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ABSTRACT
The complex, often redundant and noisy data in real-world
data mining (DM) applications frequently lead to inferior
results when out-of-the-box DM models are applied. A tun-
ing of parameters is essential to achieve high-quality results.
In this work we aim at tuning parameters of the prepro-
cessing and the modeling phase conjointly. The framework
TDM (Tuned Data Mining) was developed to facilitate the
search for good parameters and the comparison of different
tuners. It is shown that tuning is of great importance for
high-quality results. Surrogate-model based tuning utilizing
the Sequential Parameter Optimization Toolbox (SPOT) is
compared with other tuners (CMA-ES, BFGS, LHD) and
evidence is found that SPOT is well suited for this task. In
benchmark tasks like the Data Mining Cup (DMC) tuned
models achieve remarkably better ranks than their untuned
counterparts.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning

General Terms
Algorithms

Keywords
Parameter tuning, Data Mining, Sequential Parameter Op-
timization
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1. INTRODUCTION
The practitioner in data mining is confronted with a wealth

of machine learning methods containing an even larger set
of method parameters to be adjusted to the task at hand.
In addition, careful feature selection and feature generation
(constructive induction) is often necessary to achieve good
quality. This increases the number of possible models to
consider even more. How can we find good data mining
models with a small amount of manual intervention? Which
are general rules that work well for many data mining tasks?
It is the aim of the Tuned Data Mining (TDM) framework
to provide a general framework for adaptive construction
of data mining models in a semi-automated or automated
fashion. In this paper we describe the first steps undertaken
along this alley.

The paper is structured as follows: In the following para-
graph and in Sec. 2.1 the TDM framework is described in
general. In Sec. 2.2 and Sec. 2.3 methods for numerical
feature preprocessing and generic feature selection are pre-
sented. In Sec. 2.4 it is described that additional parameters
may arise when the problem is cost-sensitive while Sec. 2.5
gives a short overview about the model-based parameter op-
timization framework SPOT. Sec. 3 presents the results on
three benchmark tasks. Sec. 4 discusses these results with
emphasis on comparison of tuning algorithms and feature
processing. We conclude our findings in Sec. 5.

Features of TDM.
The goal of TDM [14] for classification and regression

tasks can be formulated as follows: Find a recipe / tem-
plate for a generic data mining process which works well on
many data mining tasks. More specifically:

• Besides from reading the data and task-specific data
cleansing, the template is the same for each task. This
makes it easily reusable for new tasks.

• Well-known machine learning methods, e.g., Random
Forest (RF) [6, 18] or Support Vector Machines (SVM)
[23, 27] available in R are reused within the R-based



template implementation, and the template is open to
the integration of new user-specific learning methods.

• Feature selection and/or feature generation methods
are included in a systematic way within the optimiza-
tion / tuning loop.

• Parameters are either set by general, non-task-specific
rules or they are tuned by an automatic tuning pro-
cedure. We propose here to use SPOT (Sequential
Parameter Optimization Toolbox) [2, 3] in its recent
R-implementation [1]. A comparison with other tuning
algorithms is possible.

The interesting point from a learning perspective is: Given
a certain data mining model, is it possible to specify one set
of tunable parameters together with their ROI (region of
interest) such that for several challenging data mining tasks
a high-quality result is reached after tuning? If the answer
to this question is ’Yes’, we can combine machine learning
and its parameter tuning in a black-box fashion which will
facilitate its wide-spread use in industry and commerce.

Related work.
There are several other data mining frameworks with a

similar scope in the literature, e.g., ClearVu Analytics [12],
Gait-CAD [21], MLR [4], and RapidMiner [20]. We plan to
compare our findings with results from these frameworks at
a later point in time. Bischl et al. [5] have recently given
an interesting overview of well-known resampling strategies.
Their findings that careful model validation is essential to
avoid overfitting and oversearching in tuning is compatible
with similar findings in [15].

