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Abstract
Kernel-based methods like Support Vector Machines (SVM) have been estab-

lished as powerful techniques in machine learning. The idea of SVM is to perform
a mapping φ from the input space to a higher-dimensional feature space using a
kernel function k, so that a linear learning algorithm can be employed. However,
the burden of choosing the appropriate kernel function is usually left to the user. It
can easily be shown, that the accuracy of the learned model highly depends on the
chosen kernel function and its parameters, especially for complex tasks. In order
to obtain a good classification or regression model, an appropriate kernel function
must be used.

Design and hand-tuning of kernel functions can be time-consuming and requires
expert knowledge. To circumvent these obstacles for the ’non-expert’ data mining
user, which may hinder the wider use of SVM in data mining, we present two
solutions for optimizing kernel functions: (a) automated hyperparameter tuning
of kernel functions and (b) evolving new kernel functions by Genetic Program-
ming (GP). We review state-of-the-art techniques for both approaches, comparing
their different strengths and weaknesses. Special attention is drawn to Sequential
Parameter Optimization (SPO) for tuning, as this method also allows a statistical
evaluation and understanding of the respective influences of the parameters.

A tuned kernel can improve the trained model, if standard kernels are insufficient
for achieving a good transformation. We apply tuning to SVM kernels for both
regression and classification. In fact often a good kernel function is missing for
real-world problems. We compare standard kernels with hand-tuned parameters to
SPO-tuned standard kernels and to GP-generated custom kernels for these problems.

1 Introduction
Kernel-based learning methods are state-of-the-art techniques in supervised machine
learning. The kernel trick makes it possible to perform a transformation from the
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input data space to a higher-dimensional feature space, where the transformed data
can be described by linear models and the problem becomes tractable. However, the
result highly depends on the considered transformation. If the kernel function is not
appropriate for the problem, or kernel parameters are badly set, the fitted model can
be of poor quality. Due to this, special care must be taken in selecting both the kernel
function and kernel parameters to obtain good results.
We propose a solution to this by using a statistical optimization tool and a current genetic
programming framework to tune and evolve kernels of Support Vector Machines. We
define the following hypotheses:

H1 In complex classification and regression tasks good parameter settings for standard
kernels can be found almost automatically with the right statistical optimization
tool (SPO).

H2 Genetic Programming (GP) can be used to find data-optimized kernel functions for
machine learning problems. These kernel functions may show better performance
(for some problems) than tuned standard kernels.

This paper is organized as follows: Support Vector Machines, Sequential Parameter
Optimization and Genetic Programming are introduced in Sec. 2.1.1, Sec. 2.1.3 and
Sec. 2.1.2 respectively. Sec. 2.2 gives a short review of recent kernel tuning and evolution
approaches. In Sec. 2.3 our general idea of tuning and evolution of SVM kernels is
presented, and we point out possible potential for further kernel tuning. In Sec. 2.4 we
discuss software for these purposes. We give a detailed experimental study on tuned
SVM kernels in Sec. 3. Here, we use GP-evolved and SPO-tuned kernels to build
optimized models for data mining problems.

2 Approach
This section introduces the different approaches to SVM tuning studied in this work.
After a short introduction to basic methods, including SVM, SPO, and GP, a review
of existing tuning strategies is is given. We then continue to describe our approaches
to tuning standard kernels and evolving custom SVM kernels for specific applications.
This section closes with a definition of the performance measures used in this work.

2.1 Methods
This section introduces the basic methods used in this work.

2.1.1 Support Vector Machines

Support Vector Machines have been proposed as a supervised learning algorithm for
both classification and regression. Since the early nineties the field of kernel-based
learning algorithms has developed very quickly and many extensions and comparable
methods emerged.

2



In supervised machine learning data can be represented as a number of observations

( ~X1, Y1), ( ~X2, Y2), ..., ( ~Xm, Ym) ∈ X × Y , (1)

where the set X defines the inputs and Y are the targets, e.g., real values in regression
or class labels for classification. For classification we will consider only the binary case
in this section where Y = {−1,+1}. One basic assumption in machine learning is that
two observations “being near in input space” should have a similar target value. Out of
this reason we can define a function

k : X × X → R (2)

denoting the similarity of two observations. k is a symmetric, positive semi-definite
kernel function, which can be interpreted as a dot product in a high-dimensional space
[36]. It implicitly transforms the data into this space and by enlarging the dimension
enables us to tackle nonlinear problems with essentially linear techniques.
Making this more rigorous we can define H as the associated reproducing kernel Hilbert
space for k and define the optimal model as the solution to the following optimization
problem

f = arg inf
f∈H,b∈R

||f ||2H + C

m∑
i=1

L(Yi, f( ~Xi) + b) . (3)

(Here, f maps into R even in the case of binary classification and in order to get discrete
predictions we would calculate its sign.) The second term measures the closeness of our
predictions to the true targets by means of a loss function, while the first term ||f ||2H is
called a penalty and in case of the 2-norm penalizes non-smooth functions. The balance
between the loss and the smoothness penalty is controlled by the hyperparameter C.
For classification we usually select the Hinge lossL(Y, t) = Lh(Y, t) = max(0, 1−Y t),
while for regression we often set L(Y, t) = Lε(Y, t) = max(0, |Y − t| − ε) to the ε-
insensitive loss. The hinge loss is a convex, upper surrogate loss for the 0/1-loss (which
is of primary interest, but algorithmically intractable), while Lε provides the estimation
of the median of Y given ~X . Both losses lead to quadratic programming problems
for (3), which can be solved efficiently, and the non-differentiability of these two loss
functions further provides for sparse solutions [9].
In time series regression for a time series x(t), where t ∈ R is time, we define a state
vector ~Xt = (x(t), x(t− τ), . . . , x(t− (d− 1)τ)) with time delay τ and embedding
dimension d. We are interested in predicting a point in the future with time horizon p by
using the past values encoded in the state vector: Yt = x(t+p) = f( ~Xt). Support vector
regression (or any other regression technique) can now be used to model and estimate f
[38]. Note, that it is straightforward to extend the approach above for multivariate time
series. See Drucker et al. [15] for examples of applications.

