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Abstract

The complex, often redundant and noisy data in real-world data mining (DM) appli-
cations frequently lead to inferior results when out-of-the-box DM models are applied. A
tuning of parameters is essential to achieve high-quality results. In this work we aim at
tuning parameters of the preprocessing and the modeling phase conjointly. The framework
TDM (Tuned Data Mining) was developed to facilitate the search for good parameters
and the comparison of different tuners. It is shown that tuning is of great importance
for high-quality results. Surrogate-model based tuning utilizing the Sequential Parameter
Optimization Toolbox (SPOT) is compared with other tuners (CMA-ES, BFGS, LHD)
and evidence is found that SPOT is well suited for this task. In benchmark tasks like
the Data Mining Cup tuned models achieve remarkably better ranks than their untuned
counterparts.

1 Introduction

The practitioner in data mining is confronted with a wealth of machine learning methods con-
taining an even larger set of method parameters to be adjusted to the task at hand. In addition,
careful feature selection and feature generation (constructive induction) is often necessary to
achieve good quality. This increases the number of possible models to consider even more. How
can we find good data mining models with a small amount of manual intervention? Which are
general rules that work well for many data mining tasks? It is aim of the Tuned Data Mining
(TDM) framework to provide a general framework for adaptive construction of data mining
models in a semi-automated or automated fashion. In this paper we describe the first steps
undertaken along this alley.

The paper is structured as follows: In the following paragraph and in Sec. 2.1 the TDM
framework is described in general. In Sec. 2.2 and Sec. 2.3 methods for numerical feature
preprocessing and generic feature selection are presented, while Sec. 2.5 gives a short overview
about the model-based parameter optimization framework SPOT. Sec. 3 presents the results on
three benchmark tasks. Sec. 4 discusses these results with emphasis on comparison of tuning
algorithms and feature processing. We conclude our findings in Sec. 5.
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Features of TDM The goal of TDM [14] for classification and regression tasks can be for-
mulated as follows: Find a recipe / template for a generic data mining process which works
well on many data mining tasks. More specifically:
• Besides from reading the data and task-specific data cleansing, the template is the same

for each task. This makes it easily reusable for new tasks.
• Well-known machine learning methods, e.g., Random Forest (RF) [6, 17] or Support

Vector Machines (SVM) [22, 26] available in R are reused within the R-based template
implementation, and the template is open to the integration of new user-specific learning
methods.
• Feature selection and/or feature generation methods are included in a systematic way

within the optimization / tuning loop.
• Parameters are either set by general, non-task-specific rules or they are tuned by an

automatic tuning procedure. We propose here to use SPOT (Sequential Parameter
Optimization Toolbox) [2, 3] in its recent R-implementation [1]. A comparison with
other tuning algorithms is possible.

The interesting point from a learning perspective is: Given a certain data mining model, is
it possible to specify one set of tunable parameters together with their ROI (region of interest)
such that for several challenging data mining tasks a high-quality result is reached after tuning?
If the answer to this question is ’Yes’, we can combine machine learning and its parameter tuning
in a black-box fashion which will facilitate its wide-spread use in industry and commerce.

Related work There are several other data mining frameworks with a similar scope in the
literature, e.g., ClearVu Analytics [12], Gait-CAD [20], MLR [4], and RapidMiner [19]. We plan
to compare our findings with results from these frameworks at a later point in time. Bischl et
al. [5] have recently given an interesting overview of well-known resampling strategies. Their
findings that careful model validation is essential to avoid overfitting and oversearching in tuning
is compatible with similar findings in [15].

To our knowledge, SPOT was used for systematic parameter tuning in data mining by Konen
et al. [15, 16] for the first time. Here, we extend those results in two directions:

a) inclusion of a new benchmark task (appAcid) with a high number of features putting
emphasis on feature selection, feature preprocessing and its tuning, and

b) the comparison of SPOT with other tuning algorithms.

