
Reinforcement Learning: Insights from

Interesting Failures in Parameter Selection

Wolfgang Konen and Thomas Bartz–Beielstein

Cologne University of Applied Sciences,
Faculty for Computer Science and Engineering Science,

51643 Gummersbach, Germany,
{wolfgang.konen|thomas.bartz-beielstein}@fh-koeln.de

Abstract. We investigate reinforcement learning methods, namely the
temporal di↵erence learning TD(�) algorithm, on game-learning tasks.
Small modifications in algorithm setup and parameter choice can have
significant impact on success or failure to learn. We demonstrate that
small di↵erences in input features influence significantly the learning pro-
cess. By selecting the right feature set we found good results within only
1/100 of the learning steps reported in the literature. Di↵erent metrics for
measuring success in a reproducible manner are developed. We discuss
why linear output functions are often preferable compared to sigmoid
output functions.

1 Introduction

Reinforcement learning (RL) is a powerful optimization technique in situations
where a learning agent does not receive a direct target signal for each (observa-
tion, decision) pair. The agent receives only a reward from the environment and
does not learn a target output function. Often the reward is only given after a
sequence of decisions has been taken. Reinforcement learning attempts to mimic
one major way how animals or humans learn in natural environments. Instead
of being told what to do, they learn through experience. In a similar way, re-
inforcement learning agents learn to interact with an unknown and unspecified
environment.

Sutton’s well-known temporal di↵erence (TD) learning algorithm is a spe-
cific method to deal with the credit assignment problem in control and decision
tasks [1]. Based on this work, Tesauro designed in 1994 the famous TD-Gammon
agent which learned basically from self-play how to play the game of backgam-
mon at world champion level [2]. This made TD learning very popular, and
many successful applications have been reported since then. However, numerous
researchers also tried to apply TD (or RL in general) to distinct problems and
found quite mixed results in terms of convergence speed and/or decision qual-
ity of the learning agent. Despite of elegance of RL theory and the simplicity
of the basic TD ideas, the implementation of the algorithms is not trivial: tiny
implementation details can decide about complete success or failure.



We study in this paper the application of TD learning to simple game-play
tasks as a preparation for more complex learning tasks. We are interested in
elements of the algorithm which have significant impact on convergence speed
and/or success or failure of the learning agent. A better understanding of sur-
prising failures on simple tasks might help to configure algorithms in the right
way for more complex tasks.

In Sect. 2 we describe the TD algorithm and its application to the game-
learning tasks. In Sect. 3 we describe our metrics for measuring the quality of
the learning agent and present our results, which are further discussed in terms
of general insights in Sect. 4.

2 Methods

We consider two simple games:

Nim-3: A simplified variant of the game Nim, where N tokens are on the table,
each player can take 1, 2, or 3 tokens and the winner is the one who takes the
last token. The state space has 2N states. The optimal strategy is to leave
3 + 1 tokens for the opponent. Although almost trivial, we are interested in
situations where RL fails to learn the task or is considerably slow in learning
it.

TicTacToe: The board contains 3 ⇥ 3 fields, each player in each move marks
(with X or O) a field and the winner is who gets “3 in a row” (horizontal,
vertical, diagonal). The state space contains 5478 states. This is small enough
that a standard minimax agent can perform exhaustive search for each state
and find the best move.

A state in strategic games is usually described by the current board position
and the player who made the last move (so-called after state [3]). An example
for TicTacToe is shown in Fig. 1. Following the ideas of Tesauro [2], the RL
agent learns the game function V (st), which ideally gives for each after state the
probability that player p = +1, i.e., “X” will win. Given a certain board position,
the strategy for player p = +1 is to select the next move which maximizes
V (st+1), while player p = �1 (“O”) tries to minimize V (st+1). A state can be
encoded by collecting row-by-row the board positions into a state vector with
+1 for each “X”, 0 for each unoccupied field and �1 for each “O”. Together with

Fig. 1. Some after states for the game TicTacToe



the player who made the last move we get for example in Fig. 1 the following
state representation for state s4, which is a safe win for player “X”:

s4 = {00-1, 011, -100,�1}, V (s4) = 1.000 (1)

Even for moderate games the state space is usually too large to be represented as
a table and it is impossible to visit every state su�ciently often during learning.
To overcome this problem, a function approximation scheme is used where each
state s is transformed into a feature state g(s) and the function f(w; g(s)) with
internal parameter vector w (the weight vector) approximates V (s).