2.1.2 Sequential Parameter Optimization

Sequential Parameter Optimization (SPO) is a framework for improving and under-
standing the behavior of search algorithms by experimentation. Both classical and
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Algorithm 1: Sequential parameter optimization toolbox (SPOT)
// phase 1, building the model:
let A be the tuned algorithm;
// design considerations necessary:
generate an initial population X = {x̄1, . . . , x̄n} of n parameter vectors;
let k = k0 be the initial number of tests for determining estimated responses;
foreach x̄ ∈ X do

run A with x̄ k times to determine the estimated response y of x̄;
end
// phase 2, using and improving the model:
while termination criterion not true do

let ā denote the parameter vector from X with best estimated response;
let k the number of repeats already computed for ā;
// model considerations necessary:

build meta model g based on X and {y1, . . . , y|X|};
// design considerations necessary:
generate a set X ′ of l new parameter vectors by random sampling;
foreach x̄ ∈ X ′ do

calculate g(x̄) to determine the predicted response g(x̄) of x̄;
end
select set X ′′ of d parameter vectors from X ′ with best predicted response (d� l);
run A with ā once and recalculate its estimated response using all k + 1 test results;

// (improve confidence)
let k = k + 1;
run A k times with each x̄ ∈ X ′′ to determine the estimated response x̄;
extend the population by X = X ∪X ′′;

end

modern methods from statistics are considered for optimizing algorithm parameters to
improve the performance of these algorithms. SPO sequentially performs a pre-defined
number of algorithm runs, and uses the information during exploration of the search
space to build and refine one or multiple meta models of the true objective function.
An implementation of SPO, the Sequential Parameter Optimization Toolbox (SPOT), is
available as open source software [4], the corresponding pseudo code is presented in
algorithm 1.
During the first stage of experimentation, SPOT treats a learning algorithm A as a
black box. A set of input variables ~x is passed to A. Each run of the algorithm
produces some output y (e.g., the error of the algorithm on some training data). SPOT
tries to determine a functional relationship F between ~x and y for a given problem
task. A sequentially improved model of F is employed to estimate the relationship
between algorithm input variables and its output. This serves two primary goals. One
is to enable determining good parameter settings, thus SPOT may be used as a tuner.
Secondly, variable interactions can be revealed for helping in understanding how the
tested algorithm works when confronted with a specific problem or how changes in
the problem influence the algorithm’s performance. The SPO approach tries to tackle
both goals of (i) tuning and (ii) understanding complex procedures, e.g., optimization
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algorithms or machine learning models. First experiments were devoted to the analysis of
stochastic search algorithms, namely Evolution Strategies (ES) and Simulated Annealing
(SA) [5]. SPO combines methods from classical Design of Experiments (DoE) and
modern Design and Analysis of Computer Experiments (DACE).
DoE dominated the first phase of the SPO development, this approach includes sev-
eral, established and well-understood procedures for the analysis of deterministic and
stochastic data, especially regression and analysis of variance techniques.
Kriging was developed in geostatistics as a tool for curve fitting and response surface
approximation, while DACE was introduced in the 1980s for deterministic computer
generated data [41, 42]. The latter is based on the Kriging approach and [6] demonstrated
that Kriging can also be applied to tuning stochastic problems.
We suppose that the output data are subject to simulation-model errors, i.e., we have
noisy measurements yi at the i-th data point ~x(i), where εi is the measurement noise.
The SPOT approach consists of two steps: 1. Model construction and 2. searching the
model. Both steps are based on the maximum likelihood estimation (MLE) approach
presented in [26, 17].

1. Model construction is implemented as follows. Consider a dataset {(~x(i), y(i)},
(i = 1, . . . , n), which will be used to determine a set of parameters, say ~w, of
the model f̂(~x, ~w). The observed responses ~y = {y(i)} are considered as if
they are from a stochastic process, i.e., we will use a set of random vectors
Y =

(
Y (~x(1), . . . , Y (~x(n)

)T
with associated (n× n) correlation matrix

Ψ =

cor(Y (~x(1), Y (~x(1)) . . . cor(Y (~x(1), Y (~x(n))
...

. . .
...

cor(Y (~x(n), Y (~x(1)) . . . cor(Y (~x(n), Y (~x(n))

 , (4)

and correlation function

cor(Y (~x(i), Y (~x(l)) = exp

− k∑
j=1

θj(x
(i)
j − x

(l)
j )2

 .

Under standard assumptions, cf. [17], the likelihood is

L(Y(1), . . . ,Y(n)|µ, σ) =

1

(2πσ2)n/2
exp

(
−
∑

(Y(i) − µ)2

2σ2

)
.

(5)

In order to filter noise, a regression constant λ was added to the leading diagonal
of Ψ, also sometimes called a nugget effect. Expressing Equation (5) in terms of
the sample data, taking derivatives, and setting to zero, we obtain the estimates

µ̂ =
~1T (Ψ + λI)−1~y

~1T (Ψ + λI)−1~1
, (6)

σ̂2 =
(~y −~1µ)T (Ψ + λI)−1(~y −~1µ)

n
, (7)
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and the concentrated ln-likelihood function

ln(L) ≈ −n
2

ln(σ̂2)− 1

2
ln |(Ψ + λI)|. (8)

Note, our goal is the determination of the model f̂(~x, ~w). In our case, ~w represents
(k + 1) unknown parameters, i.e., the k vector ~θ, introduced in Eq. (4), and the
regression constant λ, which will be used to filter noise.
SPOT provides several algorithms to determine ~θ and λ values which maximize
Equation (8). An evolution strategy was used in our experiments (CMA-ES).

2. Now that we have constructed the model f̂(~x, ~w), we can perform the second
step, i.e., searching the model.
Searching the model uses expected improvement, which combines (a) predictions
and (b) their estimated errors. This may result in a balanced exploration and
exploitation of the search space.
(a) The prediction is given by

ŷ = µ̂+ ~ψT (Ψ + λI)−1(~y −~1ŷ), (9)

with ŷ as defined in Equation (9) and ~ψ the vector of correlations between
the observed data and a new prediction, i.e.,

~ψ =
(
cor(Y (~x(1)), Y (~x)), . . . , cor(Y (~x(1)), Y (~x))

)T
.

(b) Using expected improvement, the error in the model has to be estimated by

ŝ2(~x) =σ̂2

(
1 + λ− ~ψT (Ψ + λI)−1 ~ψ+

+
1−~1T (Ψ + λI)−1 ~ψ

~1T (Ψ + λI)−1~1

)
,

(10)

with σ̂ as defined in Equation (7). Equation (10) does not reduce to zero when
a sample point is evaluated.

Finally, Equations (9) and (10) are combined to calculate the expected improve-
ment

E(I(~x)) =(ymin − ŷ(~x))Φ

(
ymin − ŷ(~x)

ŝ(~x)

)
+

+ ŝφ

(
ymin − ŷ(~x)

ŝ(~x)

)
,

(11)

where ymin is the best observed value so far and Φ(·) and φ(·) are the cumulative
distribution function and probability density function of the normal distribution,
respectively. Note that the expected improvement is in its presented form only
valid for deterministic problems, in other words with a regression constant of
λ = 0. SPOT provides several algorithms to determine ~x values which maximize
Equation (11). An evolution strategy was used in our experiments (CMA-ES).
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Modifications for Non-Deterministic Problems The original version of the DACE
toolbox requires deterministic data, i.e., evaluating one design point generates the same
response. Thus, DACE cannot be applied directly to non-deterministic data.
In principle, there are two approaches to cope with non-deterministic output data often
occurring in data mining, e.g., by selecting random subsets for training the model:

1. Repeated measurements. This approach, also used in recent versions of SPO,
estimates E(ỹi) at xi by the mean of repeated measurements and this value is fed
to the Kriging model.