A tuning algorithm (or short: tuner) is a method to find optimal values for a parameter set,
often within a prescribed region of interest (ROI). We consider the following tuners alternatively
to SPOT: As a baseline tuner a strategy based on random search with Latin hypercube design
(LHD) is used, where the total budget is spent by placing trial points in the ROI with equal
density. Local-search methods like BFGS [7, 8] are other possible choices from classical opti-
mization. As state-of-the-art evolution strategy we consider the Covariance Matrix Adaptation
ES (CMA-ES) by Hansen et al. [11]. This choice is motivated by the good reputation of this
ES as a numerical optimizer and the tuning parameters considered in our DM tasks are mostly
numeric. The REVAC tuning method of Nannen and Eiben [21] was compared with CMA-ES
by Smit et al. [23]. This is another good tuning alternative, but has not been included in the
present work.
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2 Methods

2.1 Tuned Data Mining (TDM) Template

We consider classification tasks, but the approach can be — and is in the TDM framework —
easily generalized to regression tasks as well. If we have a preprocessed data set, the following
steps of the data mining process can be formulated in a generic way [14]:

Data Mining Template:
• Sampling, i.e., the division of the data in training and test set (random, k-fold cross validation (CV), ...)
• Generic feature generation (Sec. 2.2) and generic feature selection (Sec. 2.3, currently RF-based variable

ranking and GA)
• Modeling: currently SVM, RF, MC.RF (see Sec. 2.4), but other models, especially all those available in

R can easily be integrated
• Model application: predict class and (optional, depending on model) class probabilities
• User-defined postprocessing (optional)
• Evaluation of model: confusion matrix, gain matrix, score, generic visualization, ...

All these steps are controlled by general or model-specific parameters. Some of these pa-
rameters may be fixed by default settings or by generic rules. Other parameters usually need
task-specific optimization, a process which is generally referred to as ”tuning”. With a general-
purpose tuner like SPOT (cf. Sec. 2.5) or other tuners it is possible to embed the above data
mining template in a tuning optimization loop:

Tuned Data Mining Template:

while (budget not exhausted) do
The tuner chooses specific parameter values (’design

point’) for all the parameters to be tuned.
Run the data mining template with these values,

report the results and return them to the tuner.
end while

One point concerning the tuning part deserves further attention: The passage ’for all the
parameters to be tuned’ in the above pseudo-code requires that — given a model — both (a)
the parameter set to be tuned and (b) the parameter range (ROI = region of interest) have to be
prescribed beforehand. The question whether one such triple {model, parameter set, ROI} fits
for a large variety of tasks, can only be answered by experiments. (If no one such triple for all
tasks can be found, a somewhat weaker requirement can be formulated: Is there a collection of
multiple such triples, which covers all tasks? Can we make a decision, based solely on training
data [15], which of those triples gives high-quality results also for unseen test data?).

2.2 Generic feature generation

As generic choices for numeric feature preprocessing we consider the following options:
• Principal Component Analysis (PCA) as a standard method to decorrelate highly corre-

lated inputs, combined with the option to select only the first few principal components
(PCs) with large eigenvalues.
• Nonlinear feature generation: add all monomials of degree 2 for the first NPC principal

components. More specifically, if ~p(i) is the vector of PC i and p
(i)
k is its kth element,
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then we form new vectors ~m(ij) with

m
(ij)
k = p

(i)
k p

(j)
k , i, j = 1, . . . , NPC , i < j (1)

and let the feature selection algorithm choose the most appropriate features from the
union {principal components, monomials}.

These choices are of course only a first step, and we plan to include further feature-generating
operators in a more complete framework. Parameters of the feature generation like NPC can
be included in the tuning loop.

2.3 Generic feature selection

Selecting the right features is often of great importance for high-quality results in data mining.1

Standard approaches like sequential forward selection or sequential backward elimination [18]
allow quite accurate selection of the right features for a certain model. But they have the
disadvantage of high computational costs of O(N2), where N is the number of input variables.

Another option is variable ranking, where a certain pre-model (e.g. a RF with reduced
number of trees) allows to rank the input variables according to their importance. Given
this importance (where it is a tacit assumption that the importance of the pre-model is also
representative for the full model), it is possible to transform the combinatorial feature selection
problem into a simpler numeric optimization problem which has moderate computational costs
for arbitrary numbers of input variables:

Importance selection rule: Sort the input variables by decreasing importance In, n =
1, . . . , N and select the first K variables such that

K∑
n=1

In ≥ Xperc

N∑
n=1

In (2)

This means that we select those K variables which capture at least the fraction Xperc ∈ [0, 1]
of the overall importance.