To our knowledge, SPOT was used for systematic param-
eter tuning in data mining by Konen et al. [15, 17] for the
first time. Here, we extend those results in two directions:

a) inclusion of a new benchmark task (appAcid) with a
high number of features putting emphasis on feature
selection, feature preprocessing and its tuning, and

b) the comparison of SPOT with other tuning algorithms.

A tuning algorithm (or short: tuner) is a method to find
optimal values for a parameter set, often within a prescribed
region of interest (ROI). We consider the following tuners al-
ternatively to SPOT: As a baseline tuner a strategy based
on random search with Latin hypercube design (LHD) is
used, where the total budget is spent by placing trial points
in the ROI with equal density. Local-search methods like
the algorithm of Broyden, Fletcher, Goldfarb and Shanno
(BFGS) [7, 8] are other possible choices from classical opti-
mization. As state-of-the-art evolution strategy we consider
the Covariance Matrix Adaptation ES (CMA-ES) by Hansen
et al. [11]. This choice is motivated by the good reputation
of this ES as a numerical optimizer and the tuning param-
eters considered in our DM tasks are mostly numeric. The
REVAC tuning method of Nannen and Eiben [22] was com-
pared with CMA-ES by Smit et al. [24]. REVAC is a good
tuning alternative to SPOT and we plan to include it in the
future.

2. METHODS

2.1 Tuned Data Mining (TDM) Template
We consider classification tasks, but the approach can be

— and is in the TDM framework — easily generalized to

regression tasks as well. If we have a preprocessed data set,
the following steps of the data mining process can be formu-
lated in a generic way [14]:

Data Mining Template:
• Sampling, i.e., the division of the data in training and

test set (random, k-fold cross validation (CV), ...)
• Generic feature generation (Sec. 2.2) and generic fea-

ture selection (Sec. 2.3, currently RF-based variable
ranking and GA)

• Modeling: currently SVM, RF, MC.RF (see Sec. 2.4),
but other models, especially all those available in R can
easily be integrated

• Model application: predict class and (optional, de-
pending on model) class probabilities

• User-defined postprocessing (optional)
• Evaluation of model: confusion matrix, gain matrix,

score, generic visualization, ...

All these steps are controlled by general or model-specific
parameters. Some of these parameters may be fixed by de-
fault settings or by generic rules. Other parameters usually
need task-specific optimization, a process which is generally
referred to as ”tuning”. With a general-purpose tuner like
SPOT (cf. Sec. 2.5) or other tuners it is possible to embed
the above data mining template in a tuning optimization
loop:

Tuned Data Mining Template:
while (budget not exhausted) do

Choose parameter values (’design points’)
to be optimized by tuner.

Run data mining template with these values,
Report and return results to tuner

end while

One point concerning the tuning part deserves further at-
tention: The above pseudo-code makes it necessary that —
given a model — both (a) the parameter set to be tuned and
(b) the parameter range (ROI = region of interest) have to
be prescribed beforehand. The question whether one such
triple {model, parameter set, ROI} fits for a large variety
of tasks, can only be answered by experiments. (If no one
such triple for all tasks can be found, a somewhat weaker
requirement can be formulated: Is there a collection of mul-
tiple such triples, which covers all tasks? Can we make a
decision, based solely on training data [15], which of those
triples gives high-quality results also for unseen test data?).

2.2 Generic feature generation
As generic choices for numeric feature preprocessing we

consider the following options:
• Principal Component Analysis (PCA) as a standard

method to decorrelate highly correlated inputs, com-
bined with the option to select only the first few prin-
cipal components (PCs) with large eigenvalues.

• Nonlinear feature generation: add all monomials of de-
gree 2 for the first NPC principal components. More
specifically, if p⃗(i) is the vector of PC i and p(i)k is its
kth element, then we form new vectors m⃗(ij) with

m(ij)
k = p(i)k p(j)k , i, j = 1, . . . , NPC , i < j (1)

and let the feature selection algorithm choose the most
appropriate features from the union {principal compo-
nents, monomials}.

These choices are of course only a first step, and we plan
to include further feature-generating operators in a more



complete framework. Parameters of the feature generation
like NPC can be included in the tuning loop.

