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Abstract Kernel-based methods like Support Vector
Machines (SVM) have been established as powerful tech-

niques in machine learning. The idea of SVM is to perform a

mapping from the input space to a higher-dimensional fea-
ture space using a kernel function, so that a linear learning

algorithm can be employed. However, the burden of

choosing the appropriate kernel function is usually left to the
user. It can easily be shown that the accuracy of the learned

model highly depends on the chosen kernel function and its

parameters, especially for complex tasks. In order to obtain a
good classification or regression model, an appropriate

kernel function in combination with optimized pre- and post-

processed data must be used. To circumvent these obstacles,
we present two solutions for optimizing kernel functions:

(a) automated hyperparameter tuning of kernel functions

combined with an optimization of pre- and post-processing

options by Sequential Parameter Optimization (SPO) and
(b) evolving new kernel functions by Genetic Programming

(GP). We review modern techniques for both approaches,

comparing their different strengths and weaknesses. We
apply tuning to SVM kernels for both regression and clas-

sification. Automatic hyperparameter tuning of standard

kernels and pre- and post-processing options always yielded
to systems with excellent prediction accuracy on the con-

sidered problems. Especially SPO-tuned kernels lead to

much better results than all other tested tuning approaches.
Regarding GP-based kernel evolution, our method redis-

covered multiple standard kernels, but no significant

improvements over standard kernels were obtained.

Keywords Machine learning ! Parameter tuning !
Support vector machines ! Genetic programming ! Kriging

1 Introduction

Kernel-based learning methods are state-of-the-art techniques
in supervised machine learning. The kernel trick makes it

possible to perform a transformation from the input data space
to a higher-dimensional feature space, where the transformed

data can be described by linear models and the problem

becomes tractable. However, the result highly depends on the
considered transformation. If the kernel function is not

appropriate for the problem, or kernel parameters are badly

set, the fitted model can be of poor quality. Due to this, special
care must be taken in selecting both the kernel function and

kernel parameters to obtain good results.

We propose a solution to this by using a statistical
optimization tool and a current genetic programming

framework to tune and evolve kernels of Support Vector

Machines.
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We define the following hypotheses:

H1 In complex classification and regression tasks good

parameter settings for standard kernels and pre- and post-

processing options can be found almost automatically with
the right statistical optimization tool (SPO).

H2 Genetic Programming (GP) can be used to find data-

optimized kernel functions for machine learning problems.
These kernel functions may show better performance (for

some problems) than tuned standard kernels.

This paper is organized as follows: Support Vector

Machines, Sequential Parameter Optimization and Genetic

Programming are introduced in Sects. 2.1.1-2.1.3 respec-
tively. Section 2.2 gives a short review of recent kernel

tuning and evolution approaches. In Sect. 2.3 our general

concept of tuning and evolution of SVM kernels are pre-
sented, and we point out possible potential for further

kernel tuning. In Sect. 2.4 we mention our own software for

these purposes. We give a detailed experimental study on
tuned SVM kernels in Sect. 3. Here, we use GP-evolved

and SPO-tuned kernels to build optimized models for data

mining problems.

2 Approach

This section explains the different approaches to SVM

tuning studied in this work. After a short introduction to
basic methods, including SVM, SPO, and GP, a review of

existing tuning strategies is given. We then continue to

describe our approaches to tuning standard kernels and
evolving custom SVM kernels for specific applications.

This section closes with a definition of the performance

measures used in this work.

2.1 Methods

2.1.1 Support vector machines

Support Vector Machines have been proposed as a super-

vised learning algorithm for both classification and

regression. Since the early nineties the field of kernel-based
learning algorithms has developed very quickly and many

extensions and comparable methods emerged.

In supervised machine learning data can be represented
as a number of observations

ðX1; Y1Þ; ðX2; Y2Þ; . . .; ðXm; YmÞ 2 X $ Y ð1Þ

where the set X defines the inputs and Y are the targets,
e.g., real values in regression or class labels for

classification. For classification we will consider only the

binary case in this section where Y ¼ f&1;þ1g. One basic

assumption in machine learning is that two observations

‘‘being near in input space’’ should have a similar target

value. Out of this reason we can define a function

k : X $ X ! R ð2Þ

denoting the similarity of two observations. k is a sym-

metric, positive semi-definite kernel function, which can be
interpreted as a dot product in a high-dimensional space

[37]. It implicitly transforms the data into this space and by

enlarging the dimension enables us to tackle nonlinear
problems with essentially linear techniques.

Making this more rigorous we can define H as the

associated reproducing kernel Hilbert space for k and
define the optimal model as the solution to the following

optimization problem

f̂ ¼ arg inf
f2H;b2R

jjf jj2H þ C
Xm

i¼1

LðYi; f ðXiÞ þ bÞ: ð3Þ

(Here, f maps into R even in the case of binary classifi-
cation and in order to get discrete predictions we would

calculate its sign.) The second term measures the closeness

of our predictions to the true targets by means of a loss
function, while the first term ||f||H

2 is called a penalty and in

case of the 2-norm penalizes non-smooth functions. The

balance between the loss and the smoothness penalty is
controlled by the hyperparameter C.

For classification we usually select the hinge loss

L(Y, t) = Lh(Y, t) = max(0, 1 - Yt), while for regression
we often set LðY ; tÞ ¼ L!ðY ; tÞ ¼ maxð0; jY & tj& !Þ to the

!-insensitive loss. The hinge loss is a convex, upper sur-
rogate loss for the 0/1-loss (which is of primary interest,

but algorithmically intractable), while L! provides the

estimation of the median of Y given X. Both losses lead to
quadratic programming problems for (3), which can be

solved efficiently, and the non-differentiability of these two

loss functions further provides for sparse solutions [9].
In time series regression for a time series x(t), where

t 2 R is time, we define a state vector Xt ¼ ðxðtÞ; xðt &
sÞ; . . .; xðt & ðd & 1ÞsÞÞ with time delay s and embedding
dimension d. We are interested in predicting a point in the

future with time horizon p by using the past values encoded

in the state vector: Yt = x(t ? p) = f(Xt). Support vector
regression (or any other regression technique) can now be

used to model and estimate f [39]. Note, that it is

straightforward to extend the approach above for multi-
variate time series. See Drucker et al. [15] for examples of

applications.

2.1.2 Sequential parameter optimization

Sequential Parameter Optimization (SPO) is a framework
for improving and understanding the behavior of general
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algorithms by experimentation. Often these algorithms are

evolutionary search methods but SPO can also be applied
to machine learning methods. Note, that in the main part of

this section we will introduce the general concept of SPO

which encompasses all these scenarios.
First experiments using SPO were devoted to the anal-

ysis of stochastic search algorithms, namely Evolution

Strategies (ES) and Simulated Annealing (SA) [5]. SPO
combines methods from classical Design of Experiments

(DoE) and modern Design and Analysis of Computer
Experiments (DACE).

DoE dominates the first phase of the SPO development.

This approach includes several established and well-
understood procedures for the analysis of deterministic and

stochastic data, especially regression and analysis of vari-

ance techniques.
Kriging was developed in geostatistics as a tool for

curve fitting and response surface approximation, while

DACE was introduced in the 1980s for deterministic
computer generated data [44, 45]. The latter is based on the

Kriging approach and [6] demonstrated that Kriging can

also be applied to tuning stochastic problems.
Both classical and modern methods from statistics are

considered for optimizing algorithm parameters to improve

algorithm performance. SPO sequentially performs a pre-
defined number of algorithm runs, and uses the information

during exploration of the search space to build and refine a

meta model of the true objective function. This model is
used as a cheap surrogate for the true objective function

and optimized to produce new design points, which in turn

are evaluated by the algorithm and used to update the
model. Such a meta model is usually an interpolating or

regression model. We will focus on kriging here, as it often

performs best in modeling the nonlinear fitness landscapes
in computer experiments, but SPO is general enough that it

does not require a specific model.