2. Reinterpolation by Forrester. In this approach, the DACE model is able to handle
the raw, noisy data. The noise can simply be handled in the Kriging model by
fitting it with a so-called nugget effect, but the expected improvement calculation
has to be modified. A simple solution through reinterpolation is offered by
[17], and will be referred to as Forrester later on. . Here the Kriging model is
fitted twice. First with nugget-effect due to the noisy interpolations, then the
response values yi of the data are substituted by the predictions of the regression
model. Now the data is interpolated in a second step by a Kriging model without
nugget effect, for which the expected improvement can be calculated without
modification. Also, it is provable that for the second model the parameters of the
covariance kernel from the first model are already optimal, leading to a much
faster fitting algorithm.

[6] used the first approach. It was successfully applied to a broad variety of optimization
algorithms in many application domains. Despite of its success, there is (at least
theoretically) a possible drawback: information about εi, the measurement noise at
sample points, is lost. In this paper, we opt for the reinterpolation approach.

2.1.3 Genetic Programming

Genetic programming (GP) is a collection of techniques from evolutionary computing
(EC) for the automatic generation of symbolic expressions for solving a user-defined
task [34, 3, 39]. Starting with a high-level problem definition, GP creates a population
of random symbolic expressions, termed individuals, that are progressively refined
through an evolutionary process of variation and selection until a satisfactory solution is
found.
An important advantage of GP is that no prior knowledge concerning the solution
structure is needed. Tasks are defined by fitness functions associating candidate solutions
with numerical fitness values encoding solution quality. Another inherent advantage of
GP is the representation of solutions as symbolic expressions, i.e. as terms of a formal
language, which makes them accessible to human reasoning and symbolic computation.
The main drawback of GP is its high computational complexity due to the potentially
infinitely large search space of symbolic expressions.
Before applying GP, several problem specific and algorithm specific parameters have to
be specified:
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Fitness Function A fitness function associates a numerical fitness value to a candidate
solution represented as a symbolic expression. This function encodes the task to be
solved. GP is an optimization algorithm in the sense that it searches for solutions that
(by convention) minimize this fitness function.

Building Blocks A set of building blocks consisting of function symbols, constant
symbols, and variable symbols, used for constructing symbolic expressions. Together
with the variation operators, these building blocks define the structure of the GP solution
search space.

Initialization Strategy The initialization strategy defines how the initial GP popula-
tion is generated. Because we want to bias our search to simple individuals, instead of
employing the classical ramped half and half heuristic, we employ a strategy that grows
random individuals to a random tree depth less or equal than a maximum tree depth
given as a parameter [34].

Variation Operators A set of variation operators for mutating and recombining
existing solutions. Because the implementation of these operators is highly dependent
on the solution representation (tree, graph, etc.), a variety of different operators have
been developed. Still, the classical mutation and crossover operators originally proposed
by Koza often work well in practice and are used here in a type-safe manner. [34, 39]

General EA Parameters The remaining parameters are common to most evolutionary
algorithms and include among others population size, selection strategy, and termination
criteria. Most generic extensions to evolutionary algorithms, such as niching and
automatic restarts, can be directly applied to GP.
The data and control flow of the GP algorithm used in this work is shown in Figure 1.

2.2 Review of Tuning Approaches
Many different optimization techniques have already been tried to set kernel hyperpa-
rameters. For derivative-free search these include among others:

(a) simple grid search, where parameter settings are tested by performing geometric
steps inside the boundary of each parameter range. Grid search should only be
applied with very few hyperparameters, e.g., two or maximally three, because the
exponentially increasing search space quickly makes this method inapplicable.

(b) pattern search, where one locally improves the current point by considering a
finite, deterministic neighborhood [37],

(c) the well-known Nelder-Mead simplex strategy [9],

(d) evolutionary strategies like CMA-ES [19],

(e) simulated annealing [1],
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(f) expected improvement maximization by Kriging [20]

(g) design-of-experiments sampling techniques [44].

To our knowledge Koch et al. [30] were the first who used SPO as a tuner for optimizing
the radial basis kernel function for Support Vector Machines (SVM) combined with
preprocessing parameters on a complex real-world data mining task.
Previous work in optimizing kernel functions for SVMs by means of GP has been
proposed by Howley and Madden [25]. Compared with standard kernel functions a
tree-based GP produces better results. Their evolved kernel functions are guaranteed to
be symmetric, but can be non positive semi-definite (PSD). This property is required to
guarantee termination of the solver inside SVM. A special fitness function for avoiding
overfitting based on margin maximation of the learned hyperplane is used. Diosan et
al. [13] also use GP for evolving kernels and mind the PSD property the of kernel
functions. In their work a larger GP function set compared to [25] is used, but results
are only evaluated on few benchmark datasets. Sullivan and Luke [45] respect the PSD
property of SVM kernels. They show that GP kernels can improve the accuracy, but
remark the large computational overhead produced by the evolutionary process. Gagne
et al. [21] use a co-evolutionary approach for the kernel evaluation. Kernels obtained by
their GP approach are ranked by a nearest neighbour classification algorithm instead of
SVM, since the PSD property can not be guaranteed with the chosen function set.
Summarizing these publications we can conclude that good results can be obtained
using tuned or evolved kernels, but special care must been given to

• the PSD property of the kernel functions,

• the fitness function, e.g. the evaluation of intermediate kernels,

• the runtime of the algorithms.

Also, by either considering a smoothed version of the cross-validation error [28] or a
likelihood function of the hyperparameters [22] one can switch to fast gradient-based
methods. Although all cited authors in this section usually compare their algorithms
to one or a few alternatives we are currently not aware of a really comprehensive
comparison study.

2.3 Kernel Tuning and Evolution
The performance of Support Vector Machines highly depends on the chosen parameter
values for regularization and the kernel parameters. First, we describe how SPO and
other search heuristics can be used for parameter tuning of standard kernel functions,
pre-processing and post-processing operations. Second, we evaluate whether new, non-
standard kernel functions can be found by by means of Genetic Programming and refer
to the requirements of the evolved functions, e.g., positive semi-definiteness. We also
point out the possibility to tune constants during evolution and after having kernel
functions evolved by GP.
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2.3.1 Parameter Tuning for SVM Kernels

In this approach we use the TDM framework [31, 33] to tune parameters of the SVM
kernel function k( ~Xi, ~Xj). Sometimes these parameters are just set by hand, although
it can give high improvements when performing an optimization step for them. Kernel
parameters usually have a certain range, e.g., real values between 0 and∞ or 0 and
1. Hence, a finite region of interest (ROI) for the tuning algorithms (SPO, CMA-ES,
BFGS) is either defined or can be obtained (or improved) by preliminary runs. We
consider as kernel functions for tuning the popular RBF kernel:

k( ~Xi, ~Xj) = exp(−γ|| ~Xi − ~Xj ||2) (12)

where γ is a kernel parameter. Other kernels (e.g., linear, polynomial) were initially
tested on some real-world datasets but showed worse performance.
In a previous work Koch et al. [29, 30] used SPOT for tuning both SVM parameters and
pre-processing parameters. We investigate how tuning of kernel parameters influences
the quality of a trained SVM model using different approaches for tuning. In this work
the following methods are compared to each other:

• Quasi-Newton search, more specifically an extended version of the BFGS algo-
rithm [8]

• Evolution Strategies, e.g. CMA-ES

• SPOT

For simplicity we define an input-output function f[T ,E](p, q) = y where p is usually
the set of parameters for the SVM. E.g., all parameters affecting the SVM and its kernel
function. Other parameters for task-specific pre-processing can be defined in q and
y ∈ R is the corresponding objective function value. A SVM is trained on some training
data T using its parameter set {p, q}, and the model is evaluated on data E .