2.3 Generic feature selection
Selecting the right features is often of great importance for

high-quality results in data mining.1 Standard approaches
like sequential forward selection or sequential backward elim-
ination [19] allow quite accurate selection of the right fea-
tures for a certain model. But they have the disadvantage of
high computational costs of O(N2), where N is the number
of input variables.

Another option is variable ranking, where a certain pre-
model (e.g. a RF with reduced number of trees) allows
to rank the input variables according to their importance.
Given this importance (where it is a tacit assumption that
the importance of the pre-model is also representative for
the full model), it is possible to transform the combinatorial
feature selection problem into a simpler numeric optimiza-
tion problem which has moderate computational costs for
arbitrary numbers of input variables:

Importance selection rule: Sort the input vari-
ables by decreasing importance In, n = 1, . . . , N
and select the first K variables such that

K∑

n=1

In ≥ Xperc

N∑

n=1

In (2)

This means that we select those K variables which capture
at least the fraction Xperc ∈ [0, 1] of the overall importance.

We use the importance delivered by R’s randomForest
package [18] in our current implementation, but other im-
portance measures could be used equally well.

Another option for feature selection are Genetic Algo-
rithms (GA) [10], which are population based optimization
algorithms using binary strings to represent candidate solu-
tions. Each bit k of the binary string defines, whether the
k-th feature of the overall feature set is selected as model
input or not. The initial population can be drawn randomly
or initialized by prior knowledge, e.g., a certain bias can
be given to the probability that features are selected, when
some basic importance about the features is known in ad-
vance. Starting from the initial population individuals are
varied by means of recombination and mutation. The best
solutions of parents and offspring are taken into the next
generation (survivor selection). The prediction error on an
independent validation set is usually used as an objective
function for the GA. GA-based feature selection is more time
consuming than RF-based variable ranking, but worthwhile
if the latter does not yield good classification results.

Feature selection by means of GA (FS-GA) was run five
times given a total budget of 250 generations as a stopping
criterion which led to convergence of the fitness improve-
ment in all runs. The population size was 5 generating 20
offspring. As recombination operator uniform crossover was
performed with probability 0.8. As mutation operator we
used a simple bit-flip mutation with one bit flip on average
per string. No adaptation of probabilities for the variation
operators was considered in our study. In future work we
plan to investigate more sophisticated GA approaches with
adaptive strategy parameters or other termination criteria.
1In this paper the term feature may refer to either an input
variable or a derived feature, e.g., along the lines described
in Sec. 2.2.

Table 1: Gain matrices for the tasks DMC-2007 and
DMC-2010. Example: Predicting a true ”1” as a ”0”
in DMC2010 has a negative gain -5. A problem with
varying off-diagonal matrix elements or with varying
diagonal matrix elements is called gain-sensitive.

DMC predict (p)
2007 A B N

true (t)
A 3 -1 0
B -1 6 0
N -1 -1 0

DMC predict
2010 0 1

true (t)
0 1 0
1 -5 0

2.4 Cost-sensitive modeling
Many classification problems require cost-sensitive or equiv-

alently gain-sensitive modeling. This is the case if the cost
(or negative gain) for different misclassifications differs or
if the gain for correct classifications differs, see for exam-
ple Tab. 1. Advanced classification algorithms can be made
gain-sensitive by adjusting different parameters. For exam-
ple in RF the following options are available (Nc is the num-
ber of classes):

CLASSWT: a class weight vector with length Nc indicat-
ing the importance of class i.

CUTOFF: a vector ci with length Nc and sum 1 specifying
that the predicted class i is the one which maximizes
vi/ci where vi is the fraction of trees voting for class
i. The default is ci = 1/Nc ∀i.

Manual adjustment is difficult, because many parameter
settings have to be considered and suitable values depend
on the gain matrix and the a-priori probability of each class
in a non-trivial manner. Therefore, careful tuning of those
parameters is often of great importance to reach high-quality
results.