As the algorithm we want to analyze and tune might be
stochastic (or the problem instances it is applied to), we

need to incorporate a mechanism that deals with noise. In

SPO two strategies are used for this purpose: (a) The
algorithm is evaluated multiple times at the design points.

The number of replications is slowly increased during the

sequential optimization and promising design points are
evaluated more often than worse ones. (b) Some changes

might be necessary for the meta model, if we do not want

to interpolate the design points. They include estimating a
nugget effect for the Kriging model and the re-interpolation

technique by Forrester. These are explained in the fol-

lowing Kriging part.
In Algorithm 1 the pseudo code of SPO is presented.

Note, that in this section we will use the notation x(i), y(i)

for the data passed to the surrogate model, instead of Xi, Yi

as for the learning data for the SVM. This was done to

emphasize the fact that in our applications of tuning SVM-

based models the data passed to regression model in SPO
are the parameters of the learning machine and not the

observations in the training set itself.

Algorithm 1 Sequential parameter optimization (SPO)

Different strategies for choosing the number of repli-
cations are possible. In order to keep things simple, we

present a strategy where in each iteration the currently best

design point is evaluated one additional time (until a
maximum number of replications is reached) and the newly

proposed points are evaluated the same number of times as

the current best.
During the first stage of experimentation SPO explores

the performance space of the algorithm A, which is treated

as a black box. A set of input design points x is passed to
A, usually these are created by a space filling design, e.g.

latin hypercube sampling. Each run of the algorithm pro-

duces some output y regarding its performance. SPO now
tries to determine a functional relationship between x and y
and to sequentially improve it. In the sequential improve-

ment loop SPO optimizes the current model Y(x) over the
considered space of input variables by means of a cost

function. In the simplest case this cost function is the

estimated output itself as this should reflect the perfor-
mance of A. But more sophisticated criteria are possible to

select the next sampling points, and in case of kriging they

are called infill criteria. When the new sampling points
have been selected, the number of replications is increased,
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the required evaluations at the design points are performed

and the surrogate model is updated.
The whole procedure serves two primary goals. One is

to determine good parameter settings for A, thus SPO may

be used as a tuner. Secondly, variable interactions can be
revealed in order to understand how the tested algorithm

works when confronted with a specific problem or how

changes in the settings influence the algorithm’s perfor-
mance. The SPO approach tries to tackle both goals of (i)

tuning and (ii) understanding complex procedures, e.g.,
optimization algorithms or machine learning models.

2.1.2.1 Kriging in SPO For now we make the usual

assumption for a general regression setting that the output
data are subject to simulation-model errors, i.e., we have

noisy measurements yi at the i-th data point x(i), where !i is

the measurement noise.
The SPO approach consists of two steps: (1) Model

construction and (2) optimizing the model. We will only

present these for kriging here, where both steps are based
on the maximum likelihood estimation (MLE) approach

presented in [18, 27].

(1) Model construction is implemented as follows: Con-

sider a dataset fðxðiÞ; yðiÞÞg; ði ¼ 1; . . .; nÞ. The

observed responses y = {y(i)} are considered as if

they were from a Gaussian process, i.e., we will use a

set of random vectors Y ¼ Yðxð1ÞÞ; . . .; YðxðnÞÞ
! "T

with associated (n 9 n) correlation matrix

W ¼ corðYðxðiÞÞ; YðxðjÞÞÞ
# $n

i¼1;j¼1
ð4Þ

and correlation function

corðYðxðiÞ; YðxðlÞÞ ¼ exp &
Xk

j¼1

hjðxðiÞj & xðlÞj Þ
2

 !

: ð5Þ

Under standard assumptions, cf. [18], the likelihood is

LðYð1Þ; . . .;YðnÞjl; rÞ ¼ 1

ð2pr2Þn=2
exp &

P
ðYðiÞ & lÞ2

2r2

 !

:

ð6Þ

In order to filter noise, a regression constant k was added to

the leading diagonal of W; also sometimes called a nugget
effect. Expressing Eq. 6 in terms of the sample data, taking

derivatives, and setting to zero, we obtain the estimates

l̂ ¼ 1TðWþ kIÞ&1y

1TðWþ kIÞ&11
; ð7Þ

r̂2 ¼ ðy& 1l̂ÞTðWþ kIÞ&1ðy& 1l̂Þ
n

; ð8Þ

and the concentrated ln-likelihood function

lnðLÞ ( & n

2
lnðr̂2Þ & 1

2
ln detðWþ kIÞ: ð9Þ

We can now determine the unknown parameters, i.e., the
vector h introduced in Eq. 5 and the regression constant k
by maximizing the concentrated ln-likelihood function.

(2) Now that we have constructed the model, we can
perform the second step, i.e., optimizing it.

A prediction at x is given by

ŷðxÞ ¼ l̂þ wðxÞTðWþ kIÞ&1ðy& 1l̂Þ; ð10Þ

with l̂ as defined in Eq. 7 and wðxÞ the vector of

correlations between the observed data and a new

prediction, i.e.,

wððxÞÞ ¼ corðYðxð1ÞÞ; YðxÞÞ; . . .; corðYðxðnÞÞ; YðxÞÞ
# $T

:

The variance (model uncertainty) at this prediction can be

estimated by

ŝ2ðxÞ ¼ r̂2 1& wðxÞTðWþ kIÞ&1wðxÞ
#

þ 1& wðxÞTðWþ kIÞ&1wðxÞ
1TðWþ kIÞ&11

!

; ð11Þ

with r̂ as defined in Eq. 8. Because of the inclusion of the

nugget effect k Eq. 11 does not reduce to zero when we
calculate it at an already evaluated sample point.

When determining the next point x to evaluate in the

sequential loop of SPO, the kriging model is optimized
with respect to a so-called infill criterion. This measure

defines the expected cost of x for the black-box optimiza-

tion problem under consideration. The expected improve-
ment is the one most widely used. Its mean idea is to visit

points which should either exhibit a low objective function

value or a high model uncertainty. This ensures a balanced
exploration and exploitation of the search space. Other

infill criteria are discussed in [46].
First, we define the random variable I(x), which denotes

the improvement compared to the so far visited point
!x with objective value !y when we evaluate the process at a
new point x:

IðxÞ ¼ maxð!y& YðxÞ; 0Þ ð12Þ

Finally, Eqs. 10 and 11 are combined to calculate the
expected improvement

EðIðxÞÞ ¼ ð!y& ŷðxÞÞU
!y& ŷðxÞ

ŝðxÞ

% &
þ ŝðxÞ/

!y& ŷðxÞ
ŝðxÞ

% &
;

ð13Þ

where !y is the best observed value so far and Uð!Þ and /ð!Þ are
the cumulative distribution function and probability density
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function of the normal distribution, respectively. Note, that

the expected improvement in its presented form is only valid

for deterministic problems, in other words with a regression
constant of k = 0, but see also the comments in the following

paragraph about re-interpolation. For the expected improve-

ment the gradient can be calculated analytically, but as it is a
multi-modal function it is usually maximized with an evo-

lutionary algorithm or by employing restart strategies.

2.1.2.2 Modifications for non-deterministic problems
The original version of the presented algorithm required

deterministic data, i.e., evaluating one design point multi-
ple time would generate the same response. Thus, it could

not be applied directly to non-deterministic data.

In principle, there are two approaches to cope with non-
deterministic output data:

1. Repeated measurements. This approach, estimates y at
x by the mean of repeated measurements and this value

is fed to the Kriging model. This was already covered

in algorithm 1.
2. Reinterpolation by Forrester. In this approach, the

kriging model is able to handle the raw, noisy data.