We use the importance delivered by R’s randomForest package [17] in our current imple-
mentation, but other importance measures could be used equally well. A general remark to
keep in mind: The validity of variable ranking relies on the validity of the pre-model and its
predictions. If the pre-model is not appropriate for the task, it is likely that the selections based
on variable ranking will not result in optimal classification models.

Another option for feature selection are Genetic Algorithms (GA) [10], which are population
based optimization algorithms using binary strings to represent candidate solutions. Each bit
k of the binary string defines, whether the k-th feature of the overall feature set is selected as
model input or not. The initial population can be drawn randomly or initialized by prior knowl-
edge, e.g., a certain bias can be given to the probability that features are selected, when some
basic importance about the features is known in advance. Starting from the initial population
individuals are varied by means of recombination and mutation. The best solutions of parents
and offspring are taken into the next generation (survivor selection). The prediction error on

1In this paper the term feature may refer to either an input variable or a derived feature, e.g., along the lines
described in Sec. 2.2.
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Table 1: Gain matrices for the tasks DMC-2007 and DMC-2010. Example: Predicting a true
”1” as a ”0” in DMC2010 has a negative gain -5. A problem with varying off-diagonal matrix
elements or with varying diagonal matrix elements is called gain-sensitive.

DMC predict (p)
2007 A B N

true (t)
A 3 -1 0
B -1 6 0
N -1 -1 0

DMC predict
2010 0 1

true (t)
0 1 0
1 -5 0

an independent validation set is usually used as an objective function for the GA. GA-based
feature selection is more time consuming than RF-based variable ranking, but worthwhile if the
latter does not yield good classification results.

Feature selection by means of GA (FS-GA) is run five times with a total budget of 250
generations as a stopping criterion. The population size was 5 generating 20 offspring. As
recombination operator uniform crossover was performed with probability 0.8. As mutation
operator we used a simple bit-flip mutation with one bit flip on average per string. No adap-
tation of probabilities for the variation operators was considered in our study. In future work
we plan to investigate more sophisticated GA approaches with adaptive strategy parameters or
other termination criteria.

2.4 Cost-sensitive modeling

Many classification problems require cost-sensitive or equivalently gain-sensitive modeling. This
is the case if the cost (or negative gain) for different misclassifications differs or if the gain for
correct classifications differs, see for example Tab. 1. Advanced classification algorithms can be
made gain-sensitive by adjusting different parameters. For example in RF the following options
are available (Nc is the number of classes):

CLASSWT: a class weight vector with length Nc indicating the importance of class i.

CUTOFF: a vector ci with length Nc and sum 1 specifying that the predicted class i is the
one which maximizes vi/ci where vi is the fraction of trees voting for class i. The default
is ci = 1/Nc ∀i.

Manual adjustment is difficult, because many parameter settings have to be considered and
suitable values depend on the gain matrix and the a-priori probability of each class in a non-
trivial manner. Therefore, careful tuning of those parameters is often of great importance to
reach high-quality results.

An alternative to task-specific parameter tuning are wrapper models which can turn any
(cost-insensitive) base model into a cost-sensitive meta model. An example is the well-known
MetaCost algorithm [9]. The implementation in [15] is an RF-based version of MetaCost which
we abbreviate with MC.RF in the following. Due to space constraints we refer the reader to
[15] for details on MC.RF.
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2.5 Generic tuning with SPOT

SPOT provides tools for tuning many parameters simultaneously [3]. It is well-suited for opti-
mization problems with noisy output functions (as they occur frequently in data mining) and it
can reach good results with only a few model-building experiments since it builds a surrogate
model during its sequence of runs. This is constantly refined as the tuning progresses. SPOT
has recently been made available as an R-package [1].

Table 2: Tunable parameters and their ROI for the classification models RF and MC.RF. Index
i ∈ 1, . . . , Nc − 1, where Nc is the number of classes. As an example the best tuning results
from Sec. 3 for DMC-2010 are shown in column ”best”.