An alternative to task-specific parameter tuning are wrap-
per models which can turn any (cost-insensitive) base model
into a cost-sensitive meta model. An example is the well-
known MetaCost algorithm [9]. The implementation in [15]
is an RF-based version of MetaCost which we abbreviate
with MC.RF in the following. Due to space constraints we
refer the reader to [15] for details on MC.RF.

2.5 Generic tuning with SPOT
SPOT provides tools for tuning many parameters simulta-

neously [3]. It is well-suited for optimization problems with
noisy output functions (as they occur frequently in data min-
ing) and it can reach good results with only a few model-
building experiments since it builds a surrogate model dur-
ing its sequence of runs. This is constantly refined as the
tuning progresses. SPOT has recently been made available
as an R-package [1].

After some initial experiments, the set of parameters and
ROIs as specified in Tab. 2 were used for all the results
reported below. We have 3, 5, 7, . . . parameters for a (Nc =
2, 3, 4, . . .)-class problem, since one of the parameters in each
vector CUTOFF and CLASSWT is fixed by a constraint:

CUTOFF [Nc] = 1−
Nc−1∑

i=1

CUTOFF [i]

and CLASSWT [Nc] = 10. Infeasible solutions, e.g. those
where the sum of CUTOFF exceeds 1, are transformed by



Table 2: Tunable parameters and their ROI for
the classification models RF and MC.RF. Index
i ∈ 1, . . . , Nc − 1, where Nc is the number of classes.
As an example the best tuning results from Sec. 3
for DMC-2010 are shown in column ”best”.

RF MC.RF
ROI best ROI best

CUTOFF[i] [0.1,0.8] 0.734 [0.1,0.8] 0.448
CLASSWT[i] [2.0,18] 5.422 [2.0,18] 4.6365

XPERC [0.05,1.0] 0.999 [0.05,1.0] 0.9505

Table 3: Task overview

Task records (train-
ing / test )

inputs classes cost-
sensitive?

DMC-2007 50000 / 50000 20 3 yes
DMC-2010 32428 / 32427 37 2 yes
appAcid 3326 / 1109 212 5 (yes)2

2 indirectly through MCA, see Sec. 3.3

appropriate scaling to feasible solutions (e.g., dividing by
the sum). It would be more convenient to use a real linear
constraint term here, but the considered implementations of
the tuning algorithms don’t provide such an option yet.

All SPOT-tuning experiments for the DMC (Data Mining
Cup)-tasks are performed with the following settings (see [1]
for further details): 50 sequence steps, 3 new design points
in each step, up to 5 repeats per design point (to dampen
statistical fluctuations), and 10 initial design points. This
leads to 747 data mining models to be built for each ex-
periment. In the appAcid task we restricted the number of
model evaluations to up to 200, with 2 repeats per design
point. For the SPOT metamodel RF was used as a fast
surrogate model building tool, but other techniques such as
Kriging could have been used as well.

3. RESULTS ON BENCHMARK TASKS
The benchmark tasks studied in this paper are briefly

summarized in Tab. 3. The two different DMC competi-
tions [13] with their realistic size (65,000 and 100,000 records,
20 and 37 input variables, respectively) provide interesting
benchmarks as they go beyond the level of toy problems.
Many comparative results from other teams participating
in the Data Mining Cup allow to gauge the quality of our
results achieved with the general template. The appAcid
benchmark task is a DM application from engineering fea-
turing a quite large number (212) of highly correlated input
variables.

Note that in all results described below no task-specific
model adjustment or task-specific postprocessing has taken
place. Only the general TDM framework with its general
models and one ROI for the tuning of each model (see Tab. 2)
has been used.

Each tuning experiment was performed in the following
way: For each task the training data set was further divided
into training records and validation records (cross-validation
(CV) in the case of SVM and out-of-bag (OOB) error esti-

mate [18] in the case of RF). For each parameter setting de-
fined by a design point of the tuner a model was trained on
the training records and evaluated on the validation records.
The validation accuracy was used as optimization signal for
the tuner. The final best parameter setting found by the
tuner was used to train a model on the full training data
set. Its accuracy was evaluated on the independent and un-
seen test data set (column TST in Tab. 5; symbols annotated
with TST in 3).