The noise can simply be handled in the Kriging model
by fitting it with a so-called nugget effect (already

explained above as well), but the expected improve-

ment calculation has to be modified. A simple solution
through reinterpolation is offered by [18], and will be

referred to as Forrester later on. Here the Kriging

model is fitted twice. First with nugget-effect due to
the noisy observations, then the response values y(i) of

the data are substituted by the predictions of the

regression model. Now the data is interpolated in a
second step by a Kriging model without nugget effect,

for which the expected improvement can be calculated

without modification. Also, it is provable that for the
second model the parameters of the covariance kernel

from the first model are already optimal, leading to a

much faster fitting algorithm.

2.1.2.3 Comparing kriging and SVM Note, that there is a

close connection between Kriging (Gaussian processes)

and SVMs and this holds whether they are used to model
regression or classification problems. This connection

becomes clearer if one compares the resulting optimization
problems for both models and especially if we consider an

SVM with least squares loss function instead of the hinge

loss. The most important difference is that no fully sto-
chastic model or interpretation for the SVM is currently

known. Some work has been done by Sollich in that regard

[48], but his interpretation does not seem to be universally
accepted by the community (Rasmussen and Williams call

his construction ,,rather contrived’’ in [42]). A full and

proper discussion of this connection is out of scope for the

current paper and the reader is referred to [17, 40, 42].

2.1.3 Genetic programming

Genetic programming (GP) is a collection of techniques

from evolutionary computing (EC) for the automatic gen-

eration of symbolic expressions for solving a user-defined
task [3, 35, 41]. Starting with a high-level problem defi-

nition, GP creates a population of random symbolic
expressions, termed individuals, that are progressively

refined through an evolutionary process of variation and

selection until a satisfactory solution is found.
An important advantage of GP is that no prior knowl-

edge concerning the solution structure is needed. Tasks are

defined by fitness functions associating candidate solutions
with numerical fitness values encoding solution quality.

Another inherent advantage of GP is the representation of

solutions as symbolic expressions, i.e. as terms of a formal
language, which makes them accessible to human reason-

ing and symbolic computation. The main drawback of GP

is its high computational complexity due to the potentially
infinitely large search space of symbolic expressions.

Before applying GP, several problem specific and

algorithm specific parameters have to be specified:

Fitness function A fitness function associates a numeri-

cal fitness value to a candidate solution represented as a

symbolic expression. This function encodes the task to be
solved. GP is an optimization algorithm in the sense that it

searches for solutions that (by convention) minimize this

fitness function.

Building blocks A set of building blocks consisting of

function symbols, constant symbols, and variable symbols,
used for constructing symbolic expressions. Together with

the variation operators, these building blocks define the

structure of the GP solution search space.

Initialization strategy The initialization strategy defines

how the initial GP population is generated. Because we
want to bias our search to simple individuals, instead of

employing the classical ramped half and half heuristic, we

employ a strategy that grows random individuals to a
random tree depth less or equal than a maximum tree depth

given as a parameter [35].

Variation operators A set of variation operators for
mutating and recombining existing solutions. Because the

implementation of these operators is highly dependent on

the solution representation (tree, graph, etc.), a variety of
different operators have been developed. Still, the classical

mutation and crossover operators originally proposed by

Koza often work well in practice and are used here in a
type-safe manner. [35, 41]
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General EA parameters The remaining parameters are

common to most evolutionary algorithms and include

among others population size, selection strategy, and ter-
mination criteria. Most generic extensions to evolutionary

algorithms, such as niching and automatic restarts, can be

directly applied to GP.

The data and control flow of the GP algorithm used in

this work is shown in Fig. 1.

2.2 Review of tuning approaches

Many different optimization techniques have already been
tested to set kernel hyperparameters. For derivative-free

search these include among others:

(a) simple grid search, where parameter settings are tested

by performing geometric steps inside the boundary of

each parameter range. Grid search should only be
applied with very few hyperparameters, e.g., two or

maximally three, because the exponentially increasing

search space quickly makes this method inapplicable.
(b) pattern search, where one locally improves the current

point by considering a finite, deterministic neighbor-

hood [38],
(c) the well-known Nelder-Mead simplex strategy [9],

(d) evolutionary strategies like CMA-ES [20],

(e) simulated annealing [1],
(f) expected improvement maximization by Kriging [21]

(g) design-of-experiments sampling techniques [49].

To our knowledge Koch et al. [31] were the first who

used SPO as a tuner for optimizing the radial basis kernel
function for Support Vector Machines (SVM) combined

with preprocessing parameters on a complex real-world

data mining task.
Previous work in optimizing kernel functions for SVMs

by means of GP has been proposed by Howley and Madden

[26]. Compared with standard kernel functions a tree-based
GP produces better results. Their evolved kernel functions

are guaranteed to be symmetric, but can be non positive
semi-definite (PSD). This property is required to guarantee

termination of the solver inside SVM. A special fitness

function for avoiding overfitting based on margin maxi-
mization of the learned hyperplane is used. Diosan et al.

[13] also use GP for evolving kernels and respect the PSD

property of kernel functions. In their work a larger GP
function set compared to [26] is used, but results are only

evaluated on few benchmark datasets. Sullivan and Luke

[50] respect the PSD property of SVM kernels. They show
that GP kernels can improve the accuracy, but remark the

large computational overhead produced by the evolution-

ary process. Gagne et al. [22] use a co-evolutionary
approach for the kernel evaluation. Kernels obtained by

their GP approach are ranked by a nearest neighbor clas-

sification algorithm instead of SVM, since the PSD prop-
erty can not be guaranteed with the chosen function set.

Summarizing these publications we can conclude that

good results can be obtained using tuned or evolved ker-
nels, but special care must been given to

Stop
Criterion

Satisfied?

Test

Create Initial
GP Population
of SVM Kernels

Validated
GP-Generated
SVM Kernels

SVM

Training Data

Vaidation Data Select Kernels
of Best Performing

SVM Models

GP Populations
of SVM Kernels

Selected
SVM Kernels

Mutation /
Crossover

Test Data
SVM ModelsModified

SVM Kernels

Replace
Worst Performing

SVM Kernels

No

Yes

Best Performing
SVM Kernels

SVM Kernel GP Test

Fig. 1 General outline of kernel evolution by GP: Starting with a
randomly generated population of positive definite SVM kernel
functions represented as symbolic expressions, the algorithm selects a
random subset, termed a tournament set, for evaluation. Each kernel
in the tournament set is employed in training a SVM model on a
training dataset. These models are then evaluated on an independent

validation dataset. The kernels of the best performing SVM models in
the tournament are then modified by mutation and crossover. The
resulting kernels and replace worse performing kernels from the
tournament set in the population. This loop is repeated until a stop
criterion is satisfied. In the final test stage, the best performing kernels
are validated on an independent test dataset and returned as an result
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• the PSD property of the kernel functions,

• the fitness function, e.g. the evaluation of intermediate

kernels,
• the runtime of the modeling process. Model training

and prediction can last very long, which means that the

evaluation of the objective function can be very
expensive. The internal runtimes of tuning algorithms

like CMA-ES or Kriging are not discussed here, since

in our experiments they only constituted a very small
part in the optimization process. However, with

increasing number of parameters, runtimes of tuning

algorithms should be discussed critically.

Also, by either considering a smoothed version of the

cross-validation error [29] or a likelihood function of the

hyperparameters [23] one can switch to fast gradient-based
methods. Although all cited authors in this section usually

compare their algorithms to one or a few alternatives we

are currently not aware of a really comprehensive com-
parison study.

2.3 Kernel tuning and evolution

The performance of Support Vector Machines highly

depends on the chosen parameter values for regularization
and the kernel parameters. First, we describe how SPO and

other search heuristics can be used for parameter tuning of
standard kernel functions, pre-processing and post-pro-

cessing operations. Note, that although the fitting of SVMs

is deterministic, their performance prediction is not, see
Sect. 2.3.3, when stochastic resampling technique is used.

Second, we evaluate whether new, non-standard kernel

functions can be found by by means of Genetic Program-
ming and refer to the requirements of the evolved func-

tions, e.g., positive semi-definiteness. We also point out the

possibility to tune constants during evolution and after
having kernel functions evolved by GP.