2.3.2 SVM Kernel Evolution by Genetic Programming

Tuning of kernel functions has shown to be useful for obtaining better results for data
mining tasks. Up to now, kernel tuning by SPOT is restricted to existing kernel functions.
We believe, that this is not the end of the road and that by replacing standard kernel
functions by more appropriate ones better results can be obtained. E.g., Cortes et al.
[12] have proposed a gradient-descent algorithm for learning polynomial combinations
of kernels in regression. We want to further investigate the possibility to use GP for
evolving kernel functions and improve upon this technique. GP has become more and
more popular with the increase in computational power in the last years, and is now
applicable even to complex tasks.

Kernel Closure Properties Kernel functions compute dot products in high-dimensional
spaces without explicitly mapping into these spaces. A kernel function must satisfy
several mathematical properties so that Mercer’s theorem [36] holds. One property is
that kernel functions must be positive semi-definite (PSD).
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Figure 1: General outline of kernel evolution by GP: Starting with a randomly generated
population of positive definite SVM kernel functions represented as symbolic expres-
sions, the algorithm selects a random subset, termed a tournament set, for evaluation.
Each kernel in the tournament set is employed in training a SVM model on a training
dataset. These models are then evaluated on an independent validation dataset. The
kernels of the best performing SVM models in the tournament are then modified by
mutation and crossover. The resulting kernels and replace worse performing kernels
from the tournament set in the population. This loop is repeated until a stop criterion
is satisfied. In the final test stage, the best performing kernels are validated on an
independent test dataset and returned as an result.

Kernels stay PSD under certain operators. Let’s we assume we have two kernels k1 and
k2 which are PSD. Then the following kernel functions also PSD:

• Closure under sum: k1( ~Xi, ~Xj) + k2( ~Xi, ~Xj)

• Closure under product: k1( ~Xi, ~Xj) · k2( ~Xi, ~Xj)

• Closure under positive scalar multiplication: a · k1( ~Xi, ~Xj), with a > 0

• Closure under exponentiation: exp(k1( ~Xi, ~Xj))

For a more detailed description of closure properties we refer to Cortes et al. [10, 11].
However, Schölkopf [43] showed that even when the PSD condition is violated, some
non-PSD kernel functions have been used successfully in practice for learning tasks.
Probably the most well-known kernel function, which is not strictly PSD, is the sigmoid
kernel:

k( ~Xi, ~Xj) = tanh(α ~XT
i
~Xj + C) (13)

Vapnik [46] showed that this kernel is not PSD for some settings of α andC. It is of large
interest, how results are affected, if one uses a PSD kernel satisfying Mercer’s theorem,
or if one uses a non-PSD kernel. A kernel obtained by evolutionary techniques such as
GP can of course easily destroy the PSD property. The variation operators can change
a PSD kernel into a non-PSD kernel, depending on the chosen GP function set. As
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Table 1: Strongly typed GP search space for SVM kernel evolution. All possible
building block for each building block class are shown. The variables x, xi and xj
denote real vectors of the SVM input data dimension D, the constants c1, . . . , c3 denote
symbolic constants. The types of building blocks are given as type expressions, e.g.
RD × RD → R is the type of an operation that maps two real vectors to a scalar real
value. A center dot · denotes a placeholder for a building block of suitable type. Note
that some operators, such as the × operator, are “overloaded” to work with multiple
operand types.

Building Block Class Type Building Blocks

Constant R {c1, c2, c3, c4}
Input Variable RD { ~Xi, ~Xj}
Scalar Function R→ R {exp(·), ·2}
Scalar Operator R× R→ R {·+ ·, · − ·, · × ·, · ÷ ·}

Vector Operator

RD × RD → RD {·+ ·, · − ·}
RD × RD → R {· × ·, || · − · ||2}
R× RD → RD {· × ·}
RD × R→ RD {· × ·}

non-PSD kernels often also create technical problems for the employed SVM optimizer,
we try to to maintain the PSD property in the evolutionary process. This is achieved by
incorporating special variation operators which respect the closure properties. These
operators are implemented through a combination of strongly typed GP and breeding.

GP Search Space Tab. 1 defines the strongly typed GP search space for SVM kernel
evolution. The used building blocks (constants, input variables, and operators) allow the
definition of all standard support vector kernels presented in Sec. 2.3.1, with the only
exception of the sigmoid kernel. We omitted the inclusion of trigonometric functions to
keep the search space reasonably simple. The search space is further restricted by an
expression tree depth limit of 10 levels.
It can be easily seen that the strongly typed GP search defined in Tab. 1 includes kernels
that violate the PSD criterion. We therefore reduce the search space further by only
accepting individuals that comply to the following criteria:

• A valid kernel expression k must contain both input vectors ~Xi and ~Xj .

• k must contain at most 4 symbolic constants.

• The kernel matrix Mk of k must not contain numerical problems such as NaNs or
infinite values.

• Mk’s eigenvalues must be non-negative (up to a small numerical margin), i.e. Mk

must be numerically PSD.

A breeding strategy is applied to the population initialization and individual variation
operators to ensure with high probability that only individuals conforming to these
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criteria are present in the population. When an individual is created or modified by a
genetic operator, the result is checked for compliance. If it violates one of the criteria,
the operator is retried, up to maximum number of tries given as the algorithm parameter
“Breeding Tries”. If a genetic operator exceeds this limit, its last result is returned. This
means that the population can contain individuals that may not comply to our constrains.

GP Fitness Function The quality of an individuum k, i.e. the quality of the symbolic
representation of a support vector kernel, is evaluated by our fitness function in four
steps:

1. It is checked if k complies to our criteria defined above. If it does not, the
worst possible fitness (+∞) is assigned to k. This step is necessary because
invalid individuals resulting from failed breeding attempts might be present in the
population.

2. As the performance of a kernel is often highly sensitive to its constants as well
as to the regularization parameter C, a latin hypercube design D of size d ·
(nconst(k) + 1) is created by latin hypercube sampling, where nconst(k) is
the number of constants in k and the design factor d is given as an algorithm
parameter.

3. For each design point in D, C as well as the constants of k are set accordingly
and the performance of a support vector machine is evaluated based on a single
validation holdout set (1/3 of the training data created in the outer resampling),
giving a vector ~Y of performance values. Performance is measured by mean
misclassification error (MMCE).