3.1 DMC-2007
DMC-2007 is a three-class, cost-sensitive classification task

with the gain matrix shown in Tab. 1, left. The data con-
sists of 50000 training records 50000 test records and with
20 attributes. Class N, with 76% , has a much higher fre-
quency than the other classes A and B, but only A and
B classified correctly will contribute positively to the gain.
The DMC-2007 contest had 230 participants whose resulting
score distribution is shown in Fig. 1 as boxplot (we removed
13 entries with score < 0 in order to concentrate on the im-
portant participants). Our results from different models are
overlayed as horizontal lines and arrows to this diagram. We
can learn from this:

• Using the default parameters in RF or MC.RF gives
only bad results, well below the mean of the DMC par-
ticipants’ distribution. This is no surprise for the base
RF3, because it minimizes the misclassification error
and is thus not well-suited for a cost-sensitive prob-
lem. But it is a surprise for MC.RF which is supposed
to behave optimally in the presence of cost-sensitive
effects [15].

• The tuned results delivered by SPOT are much better:
Model RF.tuned reaches the highest first quartile and
the results of model MC.RF.tuned are close to this
quartile. It is thus crucial to tune CLASSWT and
CUTOFF for cost-sensitive problems.

• The CV estimate of the total gain (red dashed line) is
in good agreement with the final gain (blue arrows).

Note that hand-tuning of CLASSWT and CUTOFF usually
leads to gains in the range of 6000–7000, and it is in general a
very time-consuming task since no good rule-of-thumb exist
for these parameters.

3.2 DMC-2010
DMC-2010 is a two-class, cost-sensitive classification task

with the gain matrix shown in Tab. 1, right. The data
consists of 32428 training records and 32427 test records
with 37 attributes. Class 0 is with 81.34% of all train-
ings records much more frequent than class 1. Given this
a-priori probability and the above gain matrix, there is a
very näıve model ”always predict class 0” which gives a gain
of 32428 · (1.5 ∗ 81.34%− 5 ∗ 18.66%) = 9310 on the training
data. Any realistic model should do better than this.

The data of DMC-2010 require some preprocessing, be-
cause they contain a small fraction of missing values, some
obviously wrong inputs and some factor variables with too
many levels which need to be grouped. This task-specific
data preparation was done beforehand.

Altogether 67 teams participated in the DMC-2010 con-
test whose resulting score distribution is shown in Fig. 2 as
boxplot (we removed 26 entries with score < 5000 or NA in

3with CLASSWT=CUTOFF=NULL
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Figure 1: Results for the DMC-2007 benchmark:
The boxplot shows the spread of score (gain) among
the competition participants, the red dashed lines
show the score of our models on the training data
(10-fold CV), the blue arrows show the score of these
trained models on the real test data.
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Figure 2: Results for the DMC-2010 benchmark.

order to concentrate on the important teams). Our results
from different models are overlayed as horizontal lines and
arrows in this diagram. We can learn from this:

• The model RF.default is not significantly better than
the näıve model. Indeed it behaves nearly identical to
the näıve model in an attempt to minimize the mis-
classification error.

• Except for the näıve model, the CV estimates of the
total gain (red dashed lines) are again in good agree-
ment with the final gain (blue arrows).

• MC.RF.default shows a competitive performance in
this setup (at the lower rim of the highest quartile),
but both tuned models achieve again considerably bet-
ter results: They are at the upper rim of the high-
est quartile; within the rank table of the real DMC-
2010 contest this corresponds to rank 2 and rank 4 for
MC.RF.tuned and RF.tuned, resp.