2.3.1 Parameter tuning for SVM kernels

In this approach we use the TDM framework [32, 34] to

tune parameters of the SVM kernel function k(Xi, Xj).
Sometimes these parameters are just set by hand, although

it can give high improvements when performing an opti-

mization step for them. Kernel parameters usually have a
certain range, e.g., real values between 0 and1 or 0 and 1.

Hence, a finite region of interest (ROI) for the tuning

algorithms (SPO, CMA-ES, L-BFGS-B) is either defined
or can be obtained (or improved) by preliminary runs. We

consider as kernel functions for tuning the popular RBF

kernel:

kðXi;XjÞ ¼ expð&cjjXi & Xjjj2Þ ð14Þ

where c is a kernel parameter. Other kernels (e.g., linear,

polynomial) were initially tested on some real-world

datasets but showed worse performance.
In a previous work Koch et al. [30, 31] used SPOT for

tuning both SVM parameters and pre- and post-processing

parameters. We investigate how parameter tuning influ-
ences the quality of a trained SVM model using different

approaches for the tuning. In this work the following

methods are compared to each other:

• Quasi-Newton search, more specifically the BFGS [8]

algorithm was originally designed for unconstrained
optimization, although it can be used for constrained

optimization problems supporting box-constraints, which

is sufficient in our case. Since no analytical gradient is
available for our objective functions, we use numerical

approximations instead. In our experiments we use an

extended version of BFGS called L-BFGS-B. For more
details on this method we refer the reader to [8, 55].

• Evolution Strategies, e.g. CMA-ES

• SPOT

For simplicity we define an input-output function

f½T ;E*ðp; qÞ ¼ y where p is usually the set of parameters for

the SVM. E.g., all parameters affecting the SVM and its

kernel function. Other parameters for task-specific pre-
processing can be defined in q, and y 2 R is the corre-

sponding objective function value. A SVM is trained on
some training data T using its parameter set {p, q}, and

the model is evaluated on data E.

2.3.2 SVM kernel evolution by genetic programming

Tuning of kernel functions has shown to be useful for
obtaining better results for data mining tasks. Up to now,

kernel tuning by SPOT is restricted to existing kernel

functions. We believe, that this is not the end of the road
and that by replacing standard kernel functions by more

appropriate ones better results can be obtained. E.g., Cortes

et al. [12] have proposed a gradient-descent algorithm for
learning polynomial combinations of kernels in regression.

We want to further investigate the possibility to use GP for

evolving kernel functions and improve upon this technique.
GP has become more and more popular with the increase in

computational power in the last years, and is now appli-

cable even to complex tasks.

2.3.2.1 Kernel closure properties Kernel functions

compute dot products in high-dimensional spaces without

explicitly mapping into these spaces. A kernel function
must satisfy several mathematical properties so that Mer-

cer’s theorem [37] holds. One property is that kernel

functions must be positive semi-definite (PSD).
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Kernels stay PSD under certain operators. Let us assume

we have two kernels k1 and k2 which are PSD. Then the
following kernel functions are also PSD:

• Closure under sum: k1(Xi, Xj) ? k2(Xi, Xj)
• Closure under product: k1ðXi;XjÞ ! k2ðXi;XjÞ
• Closure under positive scalar multiplication: a !

k1ðXi;XjÞ; with a [ 0

• Closure under exponentiation: expðk1ðXi;XjÞÞ

For a more detailed description of closure properties we
refer to Cortes et al. [10, 11]. However, Schölkopf [47]

showed that even when the PSD condition is violated, some

non-PSD kernel functions have been used successfully in
practice for learning tasks. Probably the most well-known

kernel function, which is not strictly PSD, is the sigmoid

kernel:

kðXi;XjÞ ¼ tanhðaXT
i Xj þ CÞ ð15Þ

Vapnik [51] showed that this kernel is not PSD for some

settings of a and C. It is of large interest, how results are

affected, if one uses a PSD kernel satisfying Mercer’s
theorem, or if one uses a non-PSD kernel. A kernel

obtained by evolutionary techniques such as GP can of

course easily destroy the PSD property. The variation
operators can change a PSD kernel into a non-PSD kernel,

depending on the chosen GP function set. As non-PSD

kernels often also create technical problems for the
employed SVM optimizer, we try to maintain the PSD

property in the evolutionary process. This is achieved by

incorporating special variation operators which respect the
closure properties. These operators are implemented

through a combination of strongly typed GP and breeding.

2.3.2.2 GP search space Table 1 defines the strongly
typed GP search space for SVM kernel evolution. The used

building blocks (constants, input variables, and operators)
allow the definition of all standard support vector kernels

presented in Sect. 2.3.1, with the only exception of the

sigmoid kernel. We omitted the inclusion of trigonometric
functions to keep the search space reasonably simple. The

search space is further restricted by an expression tree

depth limit of 10 levels.
It can be easily seen that the strongly typed GP search

defined in Table 1 includes kernels that violate the PSD

criterion. We therefore reduce the search space further by
only accepting individuals that comply to the following

criteria:

• A valid kernel expression k must contain both input

vectors Xi and Xj.

• k must contain at most 4 symbolic constants.
• The kernel matrix Mk of k must not contain numerical

problems such as NaNs or infinite values.

• Mk’s eigenvalues must be non-negative (up to a small

numerical margin), i.e. Mk must be numerically PSD.

A breeding strategy is applied to the population initial-
ization and individual variation operators to ensure with

high probability that only individuals conforming to these

criteria are present in the population. When an individual is
created or modified by a genetic operator, the result is

checked for compliance. If it violates one of the criteria,

the operator is retried, up to maximum number of tries
given as the algorithm parameter ‘‘Breeding Tries’’. If a

genetic operator exceeds this limit, its last result is

returned. This means that the population can contain
individuals that may not comply to our constrains.

Figure 2 introduces the typed GP variation operators

used in this study by means of examples. Formal defini-
tions of these standard operators are given in [41]. The

parameter settings of the GP system are listed in Table 3.

2.3.2.3 GP fitness function The quality of an individual
k, i.e. the quality of the symbolic representation of a sup-

port vector kernel, is evaluated by our fitness function in

four steps:

1. It is checked if k complies to our criteria defined

above. If it does not, the worst possible fitness (þ1) is
assigned to k. This step is necessary because invalid

individuals resulting from failed breeding attempts

might be present in the population.
2. As the performance of a kernel is often highly sensitive

to its constants as well as to the regularization

parameter C, a latin hypercube design (LHD) D of

Table 1 Strongly typed GP search space for SVM kernel evolution

Building block class Type Building blocks

Constant R {c1, c2, c3, c4}

Input variable RD {Xi, Xj}

Scalar function R! R fexpð!Þ; !2g
Scalar operator R$ R! R f! þ !; ! & !; ! $ !; ! + !g
Vector operator RD $ RD ! RD f! þ !; ! & !g

RD $ RD ! R f! $ !; jj ! & ! jj2g
R$ RD ! RD f! $ !g

RD $ R! RD f! $ !g

All possible building blocks for each building block class are shown.
The variables x, xi and xj denote real vectors of the SVM input data
dimension D, the constants c1; . . .; c4 denote symbolic constants. The
types of building blocks are given as type expressions, e.g.

RD $ RD ! R is the type of an operation that maps two real vectors
to a scalar real value. A center dot ! denotes a placeholder for a
building block of suitable type. Note that some operators, such as
the 9 operator, are ‘‘overloaded’’ to work with multiple operand
types
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size d ! ðnconstðkÞ þ 1Þ is created by latin hypercube
sampling, where nconst(k) is the number of constants

in k and the design factor d is given as an algorithm

parameter.
3. For each design point in D, C as well as the constants

of k are set accordingly and the performance of a

support vector machine is evaluated based on a single
validation holdout set (1/3 of the training data created

in the outer resampling), giving a vector Y of

performance values. Performance is measured by
mean misclassification error (MMCE).