4. The pointwise minimum of ~Y , i.e. the performance of k based on the best design
point in D, is returned as k’s fitness.

The description above applies to classification problems. For support vector regression,
we add another parameter ε to the latin hypercube design and change the performance
measure from MMCE to root mean squared error (RMSE). See Sec. 3.2.1 for a definition
of ε.
The general outline of GP evolution of SVM kernels is depicted in Fig. 1.

2.3.3 Evaluation and Performance Measures

The evaluation of a support vector machine concerns two different stages. While we
need to be able to compare different kernels or parameterizations during model building,
we also have to evaluate the combined fitting and optimization process itself. The
latter is straightforward: After we have decided upon a specific kernel function and
its parameters by looking only at a portion of our available data, we evaluate on the
remaining observations to avoid optimistic bias. This process is repeated a couple of
times in order to maximally utilize the limited amount of data, and the generalization of
this concept is called resampling. The performance measure for evaluation is dependent
on the target of the application and will be closely connected to the loss function chosen
in Eq. (3). For classification often the misclassification error (i.e. 0/1-loss) and for
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regression either the root mean squared error (RMSE) or the mean absolute deviation is
selected. To compare kernels or parametrizations during model selection we could in
general do the same (resulting in nested resampling), and this approach is followed by
quite a lot authors. But one should be aware that especially for kernel construction by
genetic programming a large number of these evaluations will be needed and should
look for less expensive alternatives if possible. One is to use fast implementations for
calculating the leave-one-out error. The other is to exchange the natural performance
measure during model selection by one which is computationally cheaper, see Duan et
al. [16] for a comparison of possibilities.

2.4 Software
All the experiments presented in this work are based on software solely written with
the help of available open source toolboxes. We describe in this section some of these
toolboxes, which are central to the ideas presented here. SPOT has already been covered
in section 2.1.2.

2.4.1 TDM

The TDM framework [31, 33] is written in R with the aim to facilitate the setup, training
and evaluation of data mining models. It puts special emphasis on tuning these data
mining models as well as simultaneously tuning certain pre-processing options. TDM
is especially designed to work with SPOT as the preferred tuner, but it offers also
the possibility to use other tuners (CMA-ES [23], LHD [35] and local optimizers) for
comparison. The goal of TDM can be formulated as follows: Provide a recipe / template
for a generic data mining process (classification or regression) which works well on
many different data mining tasks. In its current version the TDM framework contains:

1. Sampling, i.e., the division of the data in training and test set (random, k-fold
cross validation (CV), ...)

2. Generic feature generation and generic feature selection (currently RF-based
variable ranking and GA)

3. Modeling: currently SVM, RF, MC.RF [33], but other models, especially all those
available in R can easily be integrated

4. Model application: predict class and (optional, depending on model) class proba-
bilities

5. User-defined post-processing (optional)
6. Evaluation of model: confusion matrix, gain matrix, score, generic visualization,

...
TDM can optimize the pre-processing and modeling parameters contained in step 2. and
3. by a generic tuning process with one of the above-mentioned tuning algorithms.

2.4.2 MLR

The mlr package [7] provides a generic, object-oriented interface to about 50 machine
learning methods in R for classification and regression and can easily be extended
with further ones. It enables the researcher to rapidly conduct complex experiments or
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implement his own meta-methods using building blocks of the package. Resampling like
cross-validation, bootstrapping and subsampling are used to assess the generalization
performance, measured by e.g. MMCE, MSE, cost-sensitive measures, ROC measures,
etc. Custom measures can easily be defined as well.
Learner functionality can be extended by various building blocks like multiclass-to-
binary reduction, pre-processing and post-processing steps and optimizers, resulting in
complex, tunable data mining systems. Hyperparameters of complex learning systems
can be tuned by grid search or more sophisticated deterministic or stochastic search
methods like e.g. Nelder-Mead, CMA-ES or SPO. The same holds true for variable
selection. Here, various feature selection wrapper approaches (forward search, backward
search or genetic algorithms) and fast filter methods are available.
Benchmark experiments with two levels of resampling, e.g. nested cross-validation, can
be specified with few lines of code to compare different learning systems. Parallel high-
performance computing is supported and experiments can be converted to parallelized
versions with a simple configuration command, without touching any further code.

2.4.3 RGP

RGP is an open source genetic programming system based on the R environment.
The system implements classical untyped tree-based genetic programming as well as
more advanced variants including, for example, strongly typed genetic programming
and Pareto genetic programming. It strives for high modularity through a consistent
architecture that allows the customization and replacement of every algorithm com-
ponent, while maintaining accessibility for new users by adhering to the “convention
over configuration” principle. RGP’s support for strongly typed genetic programming,
breeding, and easy customization make it a good fit for SVM kernel evolution.

3 Experimental Study
We compare different variants for kernel tuning when applied to complex real-world
problems and also simple benchmark problems to make our approach comparable to
other work. More specifically we use the TDM framework for tuning parameters of two
real-world problems — the acid concentration problem and the stormwater problem.
The benchmark problems were chosen to show that a systematic tuning is especially
beneficial, when the problem at hand is rather difficult. We want to point out that with
such hard problems it is often difficult to get good results without tuning in contrast to
simple benchmark problems. Within TDM the tuning algorithms SPO, CMA-ES and
BFGS were employed.
MLR was used as a framework for combining the SVM algorithm with RGP and a
comparison study with tuned RBF kernels. For the kernel evolution we evaluated on
simpler benchmark problems from the UCI repository, since GP is computationally
expensive and in order to compare our results to already published similar approaches
[21, 13, 45]. Nevertheless GP can be also used to find kernels for real-world problems.
It should be noted that the difficulty in finding good solutions for real-world problems is
considerably higher than the complexity of most standard benchmark problems. Most
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Table 2: Experimental settings for parameter tuning.

Setting AppAcid AppStorm

Total Budget {50, 100, 200} 200
SPOT Initial Design Size 10 10
SPOT Predictor Forrester Forrester
Number of Runs (n) 5 5

complex real-world problems as time series regression or classification problems contain
more than 30,000 records, which is much more data than usually used in benchmarks
and their predictability can be poor (e.g., it can be difficult to obtain a good accuracy
with standard methods from machine learning without incorporating expert knowledge).

3.1 Experimental Setup
We use the tuning algorithms to optimize both SVM specific parameters (e.g., kernel
parameters and regularization parameters) and problem specific (pre-processing) param-
eters (e.g., class weighting in classification and embedding in time series regression). In
all experiments we set a limit of a certain number of model evaluations. Since some
of the algorithms incorporate pseudo-random numbers, all runs are repeated n times.
The detailed settings for parameter tuning and kernel evolution are shown in Tab. 2 and
Tab. 3 respectively.
In kernel evolution, we use a standard strongly typed GP algorithm with a total budget
of 2,500 fitness evaluations. The parameter “design factor” determines the size of
the latin hypercube design for regularization and kernel parameters. The parameter
“breeding tries” defines the number of times a genetic operator is retried until returning its
unmodified input when it fails to generate a kernel that satisfies the SVM kernel search
space constraints (see Sec. 2.3.2). To prevent loss of diversity during GP search, we use
an extinction prevention strategy that prevents the insertion of duplicated individuals to
the GP population.