The TD algorithm aims at learning the function f(w; g(s)). It does so by
setting up an (initially inexperienced) RL agent who plays a sequence of games
against himself. It learns from the environment which gives a reward r 2 {0.0, 0.5,
1.0} for { O-win, tie, X-win } at the end of each game. The main ingredient is
the temporal di↵erence (TD) error signal

�t = rt+1 + �V (st+1)� V (st), (2)

where rt+1 is the reward for state st+1 (0 in a rewardless state, the game reward
r when t + 1 is the final state) and V (st+1) is the game value for st+1. The idea
is to remember from state st the value V (st) and the gradient rwf(w; g(st))
of the function f with respect to the weights w, to wait for the next state st+1,
and to apply then a learn step for the former state st. Thus the error signal
aims at bringing the game value V (st) closer to the (best) successor game value
�V (st+1) in a rewardless state or closer to the sum rt+1 + �V (st+1) in a final
state. The discount parameter � is usually close to 1.

Typical approximation functions are

– a linear function f(w; g(s)) = w ·g(s) (or the sigmoid of this linear function)
– a backpropagation net with weights w and input g(s).

In both cases the learning step uses a variant of gradient descent with the so-
called eligibility vectors et. The core of the TD(�)-algorithm is given as pseudo
code as Algorithm 1. After the network is initialised with random weights, Al-
gorithm 1 is called for G games to produce a trained RL agent. Usually the
learning parameter ↵ and the exploration parameter ✏ are slowly decreased in
the sequence of the games, e.g., ↵ decreases exponentially from ↵init to ↵final.

For each of the games Nim-3 and TicTacToe we explore di↵erent feature sets
which are defined in Tab. 1. As an illustration consider TicTacToe state s4 in
Fig. 1, which gives rise to the following feature vectors in the sets T1 and T3,
resp.:

T1 : g(s4) = (3, 0, 0, 2, 1, 0)
T3 : g(s4) = (3, 0, 2, 1, 3, 2, 0, 0, 1, 0, 0, 0,�1, 0, 1, 1, �1, 0, 0)

Note that there is only a small di↵erence between F0 and F2 (the 1 is replaced
by p), but this has a large impact on learning, as we will see below.



Algorithm 1 “Self-play”: Incremental TD(�)-algorithm for strategic games
Input: player p

0

[=+1 (“X”) or -1 (“O”)] for the first move, initial state s
0

, and a
(partially trained) function f(w; g(st)) to calculate the game function V (st).

1: V
old

:= f(w; g(s
0

)) and t := 0 . with player �p
0

in after state s
0

2: e
0

:= rwf(w; g(s
0

))
3: for (p := p

0

; 1; �p! p, t + +) do . switch forever between players
4: select random number r 2 [0, 1]
5: if r < ✏ then select randomly an after state st+1

. explorative move
6: else select after state st+1

which maximizes p · f(w; st+1

) . greedy move
7: get response V (st+1

) := f(w; g(st+1

)) and reward rt+1

:= r(st+1

) from envi-
ronment

8: calculate error signal �t := rt+1

+ �V (st+1

)� V
old

9: if st+1

is greedy move or st+1

is final state then

10: make learn step w := w + ↵�tet

11: end if

12: if st+1

is final state then break . exit for-loop
13: V

old

:= yt+1

:= f(w; g(st+1

)) . because w has changed!
14: et+1

:= ��et +rwf(w; g(st+1

)) . becomes et for the next iteration
15: end for

Table 1. Feature sets for Nim-3 and TicTacToe. Each feature vector is an M -
dimensional vector: (f

0

, . . . , fM�1

) for Nim-3 and (t
0

, . . . , tM�1

) for TicTacToe. Singlets
in TicTacToe are lines (horizontal, diagonal, vertical) with exactly one token of player
p, the rest of the fields being empty; similar for doublets and triplets. A crosspoint
is an empty field belonging to at least two singlets of the same player. It character-
izes an opportunity for that player. “Diversity” counts the number of di↵erent singlet
directions for each player.