4. The pointwise minimum of Y, i.e. the performance of

k based on the best design point in D, is returned as k’s
fitness.

The description above applies to classification problems.

For support vector regression, we add another parameter !
to the LHD and change the performance measure from

MMCE to root mean squared error (RMSE). See Sect. 3.2.1

for a definition of !.
The general outline of GP evolution of SVM kernels is

depicted in Fig. 1.

2.3.3 Evaluation and performance measures

The evaluation of a support vector machine concerns two

different stages. While we need to be able to compare
different kernels or parameterizations during model build-

ing, we also have to evaluate the combined fitting and

optimization process itself. The latter is straightforward:
After we have decided upon a specific kernel function and

its parameters by looking only at a subset of our available

data, we evaluate on the remaining observations to avoid
optimistic bias. This process is repeated a couple of times

in order to maximally utilize the limited amount of data,

and the generalization of this concept is called resampling.
The performance measure for evaluation is dependent on

the target of the application and will be closely connected

to the loss function chosen in Eq. 3. For classification often
the misclassification error (i.e. 0/1-loss) and for regression

either the root mean squared error (RMSE) or the mean

absolute deviation is selected. To compare kernels or
parameterizations during model selection we could in

general do the same (resulting in nested resampling), and
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Fig. 2 Standard typed GP variation operators explained by means of
example: Two different mutation operators and a single crossover
operator are employed. The first mutation operator ‘‘Replace Function
Label’’ chooses a node by uniform random selection to be replaced by
a node of matching type. Nodes affected by a variation operator are
shown in inverse (white-on-black). The second mutation operator
‘‘Replace Node by Subtree’’ selects a node by uniform random

selection to be replaced by a newly initialized subtree. These mutation
operators enable the GP algorithm to reach every well-typed
expression. The crossover operator ‘‘Uniform Subtree Crossover’’
chooses an edge as crossover point by uniform random selection in
each of the two parent trees, then swaps the subtrees at the crossover
points between the parents, creating two children trees. Edges at
crossover points are shown in inverse
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this approach is followed by quite a lot of authors. But one

should be aware that especially for kernel construction by
genetic programming a large number of these evaluations

will be needed and should look for less expensive alter-

natives if possible. One is to use fast implementations for
calculating the leave-one-out error. The other is to

exchange the natural performance measure during model

selection by one which is computationally cheaper, see
Duan et al. [16] for a comparison of possibilities.

2.4 Software

All the experiments presented in this work are based on
software solely written with the help of available open

source toolboxes. We describe in this section some of these

toolboxes, which are central to the ideas presented here.

2.4.1 SPOT

The Sequential Parameter Optimization Toolbox SPOT is a

software implementation of the Sequential Parameter

Optimization framework SPO as described in Sect. 2.1.2.
SPOT is open source software and available for both

Matlab and R. [4]

2.4.2 TDM

The TDM framework [32, 34] is written in R with the aim
to facilitate the setup, training and evaluation of data

mining models. It puts special emphasis on tuning these

data mining models as well as simultaneously tuning cer-
tain pre-processing options. TDM is especially designed to

work with SPOT as the preferred tuner, but it offers also

the possibility to use other tuners (CMA-ES [24], LHD
[36] and local optimizers) for comparison. The goal of

TDM can be formulated as follows: Provide a recipe/

template for a generic data mining process (classification or
regression) which works well on many different data

mining tasks. In its current version the TDM framework

contains:

1. Sampling, i.e., the division of the data in training and

test set (random, k-fold cross validation (CV), …)
2. Generic feature generation and generic feature selec-

tion (currently Random-Forest-based variable ranking

and GA)
3. Modeling: currently SVM, Random Forest (RF),

MC.RF [34], but other models, especially all those

available in R can easily be integrated
4. Model application: predict class and (optional, depend-

ing on model) class probabilities

5. User-defined post-processing (optional)

6. Evaluation of model: confusion matrix, gain matrix,

score, generic visualization, …

TDM can optimize the pre-processing and modeling
parameters contained in step 2. and 3. by a generic tuning

process with one of the above-mentioned tuning

algorithms.

2.4.3 MLR

The mlr package [7] provides a generic, object-oriented

interface to about 50 machine learning methods in R for

classification and regression and can easily be extended
with further ones. It enables the researcher to rapidly

conduct complex experiments or implement his own meta-

methods using building blocks of the package. Resampling
like cross-validation, bootstrapping and subsampling are

used to assess the generalization performance, measured by

e.g. MMCE, MSE, cost-sensitive measures, ROC mea-
sures, etc. Custom measures can easily be defined as well.

Learner functionality can be extended by various

building blocks like multiclass-to-binary reduction, pre-
processing and post-processing steps and optimizers,

resulting in complex, tunable data mining systems. Hy-

perparameters of complex learning systems can be tuned
by grid search or more sophisticated deterministic or sto-

chastic search methods like e.g. Nelder-Mead, CMA-ES or
SPO. The same holds true for variable selection. Here,

various feature selection wrapper approaches (forward

search, backward search or genetic algorithms) and fast
filter methods are available.

Benchmark experiments with two levels of resampling,

e.g. nested cross-validation, can be specified with few lines
of code to compare different learning systems. Parallel

high-performance computing is supported and experiments

can be converted to parallelized versions with a simple
configuration command, without touching any further code.

2.4.4 RGP

RGP is an open source genetic programming system based

on the R environment. The system implements classical
untyped tree-based genetic programming as well as more

advanced variants including, for example, strongly typed

genetic programming and Pareto genetic programming. It
strives for high modularity through a consistent architec-

ture that allows the customization and replacement of every

algorithm component, while maintaining accessibility for
new users by adhering to the ‘‘convention over configura-

tion’’ principle. RGP’s support for strongly typed genetic

programming, breeding, and easy customization makes it a
good fit for SVM kernel evolution.
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3 Experimental study

We compare different variants for kernel tuning when

applied to complex real-world problems and also simple

benchmark problems to make our approach comparable to
other work. More specifically we use the TDM framework

for tuning parameters of two real-world problems—the

acid concentration problem and the stormwater problem.
The benchmark problems were chosen to show that a

systematic tuning is especially beneficial, when the prob-

lem at hand is rather difficult. We want to point out that
with such hard problems it is often difficult to get good

results without tuning in contrast to simple benchmark

problems. Within TDM the tuning algorithms SPO, CMA-
ES and L-BFGS-B were employed.

MLR was used as a framework for combining the SVM

algorithm with RGP and a comparison study with tuned
RBF kernels. For the kernel evolution we evaluated on

simpler benchmark problems from the UCI repository,

since GP is computationally expensive and in order to
compare our results to already published similar approa-

ches [13, 22, 50]. Nevertheless GP can be also used to find

kernels for real-world problems. It should be noted that the
difficulty in finding good solutions for real-world problems

is considerably higher than the complexity of most stan-

dard benchmark problems. Most complex real-world
problems as time series regression or classification prob-

lems contain more than 30,000 records, which is much
more data than usually used in benchmarks and their pre-

dictability can be poor (e.g., it can be difficult to obtain a

good accuracy with standard methods from machine
learning without incorporating expert knowledge).

3.1 Experimental setup

For parameter tuning we use the tuning algorithms to

optimize both SVM specific parameters (e.g., kernel
parameters and regularization parameters) and problem

specific (pre-processing) parameters (e.g., class weighting

in classification and embedding in time series regression).
In all experiments we set a limit of a certain number of

model evaluations. Since tuning algorithms like CMA-ES

or SPOT incorporate pseudo-random numbers, and random
resampling leads to different data on which the parameter

configurations are evaluated, all runs are repeated multiple

times. If no repeats are considered, search methods may get
trapped in false optima caused by too optimistic models.

The detailed settings for parameter tuning and kernel

evolution are shown in Tables 2 and 3 respectively.
In kernel evolution, we use a standard strongly typed GP

algorithm with a total budget of 2,500 fitness evaluations.