3.2 Parameter Tuning
3.2.1 Stormwater Prediction

In water resource management, efficient controllers of stormwater tanks prevent flooding
of sewage systems, which reduces environmental pollution. With accurate predictions
of stormwater tank fill levels based on past rainfall, such controlling systems are able to
detect state changes as early as possible [24]. Recently, first work has been proposed
using SVMs for predicting fill levels of stormwater tanks, which require special pre-
processing for time series, e.g., embedding of integrated rainfall [29, 30]. Here, we
compare SPOT with other optimization techniques: the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) and an extended version of the quasi-Newton search
algorithm of Broyden, Fletcher, Goldfarb and Shanno (BFGS) [8].
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Table 3: General settings for all kernel evolution by GP experiments.

Setting Value

Algorithm Strongly Typed GP
Total Budget (Evaluations) 2,500
Design Factor 3
Population Size 20
Tournament Size 8
Population Initialization Type-safe Random Growth
Type-safe Variation Operators Replace Function Label, Re-

place Node by New Subtree,
Uniform Subtree Crossover

Breeding Tries 5,000
Extinction Prevention True
Number of Runs (n) 20

Good-working region of interest (ROI) settings were obtained for the stormwater prob-
lem by Koch et al. [29, 30]. As pre-processing a special operator termed leaky rain was
incorporated for the stormwater problem . It is defined by Eq. 14, where r(t) is the
rainfall at time t and λ and W are tunable parameters. The idea of this function is to
use convolved rainfall as additional input of the feature set used for training. Here we
use two leaky rain functions with different parameter settings for W and λ.

W1∑
i=0

(λ1)i · r(t− i) and
W2∑
i=0

(λ2)i · r(t− i). (14)

For more details on the leaky rain operator see Koch et al. [29, 30]. Summarizing the
tunable parameter set contains nine variables, where six values are for the leaky rain
pre-processing and the rest for the SVM parameter setting. A radial basis kernel was
used as kernel function for the SVM since it gave best results in preliminary runs. The
region of interest (ROI) for the variables is shown in Tab. 4.
The time series data was split into four consecutive parts of 5,000 records each, named
set 1 to set 4. As training set we chose set 2. The hyperparameters were optimized by
the search strategies SPOT, CMA-ES and BFGS. As objective function we used the
RMSE on set 4, which is not directly subsequent to the training data. The results of this
tuning are shown in Tab. 5. It can be seen that SPOT clearly outperforms all other tuners.
The bad result of the quasi-Newton search method BFGS can be explained by the fact
that the method’s appropriateness is somewhat dubious considering the fact that finite
difference approximations have to be calculated for the gradient and the fitness function
is non-differentiable from a theoretical standpoint as it involves integer parameters. It
can also be suspect to premature local convergence. Nevertheless we included it as a
baseline comparison. The CMA-ES produced a good best result but likewise has to
cope with a very high standard deviation.
For the last predictive models we used the error gathered on the test set as the objective
function value for the hyperparameter tuning with SPOT. In the real world this value is
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Table 4: ROI for the stormwater problem

Parameter ROI Type Description

D1 [2,60] int Embedding dimension 1
D2 [2,60] int Embedding dimension 2
λ1 [0.00001, 0.3] float Leaky decay parameter 1
λ2 [0.00001, 0.3 float Leaky decay parameter 2
W1 [50,120] int Leaky window size 1
W2 [50,120] int Leaky window size 2

γ [0.005, 0.3] float RBF kernel width
ε [0.005, 0.3] float ε insensitive loss-fct.
C [1,10] float regularization term

Table 5: Parameter tuning for the stormwater problem when trained on training set 2
and evaluated on test set 4 giving a maximum budget of 200 function evaluations for
different tuning algorithms.

Method Best Mean Worst SD

SPOT (Forrester) 6.83 7.68 8.12 0.52
BFGS 12.98 14.12 15.98 1.17
CMA-ES 8.37 10.84 14.42 3.10
Hand-tuning 9.73 — — —
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Table 6: Results of SPOT tuning on the stormwater problem. In each row of the table,
SPOT tunes the RMSE on validation set 1,3,4 leading to different SPOT-tuned parameter
configurations. These configurations were applied to the test sets 1,3,4 (columns) to
make the results comparable. Note that set 2 is missing here, because it was used for
training only. Each experiment was repeated five times with different seeds and we show
the mean RMSE; bold-faced numbers are best values on the test set and the numbers in
brackets indicate standard deviations.

Test
Set 1 Set 3 Set 4

Validation
Set 1 9.11 (0.56) 16.40 (6.42) 12.88 (5.50)
Set 3 10.82 (1.55) 12.78(0.34) 12.36 (3.46)
Set 4 10.45 (0.28) 12.93 (0.35) 7.69 (0.48)

St 10.64 14.67 12.62
Vt 16.7% 14.7% 64.1%

unknown and thus gives the tuned model a certain bias towards the test data. In order
to perform a fair comparison and to show the benefits of parameter tuning in a more
realistic setting, we ran another test using a different objective function for tuning the
model parameters. Otherwise the test set error might be too optimistic since the model
has been tuned and tested on the same set. In Tab. 6, we present the results of training a
SVM model on set 2, tuning the system-relevant parameters on sets 1,3,4 (rows) and
mutually evaluating the tuned models on all these sets (columns).
It can be seen that the RMSE is considerably lower when validation set (for tuning) and
test set are the same. This becomes clear when best values are always present in the
diagonal of the table, indicating too optimistic tuning results. We quantify this effect by
evaluating the following formula: let Rvt denote the RMSE for row v and column t of
Tab. 6. We define

Vt =
St −Rtt
Rtt

with St =
1

3

(
4∑
v=1

Rvt −Rtt

)
(15)

With St we evaluate the mean off-diagonal RMSE for the columns t = {1, 2, 3} which
is an indicator of the true strength of the tuned model on independent test data. The
diagonal elements Rtt are considerably lower in each column of Tab. 6. In case of no
oversearching, a value of Vt close to zero would be expected, whereas values larger than
zero indicate oversearching.