RF MC.RF
ROI best ROI best

CUTOFF[i] [0.1,0.8] 0.734 [0.1,0.8] 0.448
CLASSWT[i] [2.0,18] 5.422 [2.0,18] 4.6365

XPERC [0.05,1.0] 0.999 [0.05,1.0] 0.9505

After some initial experiments, the set of parameters and ROIs as specified in Tab. 2 were
used for all the results reported below. We have 3, 5, 7, . . . parameters for a (Nc = 2, 3, 4, . . .)-
class problem, since one of the parameters in each vector CUTOFF and CLASSWT is fixed by
a constraint:

CUTOFF [Nc] = 1−
Nc−1∑
i=1

CUTOFF [i]

and CLASSWT [Nc] = 10. Infeasible solutions, e.g. those where the sum of CUTOFF exceeds
1, are transformed by appropriate scaling to feasible solutions.

All SPOT-tuning experiments for the DMC-tasks are performed with the following settings
(see [1] for further details): 50 sequence steps, 3 new design points in each step, up to 5 repeats
per design point (to dampen statistical fluctuations), and 10 initial design points. This leads
to 747 data mining models to be built for each experiment. In the appAcid task we restricted
the number of model evaluations to up to 200, with 2 repeats per design point. RF was used
as a fast surrogate model building tool, but other techniques as Kriging could have been used
as well.

3 Results on benchmark tasks

The benchmark tasks studied in this paper are briefly summarized in Tab. 3. The two different
DMC (Data Mining Cup) competitions [13] with their realistic size (65,000 and 100,000 records,
20 and 40 input variables, respectively) provide interesting benchmarks as they go beyond the
level of toy problems. Many comparative results from other teams participating in the Data
Mining Cup allow to gauge the quality of our results achieved with the general template. The
appAcid benchmark task is a DM application from engineering featuring a quite large number
(212) of highly correlated input variables.

6



Table 3: Task overview

Task records
(training /
test )

inputs classes cost-
sensitive?

DMC-2007 50000 / 50000 20 3 yes
DMC-2010 32428 / 32427 38 2 yes
appAcid 3326 / 1109 212 5 (yes)2

2 indirectly through MCA, see Sec. 3.3

Note that in all results described below no task-specific model adjustment or task-specific
postprocessing has taken place. Only the general TDM framework with its general models and
one ROI for the tuning of each model (see Tab. 2) has been used.

Each tuning experiment was performed in the following way: For each task the training data
set was further divided into training records and validation records (CV in the case of SVM
and OOB [17] in the case of RF). For each parameter setting defined by a design point of the
tuner a model was trained on the training records and evaluated on the validation records. The
validation accuracy was used as optimization signal for the tuner. The final best parameter
setting found by the tuner was used to train a model on the full training data set. Its accuracy
was evaluated on the independent and unseen test data set (column TST in Tab. 5; symbols
annotated with TST in Figs. 3 and 4).

3.1 DMC-2007

DMC-2007 is a three-class, cost-sensitive classification task with the gain matrix shown in
Tab. 1, left. The data consists of 50000 training records with 20 inputs and 50000 test records
with the same inputs. Class N, with 76% , has a much higher frequency than the other classes
A and B, but only A and B classified correctly will contribute positively to the gain. The
DMC-2007 contest had 230 participants whose resulting score distribution are shown in Fig. 1
as boxplots (we removed 13 entries with score < 0 in order to concentrate on the important
participants). Our results from different models are overlayed as horizontal lines and arrows to
this diagram. We can learn from this:
• Using the default parameters in RF or MC.RF gives only bad results, well below the mean

of the DMC participants’ distribution. This is no surprise for the base RF3, because
it minimizes the misclassification error and is thus not well-suited for a cost-sensitive
problem. But it is a surprise for MC.RF which is supposed to behave optimally in the
presence of cost-sensitive effects [15].
• The tuned results delivered by SPOT are much better: Model RF.tuned reaches the

highest first quartile and the results of model MC.RF.tuned are close to this quartile. It
is thus crucial to tune CLASSWT and CUTOFF for cost-sensitive problems.
• The CV estimate of the total gain (red dashed line) is in good agreement with the final

gain (blue arrows).

3with CLASSWT=CUTOFF=NULL
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Note that hand-tuning of CLASSWT and CUTOFF usually leads to gains in the range of
6000–7000, and it is in general a very time-consuming task since no good rule-of-thumb exist
for these parameters.