The parameter ‘‘design factor’’ determines the size of the
LHD design for regularization and kernel parameters. The

parameter ‘‘breeding tries’’ defines the number of times a

genetic operator is retried until returning its unmodified
input when it fails to generate a kernel that satisfies the

SVM kernel search space constraints (see Sect. 2.3.2). To

prevent loss of diversity during GP search, we use an
extinction prevention strategy that prevents the insertion of

duplicated individuals to the GP population.

3.2 Parameter tuning

3.2.1 Stormwater prediction

In water resource management, efficient controllers of
storm-water tanks prevent flooding of sewage systems,

which reduces environmental pollution. With accurate

predictions of stormwater tank fill levels based on past
rainfall, such controlling systems are able to detect state

changes as early as possible [25]. Recently, first work has

been proposed using SVM for predicting fill levels of
stormwater tanks, which require special pre-processing for

time series, e.g., embedding of integrated rainfall [30, 31].

Here, we compare SPOT with other optimization tech-
niques: the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) and L-BFGS-B.

Good-working region of interest (ROI) settings were
obtained for the stormwater problem by Koch et al. [30,

31]. As pre-processing, a special operator termed leaky
rain was incorporated for the stormwater problem. It is

Table 2 Experimental settings for parameter tuning

Setting AppAcid AppStorm

Total budget {50, 100, 200} 250

SPOT initial design size 10 50

SPOT predictor Kriging Kriging

Number of runs 5 5

Table 3 General settings for all kernel evolution by GP experiments

Setting Value

Algorithm Strongly typed GP

Total budget (Evaluations) 2,500

Design factor 3

Population size 20

Tournament size 8

Population initialization Type-safe random growth

Type-safe variation operators Replace function label, replace
node by new subtree, uniform
subtree crossover

Breeding tries 5,000

Extinction prevention True

Number of runs (n) 20
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defined by Eq. 16, where r(t) is the rainfall at time t and

leaky and W are tunable parameters. The idea of this
function is to use convolved rainfall as additional input of

the feature set used for training. Here we use two leaky rain
functions with different parameter settings for W and leaky.

XW1

i¼0

leakyi
1 ! rðt & iÞ and

XW2

i¼0

leakyi
2 ! rðt & iÞ: ð16Þ

For more details on the leaky rain operator see Koch

et al. [30, 31]. Summarizing, the tunable parameter set

contains nine variables, where six values are for the leaky
rain pre-processing and the rest for the SVM parameter

setting. A radial basis kernel was used as kernel function

for the SVM since it gave best results in preliminary runs.
The region of interest (ROI) for the variables is shown in

Table 4.

The time series data was split into four consecutive parts
of 5,000 records each, named set 1 to set 4. As training set

we chose set 2. The hyperparameters were optimized by

the search strategies SPOT, CMA-ES and L-BFGS-B. For
a comparison between the automatically tuned parameter

settings and user-defined settings we give the hand-tuning
result. Here, all parameters were set to the best values by
changing them manually in several preliminary runs.

As objective function we used the RMSE on set 4. The

results of this tuning are shown in Table 5. It can be seen
that SPOT clearly outperforms all other tuners. The bad

result of the quasi-Newton search method L-BFGS-B can

be explained by the fact that the method’s appropriateness

is somewhat dubious considering the fact that finite dif-
ference approximations have to be calculated for the gra-

dient and the fitness function is non-differentiable from a

theoretical standpoint as it involves integer parameters. It
can also be suspect to premature local convergence. Nev-

ertheless we included it as a baseline comparison. The

CMA-ES produced a good best result but likewise has to
cope with a very high standard deviation.

For the last predictive models we used the error gathered
on the test set as the objective function value for the

hyperparameter tuning with SPOT. In the real world this

value is unknown and thus gives the tuned model a certain
bias towards the test data. In order to perform a fair

comparison and to show the benefits of parameter tuning in

a more realistic setting, we ran another test using a dif-
ferent objective function for tuning the model parameters.

Otherwise the test set error might be too optimistic since

the model has been tuned and tested on the same set. In
Tables 6, 7 and 8, we present the results of training a SVM

Table 4 ROI for the stormwater problem

Parameter ROI Type Description

D1 [2,60] int Embedding dimension 1

D2 [2,60] int Embedding dimension 2

Leaky1 [0.005, 0.3] float Leaky decay parameter 1

Leaky2 [0.005, 0.3 float Leaky decay parameter 2

W1 [50,120] int Leaky window size 1

W2 [50,120] int Leaky window size 2

c [0.005, 0.3] float RBF kernel width

! [0.005, 0.3] float ! -insensitive loss-fct.

C [1,10] float regularization term

Table 5 Parameter tuning for the stormwater problem when trained
on training set 2 and evaluated on test set 4 giving a maximum budget
of 200 function evaluations for different tuning algorithms

Method Best Mean Worst SD

SPOT (Kriging) 6.83 7.68 8.12 0.52

L-BFGS-B 12.98 14.12 15.98 1.17

CMA-ES 8.37 10.84 14.42 3.10

Hand-tuning 9.73 — — —

Table 6 Results of SPOT tuning on the stormwater problem

Test

Set 1 Set 3 Set 4

Validation

Set 1 9.03 (0.66) 15.13 (0.71) 11.63 (1.25)

Set 3 14.35 (2.41) 9.57 (2.29) 14.42 (3.58)

Set 4 10.87 (0.15) 12.92 (0.36) 7.27 (0.51)

St 12.61 14.03 13.02

Vt 39.7 % 46.5 % 79.1 %

In each row of the table, SPOT tunes the RMSE on validation set 1, 3,
4 leading to different SPOT-tuned parameter configurations. These
configurations were applied to the test sets 1, 3, 4 (columns) to make
the results comparable. Note that set 2 is missing here, because it was
used for training only. Each experiment was repeated five times with
different seeds and we show the mean RMSE; bold-faced numbers are
best values on the test set and the numbers in brackets indicate
standard deviations

Table 7 Same structure as in Table 6, but with CMA-ES as tuning
algorithm

Test

Set 1 Set 3 Set 4

Validation

Set 1 8.07 (1.13) 17.0 (2.37) 13.61 (2.25)

Set 3 17.90 (2.20) 9.40 (3.38) 16.55 (1.49)

Set 4 11.04 (0.24) 13.87 (1.40) 7.48 (1.48)

St 14.47 15.43 15.07

Vt 79.4 % 64.3 % 101.5 %

Best values are indicated in bold
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model on set 2, and tuning the system-relevant parameters

on sets 1, 3, 4 (rows) and mutually evaluating the tuned
models on all these sets (columns) with SPOT, CMA-ES

and L-BFGS-B respectively.

For all tuning algorithms the RMSE is considerably
lower when validation set (for tuning) and test set are the

same. This becomes clear when best values are always

present in the diagonal of the tables, indicating too opti-
mistic tuning results. We quantify this effect by evaluating

the following formula: let Rvt denote the RMSE for row v
and column t of Tables 6, 7 and 8. We define

Vt ¼
St & Rtt

Rtt
with St ¼

1

2

X3

v¼1

Rvt & Rtt

 !

ð17Þ

With St we evaluate the mean off-diagonal RMSE for the
columns t = {1, 2, 3} which is an indicator of the true

strength of the tuned model on independent test data. The

diagonal elements Rtt are considerably lower in each col-
umn of Tables 6, 7 and 8. In case of no oversearching, a

value of Vt close to zero would be expected, whereas values

larger than zero indicate oversearching.
The SPOT tuned model chains do not always perform

best when validation set and test set are the same (diago-

nals). However, the best results obtained by CMA-ES and
L-BFGS-B seem to be too optimistic, because although any

of them has the lowest RMSE on the diagonals, they per-
form clearly worse on the off-diagonals. Instead, SPOT

gives the smallest RMSE on the off-diagonals, just with

one exception on validation set 3 and test set 4, where
L-BFGS-B is slightly better. This underlines the good

robustness of SPOT in tuning model chains, although a

small amount of oversearching is measurable in any opti-
mization method.