Name Description dim M

Feature sets for Nim-3

F0 fi = p, if i tokens left by player p, 0 else (i = 0, . . . , N � 1) N
F1 fi = 1, if i tokens left; fi+N = p, if i tokens left (i = 0, . . . , N�1) 2N
F2 fi = 1, if i tokens left, 0 else; fN = player p (i = 0, . . . , N � 1) N + 1

Feature sets for TicTacToe

T1 t
0,1,2 : number of singlets, doublets, triplets for p = �1;

t
4,5,6 : number of singlets, doublets, triplets for p = +1;

6

T2 t
0,1 : number of singlets, doublets X if p = �1; 0 else

t
2,3 : number of singlets, doublets O if p = +1; 0 else

t
4,5 : diversity O/X if p = �1; 0 else

t
6,7 : diversity O/X if p = +1; 0 else

t
8,9 : crosspoint count O/X;

10

T3 same as T2 plus nine features containing the raw board position 19



3 Evaluation

We measure the success of a trained RL agent by di↵erent metrics.

Nim-3: The 2N possible outcomes of the game function V can be directly
evaluated. If the value of p · V in a after state for player p with s = 4m
tokens, m = 0, 1, 2, . . ., is larger than in the states with s+2, s+1, s�1, s�2,
then the agent will play optimally on all possible moves and we term such
an agent a success.

TicTacToe: We evaluate in a set of 40 selected states whether the RL agent
produces the same move as the optimal move suggested by the minimax
agent (or produces an equivalent move having the same minimax score). The
percentage of correct moves is a measure of success. This metric explores the
state space if the 40 selected states cover relevant aspects of the state space.

TicTacToe: In a tournament, the RL agent plays 500 games against other
agents, either as player X (the starting player) or as player O. We measure
the percentage of X-wins, ties, and O-wins. The success rate in a tournament
is the simplest and, at the end of the day, most relevant metric. But, note
that a tournament against the minimax agent will produce always the same
moves and thus will explore only a tiny fraction of the state space.

The success rate in the Nim-3 metric is measured as the average over 500 realisa-
tions of the RL agent. The results in Fig. 2 show the following: The earlier each
curve rises to 1.0 the faster the RL agent has learned the concept. It is clearly
seen that learning is faster without a sigmoid on the output and that the linear
net learns considerably faster than its backpropagation companion. All runs use
the feature set F0, which is simpler to learn than F1 or F2.

Of course the linear net can not learn each feature-output-relation. While the
feature set F1 is still linearly separable, the feature set F2 is not. The linear net
can learn F1 as well, but not F2. But, as Fig. 3 shows from the average over 500
realisations, also the backpropagation net has increasing di�culties in learning
F1 and F2. It does not succeed at all in the case F2, with sigmoid which is quite
a surprising failure.

Figure 4 shows the second measurement metric, the percentage of correct
moves on selected states. It is quite easy to reach 50% or more, but di�cult to
achieve a figure above 85% on the average of 200 independent realisations. Single
realisations can reach 100% correct moves. The learning curve in Fig. 4 shows
quite surprisingly a decline in performance for feature set T1 as G increases.
As a general trend, the “richer” feature sets T2 and T3 show much better per-
formance. The decline for G � 104 in 3 of 4 learning curves is not yet fully
understood.

Finally we perform a TicTacToe tournament of 300 games between an RL
agent, a minimax agent, and a random agent, where the latter chooses each
move at random. The results shown in Tab. 2 are quite satisfactorily (no agent
can do better than “tie” against the minimax agent). Although without any
strategy, the random agent explores the full state space and it is not easy to
win consistently against it. The percentages obtained here are about ten points



Fig. 2. This figure shows how fast di↵erent net types can learn Nim-3, as a function
of the number of training games in self-play. The linear net without sigmoid in the
output neuron learns ten times faster than the backprop net without sigmoid and 50
times faster than the backprop net with sigmoid. Parameters: ↵

init

= 0.1, ↵
final

= 0.01,
� = 0 and � = 0.9. The backpropagation net has six sigmoidal hidden neurons.

Fig. 3. Success rate in Nim-3 for di↵erent feature sets. Again nets without output
sigmoid (solid lines) learn faster than those with (dashed lines). In all cases the net is
a backpropagation net with six hidden neurons. The importance of correct feature-set
selection is demonstrated: slow or no convergence on feature set F2. 12 hidden neurons
produce similar results. Other parameters are the same as in Fig. 2.