3.3 appAcid
Acid concentrations in the fluid of a plant are to be classi-

fied in this benchmark, based solely on spectroscopy data [28].
In the appAcid task there are five defined classes, each de-
noting a certain range of acid concentration. Table 4 shows
that the record numbers Rc for each class are highly unbal-
anced. The user-defined goal is to maximize the mean class
accuracy

MCA =
1
5

5∑

c=1

1
Rc

Rc∑

i=1

L(x⃗i) (3)

where L(x⃗i) is 1 for each correctly predicted record x⃗i and
0 otherwise. This means that each of the 70 records of class
5 (they define a critical plant state) has a much higher im-
portance than one of the 1880 records of class 3. Thus the
benchmark is also indirectly cost-sensitive although the gain
matrix is the unit matrix in this case.

Table 4: Number of records belonging to each class
in the appAcid dataset.

Class c Number of records Rc

1 228
2 1528
3 1880
4 731
5 70

The research question here is whether classification meth-
ods based on TDM can achieve a similar or even better per-
formance than the GerDA results reported in [28]. GerDA,
as described in [25, 29], learns unsupervisedly interesting
feature combinations with an approach based on Boltzmann
machines (it has to be noted that in [28] the classifier su-
perimposed on the GerDA features was optimized for the
overall misclassification rate instead of MCA). All results
are substantially better than the baseline Linear Discrimi-
nant Analysis (LDA).

We show in Fig. 3 a comparison of different tuners for the
RF learning algorithm. The results of SVM are comparable
to this, for more details we refer the interested reader to
[16]. Each point in Fig. 3 denotes the mean value from 5 re-
peated tuning experiments with different random seeds. The
error bars denote the corresponding standard deviations. In
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Figure 3: Results of TDM-based RF tuning for the
appAcid problem. See text for legend explanation.

each tuning experiment the relevant tuner has a budget of
nEval model trainings to find good parameters for the tun-
able parameter set. nEval is deliberately set to quite low
values, since the model training is the time-consuming part
of the tuning process. Legend: The symbols annotated with
{ SPOT | CMAES | BFGS | LHD } TST show the MCA
on the independent test set after tuning with these different
tuners. LHD AVG: average MCA of all design points visited
during tuning with the LHD tuner (shown also in Tab. 6 to-
gether with the corresponding numbers for the other tuners).

Besides the tuning of the CUTOFF and CLASSWT pa-
rameters for RF we also incorporated the number of trees
ntree and number of proposed splits mtry in the tuning
process. For the SVM model parameters as RBF kernel pa-
rameter γ and regularization parameter C were optimized
instead of these RF specific parameters.

The results from all three tasks are summarized in Tab. 5.

4. DISCUSSION

4.1 Comparison of SPOT and LHD
It is a striking feature of our experiments that the LHD

tuner, which simply performs a Latin hypercube design ran-
dom search with the same budget as all other tuners, reaches
results similar to the best tuner SPOT and better than the
other ones (CMA-ES, local search). This is however true
only for the best tuning result. In average the performance
is of course much lower for LHD than for SPOT (see Tab. 6).
SPOT places more design points in the ’interesting’ region
with the help of its surrogate model. This may be valuable
for other tasks where the interesting region contains small lo-
cal minima that are not easy to detect. However, such small
local minima seem not to be present in our task appAcid.

4.2 Comparison of SPOT, CMA-ES, and BFGS
Surprisingly, although CMA-ES has a good reputation as

a general-purpose numerical optimizer, it does not perform

Table 6: Average MCA of all design points vis-
ited during tuning for task appAcid with the tuners
SPOT, CMA-ES and LHD (budget nEval=100).

model SPOT CMA-ES LHD

RF 81.4% 58.9% 64.3%
SVM 75.5% 48.1% 44.5%

as well as SPOT or LHD on the data mining tasks consid-
ered. The reasons for this behavior may be twofold. Firstly,
the budget, i.e., the number of function evaluations is rather
low and the response function is noisy which is not in favor
of the matrix adaptation needed for good CMA-results. Sec-
ondly, most of the tuning parameters have tight constraints
(see Tab. 2). The CMA-ES has known problems if the bor-
der of the ROI is crossed: A constraint-enforcing extra term
can lead to a local minimum at the border. Indeed, we often
observed that a ’best’ solution found by CMA has parameter
values exactly at the ROI border.