3.2.2 Acid concentration prediction

The goal of this benchmark is to classify acid concentra-

tions solely from spectroscopy information of a fluid. In the
acid concentration problem the user has defined five

classes, each denoting a certain range of acid concentra-

tion. The record numbers Nc = (228, 1528, 1880, 731, 70)
for each class c = 1..5 are highly unbalanced.

The user-defined goal is to maximize the mean class

accuracy

MCA ¼
X5

c¼1

1

Nc

XNc

i¼1

UðXiÞ ð18Þ

where U(Xi) is 1 for each correctly predicted record Xi and
0 otherwise. This means that each of the 70 records of class

5 (they define a critical plant state) has a much higher

importance than one of the 1,880 records of class 3. The
research question is here whether a tuning of SVM based

on TDM can achieve a similar or even better performance

than GerDA [53], the so far best approach. GerDA, as
described in the work of Wolf et al. [54], learns interesting

feature combinations in an unsupervised fashion with an

approach based on Boltzmann machines.
The dataset contains 4,437 records with 212 attributes,

each attribute denoting a sample point from the spectral

curve. Training set (3,326 records) and test set (1,109
records) were defined as in the work by Wolf et al. [54].

The results in Wolf et al. [54] showed that good classifi-

cation can be obtained if class weights are taken into
consideration.

We performed experiments using the Tuned Data Min-

ing (TDM) framework with SVM as classifier.1 Two sim-
ple pre-processing steps were taken into account:

1. The attributes in the dataset show a very high
correlation. This is of no surprise, because the

attributes stem from a discretization of the UV/vis

spectral curve and thus adjacent attributes have similar
values. A principal component analysis (PCA) was

performed in order to reduce the dimensions and to

obtain a better class separation. PCA can be optionally
switched on in the TDM framework so that no further

implementation is necessary.

2. To aid the SVM classifier in finding nonlinear feature
combinations with relevance to the classification goal

we added monomials of degree 2 spanning all

combinations of the first NPC = 8 principal compo-
nents with highest eigenvalues.

In Table 9 the ROI settings for the acid concentration
problem are shown, including standard SVM parameters

for regularization (C) and the RBF kernel (c), as well as

additional parameters for the class balancing for the acid
concentration problem problem and feature selection as a

result of the PCA pre-processing. More details on the

selected parameters can be reviewed in [34].

Table 8 Same structure as in Table 6, but with L-BFGS-B as tuning
algorithm

Test

Set 1 Set 3 Set 4

Validation

Set 1 8.32 (1.70) 18.63 (1.99) 13.35 (1.83)

Set 3 17.32 (2.66) 10.07 (3.28) 13.39 (3.26)

Set 4 11.43 (1.17) 15.42 (1.67) 8.41 (2.73)

St 14.38 17.02 13.37

Vt 72.9 % 69.0 % 59.0 %

Best values are indicated in bold

1 As an alternative to SVM we tested also Random Forest (RF) which
gave similar results.
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The experiments in Fig. 3 were created by repeatedly

executing the following procedure five times:

• In a sequential process each tuner generates design

points, that is certain settings for the hyperparameters
within their predefined ROIs.

• During tuning only the training set (3,326 records) was

used. This set was further split randomly in 80 % of the
data used for training an SVM with hyperparameters

provided by the tuner and 20 % used for validation, i.e.

for measuring the model strength (mean class accuracy)
and reporting it back to the tuner. This random data

split as well as the design point generation of the tuner

contain non-deterministic variations, the training pro-
cess of the SVM itself is fully deterministic. Each

design point is evaluated twice (maxRepeats = 2) and

the tuner takes the average of the two results reported

back.

• A second source of randomness lies in the pre-
processing parameter XPERC: Given the pre-processed

inputs a variable ranking is performed (see Konen et al.

[33] for details) and only those variables from the top of
the ranking list are taken which contain together the

fraction XPERC of the overall importance. Since the

variable ranking is based on Random Forest (RF), it is
also subject to slight random variations.

• At the end of the tuning process (which is stopped after

nEval = 50, 100, 200 model trainings, i.e. 25, 50, 100
design points), the best set of hyperparameters is taken,

used for a final SVM model training on the full training

set (3,326 records) and the model strength (mean class
accuracy) is evaluated on the 1,109 unseen test data

records.

We see from Fig. 3 that the SPOT tuning has a slight
oversearching effect, is comparable to the so far best

GerDA results, and is considerably better than the CMA-

ES tuner.

3.3 Kernel evolution

In this subsection first results of our support vector kernel

evolution scheme described in Sect. 2.3.2 based on the
general experimental setup described in Sect. 3.1 are

reported. To allow for a comparison of our results to earlier

work in the field of SVM kernel evolution, we used well
known datasets from the UCI machine learning repository

[19] for evaluation. These results are linked to the

parameter tuning approach discussed earlier by comparing
them with results obtained with tuned RBF kernels (tRBF).

In the tRBF experiments, the parameter for regularization

(C) and the RBF kernel parameter (c) were tuned by a grid

search with discrete settings 2&8; . . .; 2&7; . . .; 1; . . .; 28 for

both C and c. In contrast to the GP experiments that used a

single holdout set (33 % length) for validation during
kernel evolution, in the tRBF experiments we used fivefold

cross validation during tuning. In both experiments, the

reported test performance is obtained by 20-fold subsam-
pling (80 % training, 20 % test).

Table 11 shows an overview of the test performances of

evolved kernels (GP) and grid search tuned RBF kernels
(tRBF), measured by the mean misclassification error

(MMCE) on UCI datasets. They are also shown graphically

in Fig. 4. The test performances of GP-generated and tRBF
kernels is generally quite similar on all considered data

sets. We tried a further tuning for the parameters of the best

GP-generated kernels as well as for the regularization
parameter (C) via a much larger design after each GP run

was finished, which gave only marginal improvements.

Table 9 ROI for the acid concentration problem

Parameter ROI Type Description

XPERC [0.05, 1.00] float Fraction of features
taken as input

CUTOFF[1..5] [0.01 0.40] float Voting scheme

CLASSWT[1..5] [0.05 1.0] float Class weight vector

c [0.005, 0.3] float RBF kernel width

C [1,10] float Regularization term
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Fig. 3 Results of SVM tuning in the acid concentration problem. The
number of model trainings (nEval = 50,100,200) is deliberately set to
quite low values, since this training is the time-consuming part of the
tuning process. Error bars denote standard deviations from 5 repeated
experiments with different random seeds. Tuning with SPOT is in all
cases better than tuning with CMA-ES. The tuning results for SPOT
are slightly higher than the independent test results (oversearching)
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Table 12 shows the best kernels found in 20 GP runs,

i.e. the kernels giving the best performance on validation
data. Note that standard kernels like the linear kernel and

polynomial kernels are rediscovered by GP search.