Fig. 4. Percentage of correct moves in TicTacToe for di↵erent feature sets. Each mea-
surement point averages 200 independent realisations of a backpropagation net with
15 hidden neurons. Nets without output sigmoid (solid lines) learn faster in the initial
phase, but nets with sigmoid (dashed lines) produce slightly better results as G in-
creases. Best results are obtained with feature set T3. Other parameters are the same
as in Fig. 2.

higher (in the favor of RL) than the similar results reported in [4]. It has to be
noted, that these results were achieved with a single (best) RL agent realisation,
which is the same procedure as in [4].

4 Discussion

An important result is that a linear output neuron is advantageous in nearly all
cases compared to an output neuron with sigmoid function. This holds both for
the linear net and the backpropagation net. It is surprising at first glance, since
a sigmoidal output in [0, 1] seems more appropriate for a function approximat-
ing V (s), the probability of a win for player X. The reason for slower learning
convergence (or no learning success at all) might lie in the following fact: In the
sigmoidal case the gradient rwf is a function proportional to f ·(1�f) and thus
becomes weaker as f approaches 0 or 1, the desired targets. Therefore “pulls”
into the right direction have a smaller net e↵ect than “pulls” into the wrong
direction as they occur during the initial learning phase or while the correct
concepts are not yet learned.

Another interesting result is that the right selection of features is of great
importance to the learning process, as Fig. 4 shows. Too few features or features



Table 2. Our results from a 300 games TicTacToe tournament. The RL agent is our
backpropagation net with 15 hidden neurons, linear output function, trained on feature
set T3 over G = 104 games of self-play. The minimax agent is a perfect player (recursive
search of best move), while the random player chooses each move randomly. See Tab. 3
for comparable results by Stenmark [4].

X vs. O X wins tie O wins

minimax vs. RL 0% 100% 0%
RL vs. minimax 0% 100% 0%
random vs. RL 0% 18% 82%
RL vs. random 100% 0% 0%

not specific enough towards the learning goal might block the road to success.
On the other hand too many features on top of specific features seldom do
any harm, the RL agent quickly learns to ignore irrelevant features. Even if an
additional feature is quite unspecific (as for example the field contents used as
extra features in set T3, which is on a single level not directly related to win or
loss), it might help to make a formerly linearly inseparable task separable. This
enables a linear function approximator to learn the desired behaviour quickly
and robustly.

This brings in front another topic which is well-expressed on Suttons RL FAQ
page [5], but too often forgotten in RL applications in the literature: Sutton
emphasizes the robustness and speed of linear nets and prefers them in first
approaches to new RL-tasks as opposed to backpropagation or other non-linear
function approximators. We feel in the same way and think that the results
presented here might assure these statements.

It pays o↵ to think about features and their connection to the learning goal.
The Nim-3 task and the seemingly similar feature sets F0 and F2 show that
tiny modifications can be important: While F0 contains the same information
as F2, it makes learning much easier. In the set F2 conflicting concepts are
overlapping and hinder the learning process. Note that in the set F0 the input
f4 = +1 always signals a win for player +1, while in the set F2 the input
f4 = 1 means a win if fN = +1, but a loss if fN = �1. The net has to learn

Table 3. Results as reported by Stenmark [4] on a TicTacToe tournament. The RL
agent is a backpropagation net and was trained with 1 million games of self-play, yet
it does not achieve the same performance as in Tab. 2. Entries in bold face highlight
di↵erences to Tab. 2.

X vs. O X wins tie O wins

minimax vs. RL 0% 100% 0%
RL vs. minimax 0% 100% 0%
random vs. RL 4.5% 22% 73.5%
RL vs. random 90.5% 9.5% 0%



Table 4. Tournament results when playing TicTacToe against the agent ANN by
Levkovich [7] which uses also RL and a feature set equivalent to our set T1. RL(T1)
and RL(T3) are our RL agents with feature sets T1 and T3, resp. Other parameters
are the same as in Tab. 2.

X vs. O X wins tie O wins

ANN vs. RL(T3) 7.4% 46% 46.6%
RL(T3) vs. ANN 61% 18% 21%
ANN vs. RL(T1) 24.1% 45.5% 30.4%
RL(T1) vs. ANN 63.4% 16.3% 20.3%

RL(T1) vs. RL(T3) 16.2% 39.4% 44.4%

the “concept” (f4 · fN ), but the conflicting TD error signals hinder it to do so.
A similar source of conflicts, namely the interference of redundant inputs was
reported by Togelius et al. in their work on memetic climbers [6].