3.2.2 Acid Concentration Prediction

The goal of this benchmark is to classify acid concentrations solely from spectroscopy
information of a fluid. In the acid concentration problem the user has defined five
classes, each denoting a certain range of acid concentration. The record numbers
Nc = (228, 1528, 1880, 731, 70) for each class c = 1..5 are highly unbalanced.
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The user-defined goal is to maximize the mean class accuracy

MCA =

5∑
c=1

1

Nc

Nc∑
i=1

U( ~Xi) (16)

where U( ~Xi) is 1 for each correctly predicted record ~Xi and 0 otherwise. This means
that each of the 70 records of class 5 (they define a critical plant state) has a much
higher importance than one of the 1880 records of class 3. The research question is
here whether a tuning of SVM based on TDM can achieve a similar or even better
performance than GerDA [48], the so far best approach. GerDA, as described in the
work of Wolf et al. [49], learns interesting feature combinations in an unsupervised
fashion with an approach based on Boltzmann machines.
The dataset contains 4437 records with 212 attributes, each attribute denoting a sample
point from the spectral curve. Training set (3326 records) and test set (1109 records)
were defined as in the work by Wolf et al. [49]. The results in Wolf et al. [49] showed
that good classification can be obtained if class weights are taken into consideration.
We performed experiments using the Tuned Data Mining (TDM) framework with SVM
as classifier.1 Two simple pre-processing steps were taken into account:

1. The attributes in the dataset show a very high correlation. This is of no surprise,
because the attributes stem from a discretization of the UV/vis spectral curve
and thus adjacent attributes have similar values. A principal component analysis
(PCA) was performed in order to reduce the dimensions and to obtain a better
class separation. PCA can be optionally switched on in the TDM framework so
that no further implementation is necessary.

2. To aid the SVM classifier in finding nonlinear feature combinations with relevance
to the classification goal we added monomials of degree 2 spanning all combina-
tions of the first NPC = 8 principal components with highest eigenvalues.

In Tab. 7 the ROI settings for the acid concentration problem are shown, including
standard SVM parameters for regularization (C) and the RBF kernel (γ), as well as
additional parameters for the class balancing for the acid concentration problem problem
and feature selection as a result of the PCA pre-processing. More details on the selected
parameters can be reviewed in [33].
The experiments in Fig. 2 were created by repeatedly executing the following procedure
five times:

• In a sequential process each tuner generates design points, that is certain settings
for the hyperparemeters within their predefined ROIs.

• During tuning only the training set (3326 records) was used. This set was further
split randomly in 80% of the data used for training an SVM with hyperparameters
provided by the tuner and 20% used for validation, i.e. for measuring the model
strength (mean class accuracy) and reporting it back to the tuner. This random data
split as well as the design point generation of the tuner contain non-deterministic

1As an alternative to SVM we tested also Random Forest (RF) which gave similar, slightly better results.
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Table 7: ROI for the acid concentration problem

Parameter ROI Type Description

XPERC [0.05, 1.00] float Fraction of Fea-
tures Taken as In-
put

CUTOFF [1..5] [0.01 0.40] float Voting Scheme
CLASSWT [1..5] [0.05 1.0] float Class Weight Vec-

tor

γ [0.005, 0.3] float RBF Kernel
Width

C [1,10] float Regularization
Term

variations, the training process of the SVM itself is fully deterministic. Each
design point is evaluated twice (maxRepeats=2) and the tuner takes the average
of the two results reported back.

• A second source of randomness lies in the pre-processing parameter XPERC:
Given the pre-processed inputs a variable ranking is performed (see Konen et al.
[32] for details) and only those variables from the top of the ranking list are taken
which contain together the fraction XPERC of the overall importance. Since the
variable ranking is based on RF, it is also subject to slight random variations.

• At the end of the tuning process (which is stopped after nEval=50, 100, 200 model
trainings, i.e. 25, 50, 100 design points), the best set of hyperparameters is taken,
used for a final SVM model training on the full training set (3326 records) and
the model strength (mean class accuracy) is evaluated on the 1109 unseen test
data records.

We see from Fig. 2 that the SPOT tuning has a slight oversearching effect, is comparable
to the so far best GerDA results, and is considerably better than the CMA-ES tuner.

3.3 Kernel Evolution
In this subsection first results of our support vector kernel evolution scheme described in
Sec. 2.3.2 based on the general experimental setup described in Sec. 3.1 are reported. To
allow a comparison of our results to earlier work in the field of SVM kernel evolution, we
used well known datasets from the UCI machine learning repository [18] for evaluation.
These results are linked to the parameter tuning approach discussed earlier by comparing
them with results obtained with tuned RBF kernels (tRBF). In the tRBF experiments, the
parameter for regularization (C) and the RBF kernel parameter (γ) were tuned by a grid
search with discrete settings 2−8, . . . , 2−7, . . . , 1, . . . , 28 for both C and γ. In contrast
to the GP experiments that used a single holdout set (33% length) for validation during
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Table 8: Tunable parameters, their region of interest (ROI) and best results obtained for
the acid concentration problem (Neval = 200). There were 12 parameters to tune, since
CUTOFF[5] was not tuned but set by a sum constraint.

ROI Best Value
Name Low High i: 1 2 3 4 5

XPERC 0.05 1.00 0.237
GAMMA 0.001 0.80 0.195
COST 0.00 100 54.6
CLASSWT[i] 0.05 1.00 0.849 0.431 0.246 0.468 0.814
CUTOFF[i] 0.01 0.40 0.216 0.023 0.335 0.389 0.232
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Figure 2: Results of SVM tuning in the acid concentration problem . The number of
model trainings (nEval=50,100,200) is deliberately set to quite low values, since this
training is the time-consuming part of the tuning process. Error bars denote standard
deviations from 5 repeated experiments with different random seeds. Tuning with SPOT
is in all cases better than tuning with CMA-ES. The tuning results for SPOT are slightly
higher than the independent test results (oversearching).
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Table 9: Results obtained on test datasets with GP evolved custom kernels (GP)
(Neval = 2, 500, Nruns = 20) compared with results obtained with grid search tuned
RBF kernels (tRBF) on UCI test data sets. All test problems use MMCE as performance
measure.

Dataset Best Mean Worst SD

GP

Ionosphere 0.0282 0.0845 0.1831 0.04293839
Glass2 0.1212 0.2545 0.3939 0.07513299
Heart 0.0556 0.1516 0.2593 0.04939896
Liver 0.1884 0.2929 0.3623 0.04495063
Pima 0.1883 0.2300 0.2727 0.02374211

tRBF

Ionosphere 0.0282 0.0599 0.1127 0.02279090
Glass2 0.0606 0.2015 0.3333 0.07375339
Heart 0.0926 0.1593 0.2593 0.05076841
Liver 0.2029 0.3043 0.4493 0.05340525
Pima 0.1688 0.2403 0.3117 0.03304342

Table 10: Best GP evolved kernels for UCI test datasets found in 20 runs (Neval =
2, 500). These kernels where selected based on their performance on validation data.