4 Discussion

The tuning of standard Support Vector kernels by various

optimization methods gave improvements over hand-tuned

parameter settings and rule-of-thumb values. Here, espe-
cially the SPOT-tuned SVM kernels showed a remarkably

better prediction accuracy than the other tested optimiza-

tion algorithms like CMA-ES or derivative-free search.
While this is not too surprising for the quasi-Newton

search, the CMA-ES case deserves perhaps further dis-

cussion. We think that two reasons might be responsible for
this:

1. The relatively small number of function evaluations
(up to 200) is not favorable for the CMA-ES

Table 10 Tunable parameters,
their region of interest (ROI)
and best results obtained for the
acid concentration problem
(Neval = 200)

There were 12 parameters to
tune, since CUTOFF[5] was not
tuned but set by a sum
constraint

ROI Best value

Name Low High i: 1 2 3 4 5

XPERC 0.05 1.00 0.237

GAMMA 0.001 0.80 0.195

COST 0.00 100 54.6

CLASSWT[i] 0.05 1.00 0.849 0.431 0.246 0.468 0.814

CUTOFF[i] 0.01 0.40 0.216 0.023 0.335 0.389 0.232

Table 11 Results obtained on
test datasets with GP evolved
custom kernels (GP)
(Neval = 2, 500, Nruns = 20)
compared with results obtained
with grid search tuned RBF
kernels (tRBF) on UCI test data
sets

All test problems use mean
misclassification error (MMCE)
as performance measure

Dataset Best Mean Worst SD

GP Ionosphere 0.0282 0.0845 0.1831 0.04293839

Glass2 0.1212 0.2545 0.3939 0.07513299

Heart 0.0556 0.1516 0.2593 0.04939896

Liver 0.1884 0.2929 0.3623 0.04495063

Pima 0.1883 0.2300 0.2727 0.02374211

tRBF Ionosphere 0.0282 0.0599 0.1127 0.02279090

Glass2 0.0606 0.2015 0.3333 0.07375339

Heart 0.0926 0.1593 0.2593 0.05076841

Liver 0.2029 0.3043 0.4493 0.05340525

Pima 0.1688 0.2403 0.3117 0.03304342
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Fig. 4 Boxplots for comparing the test MMCE of GP evolved custom
kernels (GP) (Neval = 2, 500, Nruns = 20, no tuning) with the test
MMCE of grid search tuned RBF kernels (tRBF) on UCI test data sets

Table 12 Best GP evolved kernels for UCI test datasets found in 20
runs (Neval = 2,500)

Dataset Best GP evolved Kernel

Ionosphere kðXi;XjÞ ¼ c1 þ ðXT
i XjÞ2

½ððc2ðXT
i XiÞÞXjÞT Xj*2

Glass2 k(Xi,Xj) = [Xj
T ((c1 (Xi

T Xi)) Xj)]
2 ? (Xi

T Xj)
2

Heart k(Xi, Xj) = Xi
T Xj

Liver k(Xi,Xj) = c1 ? (c2 Xi
T Xj)

2

Pima k(Xi,Xj) = c1 Xi
T Xj

These kernels where selected based on their performance on valida-
tion data
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mechanism which needs usually more function eval-

uations to adapt its covariance matrix.

2. Another problem for CMA-ES is the existence of
relative tight ROI-borders in our tuning problems. If a

border constraint is violated, CMA-ES adds a penalty

term for solutions violating the border constraint,
which often leads to a minimum exactly at the ROI

border and lets the CMA-ES solution stick there. The

probability to get stuck at such a border minimum can
be reduced with frequent restarts [2] of CMA-ES (a

feature which is not yet available in the current CMA-

ES R-package), but this is not likely to help in our
case, since restarts would further diminish the number

of function evaluations available for each start.

It is a nice feature, that SPOT is not affected by both
effects and can therefore lead with a relatively small

number of function evaluations to good results. This has

the added benefit of relatively modest compute time
requirements, making this approach feasible for use in real-

world problems like acid concentration problem and

stormwater problem. Compute time requirements might be
further reduced by using a smaller subset of the training

data for parameter tuning. The robustness of parameter

settings obtained on reduced training set sizes is a topic of
further research.

The evaluation of the GP-based system for kernel evo-

lution results in less favorable results. First of all it should
be mentioned that a non-trivial technical overhead is

involved in building such a system, as a (potentially

strongly-typed) GP toolbox needs to be coupled with a
SVM implementation, which allows for custom kernel

functions. In our case we took specific care to generate

only PSD kernels, but numerical problems still resulted in
occasional ‘‘freezes’’ of the SVM optimizer [28], making it

necessary to include a mechanism to stop these processes

in our evaluation framework.
Regarding the optimization results it is certainly inter-

esting that our GP system can data-dependently recover

default kernels, but no significant improvements over a
default approach with a RBF kernel are obtained. In the

cases where the GP system performs slightly better, most

of the time a linear kernel is recovered, which could have
been easily included in our default evaluation. And the

computational cost of GP is still a considerable burden
even for smaller data sets. Furthermore, the default kernels

are usually tried first for a reason in SVM modeling, as they

correspond to either polynomial decision boundaries or a
local model with data-dependently placed radial basis

functions, which are appropriate for many problems.

We would like to point out that our results are qualita-
tively on the same scale as the results of other authors

of comparable papers [13, 22], but we arrive at a more

cautious interpretation when comparing to default kernel

results. Although we find the contributions of the before
mentioned authors very valuable and interesting in their

own right, we would like to discuss a few examples which

illustrate why their results might look better in their
comparisons:

1. [13] only mention that their default kernels are
optimized, but give no details. For the RBF kernel

they report an accuracy of about 80.5 % on the

Ionosphere data set, while one of their GP variants
achieves about 91.5 %. The last result is comparable

with ours, while the former is not. A simple kernel

parameter tuning by grid search produces an accuracy
of about 94 %.

2. [22] always set the bandwidth of their default RBF

kernel to 10 and only tune the C parameter. It is highly
unlikely that this setting is best across the different

data sets they evaluate. They achieve significantly
worse test set performances for all three data sets that

are common to both their and our study (Ionosphere,

BUPALiverDisorders, PimaIndiansDiabetes) for the
RBF kernel than in our comparison experiment. It

should also be noted that they use a kernel-nearest-

neighbor classifier instead of a SVM in their GP
system, a reason might have been the technical

difficulties we mentioned above.

3. [50] report extremely narrow confidence intervals for
their error estimations, leading to significant improve-

ments although the differences in mean performance

are quite small. This includes the conclusion that their
kernel evolution achieves a significantly better perfor-

mance even on the Iris data set. Since it is hard to

verify how they achieved these values (our error
estimators have much larger standard deviations), we

would like to mention the well-known fact that for

resampling (like cross-validation) the obtained error
samples have a non-trivial dependence structure,

leading to a underestimation of the standard deviation.

One should also keep in mind the well-known
distinction made in statistics among significant differ-

ences and relevant ones. We further tested their best

obtained non-default kernels for Ionosphere, for which
they report an accuracy of more than 98 %. We found

that it did not perform significantly better than a tuned

RBF kernel in an unbiased estimation.

Nonetheless, we still assume that GP-based discovery of

custom kernels might give significant improvements on
problems that are more difficult to solve with standard

kernels, such as time series prediction and classification

problems or problems from functional data analysis. As
these problems often involve a large amount of data, at

least when compared to our UCI test dataset, it might be
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beneficial or even necessary to examine and optimize the

effectiveness of the GP search process on the search space
of PSD kernels. Casual observation of the GP search pro-

cess and of the genealogy of the best performing individ-

uals gives the impression of a highly random navigation of
the search space, probably caused by low causality of the

genetic variation operators. In other words, a single vari-

ation (mutation or crossover) step often leads to a drastic
change in kernel behavior and performance, rendering

efficient evolutionary search nearly impossible. A redesign
of the GP search space for PSD kernels that takes causality

into account explicitly might help to alleviate this problem

[14, 43, 52].

5 Conclusion

In this paper we analyzed the tuning and evolution of

Support Vector Machines. The objectives of this paper
were twofold: First we demonstrated that good settings for

a parameter sensitive method like SVM combined with

pre- and post-processing operations can be found almost
automatically and efficiently by combining SVM with

the right optimization algorithm for parameter tuning

(hypothesis H1). Among all considered parameter tuning
algorithms, SPO showed best results on the tested bench-

mark problems.

Secondly, a GP system was implemented to discover
new SVM kernel functions in an evolutionary process. Our

GP system was consistently able to rediscover standard

kernels and to discover custom kernels with performances
comparable to tuned standard kernels. However, the per-

formance of GP-generated custom kernels does not offer a

significant improvement compared to tuned standard ker-
nels, at least on the relatively simple UCI test datasets. We

therefore are unable to accept hypothesis H2 at this point in

time. However, our results seem promising enough to
warrant further work in improving GP for support vector

kernel evolution.
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