RF.default MC.RF.default MC.RF.tuned RF.tuned

0
20

00
40

00
60

00
80

00
DMC2007

S
co

re

Figure 1: Results for the DMC-2007 benchmark: The boxplot shows the spread of score (gain)
among the competition participants, the red dashed lines show the score of our models on the
training data (10-fold CV), the blue arrows show the score of these trained models on the real
test data.

3.2 DMC-2010

DMC-2010 is a two-class, cost-sensitive classification task with the gain matrix shown in Tab. 1,
right. The data consists of 32428 training records with 37 inputs and 32427 test records with
the same inputs. Class 0 is with 81.34% of all trainings records much more frequent than class
1. Given this a priori probability and the above gain matrix, there is a very näıve model ”always
predict class 0” which gives a gain of 32428 · (1.5 ∗ 81.34%− 5 ∗ 18.66%) = 9310 on the training
data. Any realistic model should do better than this.

The data of DMC-2010 require some preprocessing, because they contain a small fraction
of missing values, some obviously wrong inputs and some factor variables with too many levels
which need to be grouped. This task-specific data preparation was done beforehand.

Altogether 67 teams participated in the DMC-2010 contest whose resulting score distribu-
tion is shown in Fig. 2 as boxplot (we removed 26 entries with score < 5000 or NA in order
to concentrate on the important teams). Our results from different models are overlayed as
horizontal lines and arrows in this diagram. We can learn from this:
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Figure 2: Results for the DMC-2010 benchmark.

• The model RF.default is not significantly better than the näıve model. Indeed it behaves
nearly identical to the näıve model in an attempt to minimize the misclassification error.
• Except for the näıve model, the CV estimates of the total gain (red dashed lines) are

again in good agreement with the final gain (blue arrows).
• MC.RF.default shows a competitive performance in this setup (at the lower rim of the

highest quartile), but both tuned models achieve again considerably better results: They
are at the upper rim of the highest quartile; within the rank table of the real DMC-2010
contest this corresponds to rank 2 and rank 4 for MC.RF.tuned and RF.tuned, resp.

3.3 appAcid

Acid concentrations in the fluid of a plant are to be classified in this benchmark, based solely
on spectroscopy data [27]. In the appAcid task there are five defined classes, each denoting a
certain range of acid concentration. Table 4 shows that the record numbers Rc for each class
are highly unbalanced. The user-defined goal is to maximize the mean class accuracy

MCA =

5∑
c=1

1

Rc

Rc∑
i=1

L(~xi) (3)

where L(~xi) is 1 for each correctly predicted record ~xi and 0 otherwise. This means that each
of the 70 records of class 5 (they define a critical plant state) has a much higher importance
than one of the 1880 records of class 3. Thus the benchmark is also indirectly cost-sensitive
although the gain matrix is the unit matrix in this case.
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Table 4: Number of records belonging to each class in the appAcid dataset.

Class c Number of records Rc

1 228
2 1528
3 1880
4 731
5 70

The research question here is whether classification methods based on TDM can achieve
a similar or even better performance than GerDA [27], the so far best approach. GerDA, as
described in [24, 28], learns unsupervisedly interesting feature combinations with an approach
based on Boltzmann machines.4 All results are substantially better than the baseline Linear
Discriminant Analysis (LDA).
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Figure 3: Results of TDM-based SVM tuning for the appAcid problem as a function of the
available budget nEval (number of model trainings). See text for legend explanation. LHD
AVG is in this case below 0.5, see Tab. 6.

We show in Fig. 3 and Fig. 4 our results when comparing different tuners on two models,
SVM and RF. Each point denotes the mean value from 5 repeated tuning experiments with

4It has to be noted that in [27] the classifier superimposed on the GerDA features was optimized for the
overall misclassification rate instead of MCA.
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Figure 4: Results of TDM-based RF tuning for the appAcid problem. See text for legend
explanation.

different random seeds. The error bars denote the corresponding standard deviations. In each
tuning experiments the relevant tuner has a budget of nEval model trainings to find good
parameters for the tunable parameter set. nEval is deliberately set to quite low values, since
the model training is the time-consuming part of the tuning process. Legend: The symbols
annotated with { SPOT — CMAES — BFGS — LHD } TST show the MCA on the independent
test set after tuning with these different tuners. LHD AVG: average MCA of all design points
visited during tuning with the LHD tuner (shown also in Tab. 6 together with the corresponding
numbers for the other tuners).