Dataset Best GP Evolved Kernel

Ionosphere k( ~Xi, ~Xj) = c1 +
( ~XT

i
~Xj)

2

[((c2( ~XT
i
~Xi)) ~Xj)T ~Xj ]2

Glass2 k( ~Xi, ~Xj) = [ ~XT
j ((c1( ~XT

i
~Xi)) ~Xj)]

2 + ( ~XT
i
~Xj)

2

Heart k( ~Xi, ~Xj) = ~XT
i
~Xj

Liver k( ~Xi, ~Xj) = c1 + (c2 ~X
T
i
~Xj)

2

Pima k( ~Xi, ~Xj) = c1 ~X
T
i
~Xj

kernel evolution, in the tRBF experiments used 5-fold cross validation during tuning.
In both experiments, the reported test performance is obtained by 20-fold subsampling
(80% training, 20% test).
Tab. 9 shows an overview of the test performances of evolved kernels (GP) and grid
search tuned RBF kernels (tRBF), measured by mean misclassification error (MMCE)
on UCI datasets. They are also shown graphically in Fig. 3. The test performances of
GP-generated and tRBF kernels is generally quite similar on all considered data sets.
We tried a further tuning for the parameters of the best GP-generated kernels as well as
for the regularization parameter (C) via a much larger design after each GP run was
finished, which gave only marginal improvements.
Tab. 10 shows the best kernels found in 20 GP runs, i.e. the kernels giving the best
performance on validation data. Note that standard kernels like the linear kernel and
polynomial kernels are rediscovered by GP search.
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Figure 3: Boxplots for comparing the test MMCE of GP evolved custom kernels (GP)
(Neval = 2, 500, Nruns = 20, no tuning) with the test MMCE of grid search tuned
RBF kernels (tRBF) on UCI test data sets.

4 Discussion
The tuning of standard Support Vector kernels by various optimization methods gave
improvements over hand-tuned parameter settings and rule-of-thumb values. Here,
especially the SPOT-tuned SVM kernels showed a remarkably better prediction accuracy
than the other tested optimization algorithms like CMA-ES or derivative-free search.
While this is not too surprising for the quasi-Newton search, the CMA-ES case deserves
perhaps further discussion. We think that two reasons might be responsible for this

1. The relatively small number of function evaluations (up to 200) is not favorable
for the CMA-ES mechanism which needs usually more function evaluations to
adapt its covariance matrix.

2. Another problem for CMA-ES is the existence of relative tight ROI-borders
in our tuning problems. If a border constraint is violated, CMA-ES adds a
penalty term for solutions violating the border constraint, which often leads to a
minimum exactly at the ROI border and lets the CMA-ES solution stick there. The
probability to get stuck at such a border minimum can be reduced with frequent
restarts [2] of CMA-ES (a feature which is not yet available in the current CMA-
ES R-package), but this is not likely to help in our case, since restarts would
further diminish the number of function evaluations available for each start.

It is a nice feature, that SPOT is not affected by both effects and can therefore lead with
a relatively small number of function evaluations to good results.
The evaluation of the GP-based system for kernel evolution results in less favorable
results. First of all it should be mentioned that a non-trivial technical overhead is
involved in building such a system, as a (potentially strongly-typed) GP toolbox needs
to be coupled with a SVM implementation, which allows for custom kernel functions.
In our case we took specific care to generate only PSD kernels, but numerical problems
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still resulted in occasional “freezes” of the SVM optimizer [27], making it necessary to
include a mechanism to stop these processes in our evaluation framework.
Regarding the optimization results it is certainly interesting that our GP system can data-
dependently recover well performing default kernels, but no significant improvements
over a default approach with a RBF kernel are obtained. In the cases where the GP
system performs slightly better, most of the time a linear kernel is recovered, which
could have been easily included in our default evaluation. And the computational cost
of GP is still a considerable burden even for smaller data sets. Furthermore, the default
kernels are usually tried first for a reason in SVM modeling, as they correspond to either
polynomial decision boundaries or a local model with data-dependently placed radial
basis functions, which are appropriate for many problems.
We would like to point out that our results are qualitatively on the same scale as
the results of other authors of comparable papers [21, 13], but we arrive at a more
cautious interpretation when comparing to default kernel results. Although we find the
contributions of the before mentioned authors very valuable and interesting in their own
right, we would like to discuss a few examples which illustrate why their results might
look better in their comparisons:

1. [13] only mention that their default kernels are optimized, but no specific details.
For the RBF kernel they report an accuracy of about 80.5% on the Ionosphere
data set, while one of their GP variants achieves about 91.5%. The last result is
comparable with ours, while the former is not. A simple kernel parameter tuning
by grid search produces an accuracy of about 94%.

2. [21] always set the bandwidth of their default RBF kernel to 10 and only tune
the C parameter. It is highly unlikely that this setting is best across the different
data sets they evaluate. They achieve significantly worse test set performances
for all three data sets that are common to both their and our study (Ionosphere,
BUPALiverDisorders, PimaIndiansDiabetes) for the RBF kernel than in our
comparison experiment. It should also be noted that they use a kernel-nearest-
neighbor classifier instead of a SVM in their GP system, a reason might have
been the technical difficulties we mentioned above.

3. [45] report extremely narrow confidence intervals for their error estimations,
leading them to significant improvements although the differences in mean per-
formance are quite small. This includes the conclusion that their kernel evolution
achieves a significantly better performance even on the Iris data set. Since it is
hard to verify how they achieved these values (our error estimators have much
larger standard deviations), we would like to mention the well-known fact that for
resampling (like cross-validation) the obtained error samples have a non-trivial
dependence structure, leading to a underestimation of the standard deviation. One
should also keep in mind the well-known distinction made in statistics among
significant differences and relevant ones. We further tested the best of their best
obtained non-default kernels for Ionosphere, for which they report an accuracy of
more than 98%. We found that it did not perform significantly better than a tuned
RBF kernel in an unbiased estimation.

Nonetheless, we still assume that GP-based discovery of custom kernels might give
significant improvements on problems that are more difficult to solve with standard
kernels, such as time series prediction and classification problems or problems from
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functional data analysis. As these problems often involve a large amount of data, at
least when compared to our UCI test dataset, it might be beneficial or even necessary to
examine and optimize the effectiveness of the GP search process on the search space
of PSD kernels. Casual observation of the GP search process and of the genealogy of
the best performing individuals gives the impression of a highly random navigation of
the search space, probably caused by low causality of the genetic variation operators.
In other words, a single variation (mutation or crossover) step often leads to a drastic
change in kernel behavior and performance, rendering efficient evolutionary search
nearly impossible. A redesign of the GP search space for PSD kernels that takes
causality into account explicitly might help to alleviate this problem. [40, 14, 47]

5 Conclusion
In this paper we analyzed the tuning and evolution of Support Vector Machines. The
objectives of this paper were twofold: First we demonstrated that good settings for a
parameter sensitive method like SVM combined with pre- and post-processing opera-
tions can be found almost automatically and efficiently by combining SVM with the
right optimization algorithm for parameter tuning (hypothesis H1). Among all consid-
ered parameter tuning algorithms, SPO showed best results on the tested benchmark
problems.
Secondly, a GP system was implemented to discover new SVM kernel functions in
an evolutionary process. Our GP system was consistently able to rediscover standard
kernels and to discover custom kernels with performance comparable to tuned standard
kernels. However, the performance of GP-generated custom kernels does not offer an
significant improvement compared to tuned standard kernels, at least on the relatively
simple UCI test datasets. We therefore are unable to accept hypothesis H2 at this point in
time. However, our results seem promising enough to warrant further work in improving
GP for support vector kernel evolution.
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