BFGS as a purely local-search optimizer performs slightly
worse than CMA-ES, sometimes with outliers considerably
worse. However, BFGS was the best among several other
local-search algorithms tested in preliminary experiments.

4.3 Optimality Conditions of SPOT
One might ask whether SPOT as a global optimizer does

a good job in finding the local optimum in the vicinity of
the best solution selected by SPOT. An experiment was con-
ducted to find out if a local search starting from this best
solution can produce better results compared to the already
optimized SPOT parameters. In general, any method for
numerical local optimization can be used, but only meth-
ods allowing box constraints and guaranteed convergence to
local optima are well-suited for this task.

We used a setup called hybridization between global and
local optimizer strategies. In the literature many publi-
cations describe hybridizations of metaheuristics and hill-
climbing strategies. For the sake of simplicity we follow the
taxonomy of Talbi [26], so that we can term our algorithm
a high-level relay hybrid.

For local optimization we used an extended version of the
well-known BFGS algorithm by Byrd et al. [8], which allows
box-constraints. The best parameter setting found by SPOT
with nEval=200 for the appAcid problem with classifier RF
was used as the starting point. BFGS was initialized with
this parameter setting and was run five times.

The result was negative in the sense that it showed over-
searching effects: Although BFGS might find slight improve-
ments in the validation set accuracy used as the target for
the tuner, the resulting parameter set had an MCA on the
independent test set worse by 0.5%-1.0% compared to the
MCA of the best SPOT solution. We conclude that exten-
sive local search does not pay off for the noisy optimization
environment usually encountered in data mining tasks.

4.4 Feature processing revisited
The TDM approach presented in this study, which uses

generic feature-processing and -selection methods, performs
competitive to GerDA [25, 28]. GerDA implements a very
sophisticated feature generation approach. It might be in-
teresting to ask, which TDM feature processing elements
contribute most to this success. Table 7 shows that turning



Table 5: Results compared for the SPOT-tuned models (budget nEval=200) and the benchmark tasks con-
sidered. The result (gain for the DMC-tasks, MCA for appAcid) has to be maximized. CV: cross-validated
result on the training set, TST: result on the independent test set. Each cell contains mean ± standard
deviation from 5 repeated runs with different random seeds. The ”Rank DMC” column a/b is the rank a of
TST-result within the real DMC result table with b entries.

DMC Result Rank
Year Model CV TST DMC

2007
RF.tuned 7491± 24 7343± 38 37/230

MC.RF.tuned 6632± 33 6822± 131 61/230

2010
RF.tuned 12368± 83 12400± 23 4/67

MC.RF.tuned 12322± 94 12451± 103 2/67

appAcid Result
Model CV TST

RF.tuned (88.2± 0.4)% (89.9± 0.3)%
MC.RF.tuned (87.8± 0.3)% (88.8± 0.9)%
SVM.tuned (86.4± 0.6)% (86.1± 1.5)%
GerDA [28] 87.2

off the extra feature generation (monomials) gives a 3.2% de-
crease in accuracy, turning off PCA gives a larger decrease
(6.5%), but the largest decrease in accuracy (7.3%) occurs
if we turn off the feature selection (FS), see line 6 in Tab. 7.
FS-SRF reduces the feature set to about 40 out of 257 fea-
tures, while the GA feature selection (FS-GA) selects even
less features, between 8 and 19 in the best individuals of the
five GA runs.

The GA feature selection results are comparable with the
FS-SRF approach. This is however only true if a biased ini-
tialization procedure was used to generate the starting pop-
ulation: The first 15 PCA features with the largest eigen-
values were selected with higher probability than the other
features with lower eigenvalues. If, contrarily, the starting
population had all features selected with the same probabil-
ity, then the GA would usually stop in a local minimum with
roughly half of the features selected and with a MCA of only
85%. The advantage of the biased procedure can clearly be
seen in the best individuals of the five GA runs: The prin-
cipal components with the highest and 2nd highest eigen-
value are selected in every best individual, and monomials
between principal components with highest eigenvalues are
also selected more frequently compared to other features.

