few data for more than
19 passes those data is ignored. The first plot shows the pre-
diction error with the original parameter-set and the sec-
ond one uses the optimized parameter-set. The drift which
is present in the original parameter set is reduced with the
optimized parameters. Furthermore, also the standard devi-
ation is reduced with the usage of the optimized parameter.
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Fig. 12 Standard deviation of the roll force prediction er-
ror for each pass. Shown is the deviation with the original
parameter-set and the optimized parameter-set. The target
during our simulation is additionally plotted.

optimized in a later stage of the project, the deviation in
the last passes will also be reduced to a suitable amount.690

When the calculated roll force deviates from the actual

measurement the automation system is correcting the
roll gap position based on the current roll force. This
is done in order to compensate for the mill spring. The

mill spring is the spring which occurs in the stand when695

we suddenly have to apply a roll force. This means that
the gap between both rolls will be higher and we have
to adjust the gap setting to reach a specific thickness.

If we consider this opening as a linear function of the
roll force and assume a value of 1mm at a roll force of700

6000kN than we would have an error of 0.5 mm when

the prediction is 3000 kN away from the measured roll
force. When optimizing this prediction, the length of
the final product, which is in an acceptable range, can

be increased.705

During optimization the standard deviation is of
major importance and is shown in Figure 12. The aim

was a standard deviation which is lower then 1000 kN
which we achieved in a very early state during opti-
mization.710

7 Discussion

This study presented a model-based approach for the
optimization of the flow curve parameters used in rolling
mills. A combination of both a global and local op-

timization approaches was used. The data used in the715

examples was taken from an aluminum mill. The results
of the optimization show a significant increase in model

prediction quality. This new approach makes it possible
to evaluate and optimize the flow curves without con-
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ducting time consuming and expensive measurements720

in a laboratory.
One point of future research of this method is its

generalizability. By optimizing those parameters we will

also average out all customer specifics like material prepa-
ration, furnace heating behavior, alloy description and725

all plant and measurement based errors. Therefore, a

simulation scenario which simulates multiple plants with
similar materials should be taken into account when op-
timizing flow curve parameters.

Another problem might be the pass schedule which730

was used for the simulation. If we have no or less vari-
ance in one of the flow curve representing factors like
ϕ, ϑ or ϕ̇ then the optimized coefficient for this fac-

tor might be not accurate. Optimization should only
be performed for parameters which vary over the whole735

working point.

If only similar working points in the pass schedule
are found, the optimized parameters should be visu-
alized and compared to those used for similar materi-
als. Especially for aluminum, there may be a problem740

when trying to use a date-driven approach with data
which are coming from roughing mills because the tem-
perature variation is rather small. A solution for this

problem could be to freeze the coefficient in the flow
curve equation for the temperature or use a coefficient745

for a similar material and optimize only the remaining

parameters. This ensures that at least the resulting pa-
rameters can be interpreted physically in comparison to
other materials. It should be analyzed in further stud-
ies if the parameters can be transferred from one type750

of plant to another. In this case, we suggest to create a
scenario with multiple plants in the simulation.

Furthermore, the original version of the presented

algorithm required deterministic data, i.e., evaluating
one design point multiple time would generate the same755

response. Thus, it could not be applied directly to non-
deterministic, so-called noisy, data. Noise, e.g. caused

by measurement errors, is a common problem in real-
world settings. In principle, there are two approaches
to cope with noisy output data:760

1. Repeated measurements. This approach, estimates y

at x by the mean of repeated measurements and this
value is fed to the Kriging model.

2. Nugget Effect and Reinterpolation. In this approach,

the Kriging model is able to handle the raw, noisy765

data. The noise can simply be handled in the Krig-
ing model by fitting it with a so-called nugget ef-

fect. However, this will lead to non-zero uncertainty
estimates at already tested locations in the search
space. This will decrease the effectiveness of using770

expected improvement. A solution through reinter-

polation is offered by [7].

Finally, the surrogate-modeling method employed

here may profit from computationally cheaper informa-
tion that can be gained from a coarse variant of the775

objective function. In detail, a parameterization of the
mill model may be tested with less data. This results

into faster evaluation times, but yields a less accurate
estimation of the quality. This cheaper information can
be used in tandem with the more accurate, expensive780

data to train a better surrogate-model. To that end,
Co-Kriging [6] can be employed. Co-Kriging allows to
exploit correlation between coarse and fine target func-

tions. This may result into a much improved surrogate-
model of the hot-mill, without the requirement of ad-785

ditional expensive evaluations.
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