Finally we compare our results with other work: For the game TicTacToe
many RL-implementations exist [4, 7]. The RL agent from [4] shows a 10% weaker
performance on the random agent (Tab. 3), although it was trained 100 times
longer (1 million games). But the di↵erence is that their input was only the set
of raw board positions. This demonstrates the importance of feature inputs. The
RL agent in [7] is available as source code, so we ran several direct tournaments
where both agents had the same number G = 104 of training games (Tab. 4).1
The win rate of our RL agent with feature set T3 was on average three or seven
times higher than that of the RL agent ANN in [7], depending on whether our
RL agent played as O or as X, resp. The performance of our RL agent with
feature set T1 was a bit weaker, still slightly above ANN. So RL(T3) leaves the
tournament as the best agent, even stronger than RL(T1).

As a general remark it is quite surprising that the di↵erent RL agents do not
reach very often a tie or draw when playing against each other, as they do when
playing against the perfect minimax agent or against themselves. The reason is
probably that they did not encounter all variants of the other RL agent during
self-play training, so both sides have their “vulnerabilities” when playing against
each other. However, a better learning scheme seems theoretically possible where
an agent learns a perfect strategy just from self-play. Yet it has not been achieved
in an RL scheme with function approximation (where a learning step for state
A can also influence the results for state B).

5 Conclusion and Future Work

Some insight has been gained in the way to configure RL learning agents. It has
been studied in the case of strategic games but might as well be applicable to
other control or learning problems with delayed rewards. A somewhat surprising
result is that a sigmoidal output function is disadvantegeous in some tasks.
1 The source code of our implementation can be requested from the authors as well.



Another interesting failure is the decline of the RL agent to learn the Nim-3
task from feature set F2, while rapidly converging on the very similar feature
set F1. This shows the importance of the right feature selection. Compared to
other RL solutions on the TicTacToe task we find good results within only 1/100
of the learning steps reported in [4].

We plan to apply the results obtained here to more complex learning tasks,
e.g., to the game Connect4 (state space complexity 1014). A number of param-
eters and algorithmic choices have to be tuned carefully, which we plan to do in
a systematic way with Sequential Parameter Optimization (SPO), a recent and
leading technology in statistical analysis [8]. The most interesting “parameter”
seems to be the design of a su�ciently rich and goal specific feature set for a
learning task. It seems interesting to develop automatic or semi-automatic pro-
cedures for feature selection and test their validity on di↵erent RL learning tasks.
Guidelines for the design of feature spaces could be the following properties:
– Is the feature distinctive with respect to the optimization goal, i.e., does at

least one of the feature values reliably signal a win / a loss?
– Can we generate complex features as combinations of primitive features

which have increased distinctiveness?
– Does a certain feature vector see too much spread in desired target values

during learning? If so, probably di↵erent concepts of the learning task are
mapped to the same feature vector and it might help to enrich the feature
set to make these concepts separable.

It is desirable to find meta strategies for the selection of the best feature sets
independent from the learning tasks. We plan to use again SPO [8] for this
task. The final goal is to develop RL agents which learn optimal behaviour from
the interaction with the environment in a way more robust and faster than the
current RL agents.

References

1. Sutton, R.S.: Learning to predict by the method of temporal di↵erences. Machine
Learning 3 (1988) 9–44

2. Tesauro, G.: TD-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation 6 (1994) 215–219

3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

4. Stenmark, M.: Synthesizing board evaluation functions for connect4 using machine
learning techniques. Master’s thesis, Østfold University College, Norway (2005)

5. Sutton, R.S.: Reinforcement learning FAQ. http://www.cs.ualberta.ca/ sutton/RL-
FAQ.html (2008) Cited 20.4.2008.

6. Togelius, J., Gomez, F., Schmidhuber, J.: Learning what to ignore: Memetic climb-
ing in weight and topology space. To appear in Congress on Evolutionary Compu-
tation (2008)

7. Levkovich, C.: Temporal di↵erence learning project. www.geocities.com/
chen levkovich/tdlearningproject.html (2008) Cited 10.3.2008.

8. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The
New Experimentalism. Natural Computing Series. Springer, Berlin, Heidelberg,
New York (2006)