We conclude from the GA experiments that, if such prior
knowledge is used for the creation of the initial population,
then the GA is capable to find a good working feature subset
for the model.

The experiments demonstrate the importance of good fea-
ture selection (FS). But using only FS is also suboptimal, as
line 5 in Tab. 7 shows. The overall best result is achieved
only if all three elements PCA, monomials and FS are present.

5. CONCLUSION
This paper has shown first steps towards a general, self-

adaptive data mining framework which combines feature se-
lection, model building and parameter tuning within one
integrated optimization environment. We have studied with
TDM three challenging classification tasks with cost-sensiti-
vity where standard models using default parameters do not
achieve high-quality results. This puts the necessity of pa-
rameter tuning for data mining into focus: We have shown:

1. Parameter tuning with SPOT gives large improvements.
In the case of DMC-2010, the untuned RF model had
rank 21 out of 67 in the DMC ranking table. With
tuning the RF model could be boosted to rank 4, the
MC.RF model to rank 2 out of 67 (Fig. 2).

2. At least for our three benchmark classification tasks

Table 7: Class accuracy MCA of best tuning so-
lution (budget nEval=200) on task appAcid when
different feature processing elements are activated.
FS-SRF: feature selection based on the sorted RF-
importance, FS-GA: GA-based feature selection.

FS-
PCA monomials SRF GA class accuracy

1 X X X - (89.95± 0.41)%
2 X X - X (89.47± 0.52)%
3 X - X - (86.72± 0.77)%
4 - X X - (83.38± 0.78)%
5 - - X - (82.90± 1.35)%
6 X X - - (82.60± 0.92)%
7 - - - - (82.59± 0.42)%

with their quite different characteristics we were able
to show that one generic template with one parameter
set and ROI is sufficient to achieve high-quality results.

3. For DM tasks containing noise and constraints, it seems
that SPOT and LHD as non-local tuners perform bet-
ter than CMA-ES or the local-search method BFGS.

4. Furthermore Sec. 4.3 has collected evidence that the
final solution delivered by SPOT cannot be improved
by a relayed local search.

5. Feature selection is essential, especially for tasks with a
large number of inputs. Sophisticated feature selection
schemes like GA do not show much benefit over less
computing-intensive variable ranking schemes in our
case. However, GAs can be a good option if all other
feature selection methods do not work very well for
some reason.

In future work we want to compare the TDM framework
with other DM frameworks with a similar scope [4, 12, 20,
21]. One benefit of the generic TDM approach is already
visible now: If one framework can be used for very different
tasks, then it is easy to transfer the processing elements
which are found useful for one task to the other tasks. This
speeds up the search for good solutions considerably.

6. REFERENCES
[1] T. Bartz-Beielstein. SPOT: An R package for

automatic and interactive tuning of optimization
algorithms by sequential parameter optimization.
Technical Report arXiv:1006.4645. CIOP Technical



Report 05-10, Cologne University of Applied Sciences,
Jun 2010.

[2] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuß.
Sequential parameter optimization. In B. McKay
et al., editors, Proceedings 2005 Congress on
Evolutionary Computation (CEC’05), Edinburgh,
Scotland, volume 1, pages 773–780, Piscataway NJ,
2005. IEEE Press.

[3] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The
sequential parameter optimization toolbox. In
Bartz-Beielstein et al., editors, Experimental Methods
for the Analysis of Optimization Algorithms, pages
337–360. Springer, Berlin, Heidelberg, New York,
2010.

[4] B. Bischl. The mlr package: Machine learning in R.
http://mlr.r-forge.r-project.org, accessed
14.04.2011.

[5] B. Bischl, O. Mersmann, and H. Trautmann.
Resampling methods in model validation. In
T. Bartz-Beielstein et al., editors, Workshop
WEMACS joint to PPSN2010, number TR10-2-007 in
Technical Reports, TU Dortmund, 2010.

[6] L. Breiman. Random forests. Machine Learning,
45(1):5 –32, 2001.

[7] C. Broyden, J. Dennis, and J. Moré. On the local and
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