The results from all three tasks are summarized in Tab. 5.

4 Discussion

4.1 Comparison of SPOT and LHD

It is a striking feature of our experiments that the LHD tuner, which simply performs a Latin
hypercube design random search with the same budget as all other tuners, reaches results
similar to the best tuner SPOT and better than the other ones (CMA-ES, local search). This
is however true only for the best tuning result. If we compare the average of all design points
visited during tuning, we see that this average is much lower for LHD than for SPOT (see
Tab. 6). We conclude that SPOT with the help of its surrogate model places more design
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Table 5: Results compared for the SPOT-tuned models (budget nEval=200) and the benchmark
tasks considered. The result (gain for the DMC-tasks, MCA for appAcid) has to be maximized.
CV: cross-validated result on the training set, TST: result on the independent test set. Each
cell contains mean ± standard deviation from 5 repeated runs with different random seeds. The
”Rank DMC” column a/b is the rank a of TST-result within the real DMC result table with b
entries.

DMC Result Rank
Year Model CV TST DMC

2007
RF.tuned 7491± 24 7343± 38 37/230

MC.RF.tuned 6632± 33 6822± 131 61/230

2010
RF.tuned 12368± 83 12400± 23 4/67

MC.RF.tuned 12322± 94 12451± 103 2/67

appAcid Result
Model CV TST

RF.tuned (88.2± 0.4)% (89.9± 0.3)%
MC.RF.tuned (87.8± 0.3)% (88.8± 0.9)%
SVM.tuned (86.4± 0.6)% (86.1± 1.5)%
GerDA [27] 87.2

Table 6: Average MCA of all design points visited during tuning for task appAcid with the
tuners SPOT, CMA-ES and LHD (budget nEval=100).

model SPOT CMA-ES LHD

RF 81.4% 58.9% 64.3%
SVM 75.5% 48.1% 44.5%

points in the ’interesting’ region. This may be valuable for other tasks where the interesting
region contains small local minima that are not easy to detect. Such small local minima seem
not to be present in our task appAcid.

4.2 Comparison of SPOT, CMA-ES, and BFGS

Surprisingly, although CMA-ES has a good reputation as a general-purpose numerical optimizer,
it does not perform as well as SPOT or LHD on the data mining tasks considered. The
reasons for this behavior may be twofold. Firstly, the budget, i.e., the number of function
evaluations is rather low and the response function is noisy which is not in favor of the matrix
adaptation needed for good CMA-results. Secondly, most of the tuning parameters have tight
constraints (see Tab. 2). The CMA-ES has known problems if the border of the ROI is crossed:
A constraint-enforcing extra term can lead to a local minimum at the border. Indeed, we often
observed that a ’best’ solution found by CMA has parameter values exactly at the ROI border.

BFGS as a purely local-search optimizer performs slightly worse than CMA-ES, sometimes
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with outliers considerably worse. However, BFGS was the best among several other local-search
algorithms tested in preliminary experiments.

4.3 Optimality Conditions of SPOT

One might ask whether SPOT as a global optimizer does a good job in finding the local optimum
in the vicinity of the best solution selected by SPOT. An experiment was conducted to find
out if a local search starting from this best solution can produce better results compared to the
already optimized SPOT parameters. In general, any method for numerical local optimization
can be used, but only methods allowing box constraints and guaranteed convergence to local
optima are well-suited for this task.

We used a setup called hybridization between global and local optimizer strategies. In
the literature many publications describe hybridizations of metaheuristics and hill-climbing
strategies. For the sake of simplicity we follow the taxonomy of Talbi [25], so that we can term
our algorithm a high-level relay hybrid.

For local optimization we used an extended version of the well-known BFGS algorithm by
Byrd et al. [8], which allows box-constraints. The best parameter setting found by SPOT with
nEval=200 for the appAcid problem with classifier RF was used as the starting point. BFGS
was initialized with this parameter setting and was run five times.

The result was negative in the sense that it showed oversearching effects: Although BFGS
might find slight improvements in the validation set accuracy used as the target for the tuner,
the resulting parameter set had an MCA on the independent test set worse by 0.5%-1.0%
compared to the MCA of the best SPOT solution. We conclude that extensive local search
does not pay off for the noisy optimization environment usually encountered in data mining
tasks.

4.4 Feature processing revisited

The TDM approach presented in this study, which uses generic feature-processing and -selection
methods, performs competitive to GerDA [24, 27]. GerDA implements a very sophisticated
feature generation approach. It might be interesting to ask, which TDM feature processing
elements contribute most to this success. Table 7 shows that turning off the extra feature
generation (monomials) gives a 3.2% decrease in accuracy, turning off PCA gives a larger
decrease (6.5%), but the largest decrease in accuracy (7.3%) occurs if we turn off the feature
selection (FS), see line 6 in Tab. 7. FS-SRF reduces the feature set to about 40 out of 257
features, while the GA feature selection (FS-GA) selects even less features, between 8 and 19
in the best individuals of the five GA runs.

The GA feature selection results are comparable with the FS-SRF approach. This is however
only true if a biased initialization procedure was used to generate the starting population: The
first 15 PCA features with the largest eigenvalues were selected with higher probability than
the other features with lower eigenvalues. If, contrarily, the starting population had all features
selected with the same probability, then the GA would usually stop in a local minimum with
roughly half of the features selected and with a MCA of only 85%. The advantage of the
biased procedure can clearly be seen in the best individuals of the five GA runs: The principal
components with the highest and 2nd highest eigenvalue are selected in every best individual,
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Table 7: Class accuracy MCA of best tuning solution (budget nEval=200) on task appAcid
when different feature processing elements are activated. FS-SRF: feature selection based on
the sorted RF-importance, FS-GA: GA-based feature selection.

FS-
PCA monomials SRF GA class accuracy

1 X X X - (89.95± 0.41)%
2 X X - X (89.47± 0.52)%
3 X - X - (86.72± 0.77)%
4 - X X - (83.38± 0.78)%
5 - - X - (82.90± 1.35)%
6 X X - - (82.60± 0.92)%
7 - - - - (82.59± 0.42)%

and monomials between principal components with highest eigenvalues are also selected more
frequently compared to other features.

We conclude from the GA experiments that, if such prior knowledge is used for the creation
of the initial population, then the GA is capable to find a good working feature subset for the
model.

The experiments demonstrate the importance of good feature selection (FS). But using only
FS is also suboptimal, as line 5 in Tab. 7 shows. The overall best result is achieved only if all
three elements PCA, monomials and FS are present.

5 Conclusion

This paper has shown first steps towards a general, self-adaptive data mining framework which
combines feature selection, model building and parameter tuning within one integrated opti-
mization environment. We have studied with TDM three challenging classification tasks with
cost-sensitivity where standard models using default parameters do not achieve high-quality
results. This puts the necessity of parameter tuning for data mining into focus: We have
shown:

1. Parameter tuning with SPOT gives large improvements. In the case of DMC-2010, the
untuned RF model had rank 21 out of 67 in the DMC ranking table. With tuning the
RF model could be boosted to rank 4, the MC.RF model to rank 2 out of 67 (Fig. 2).

2. At least for our three benchmark classification tasks with their quite different character-
istics we were able to show that one generic template with one parameter set and ROI is
sufficient to achieve high-quality results.

3. For DM tasks containing noise and constraints, it seems that SPOT and LHD as non-local
tuners perform better than CMA-ES or the local-search method BFGS.

4. Furthermore Sec. 4.3 has collected evidence that the final solution delivered by SPOT
cannot be improved by a relayed local search.

5. Feature selection is essential, especially for tasks with a large number of inputs. Sophis-
ticated feature selection schemes like GA do not show much benefit over less computing-
intensive variable ranking schemes in our case. However, GAs can be a good option if all
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other feature selection methods do not work very well for some reason.
In future work we want to compare the TDM framework with other DM frameworks with a

similar scope [4, 12, 19, 20]. One benefit of the generic TDM approach is already visible now:
If one framework can be used for very different tasks, then it is easy to transfer the processing
elements which are found useful for one task to the other tasks. This speeds up the search for
good solutions considerably.
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