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Abstract Missing values in datasets are a well-known problem and there are quite a lot of R packages 
offering imputation functions. But while imputation in general is well covered within R, it is hard 
to find functions for imputation of univariate time series. The problem is, most standard imputation 
techniques can not be applied directly. Most algorithms rely on inter-attribute correlations, while 
univariate time series imputation needs to employ time dependencies. This paper provides an 
overview of univariate time series imputation in general and an in-detail insight into the respective 
implementations within R packages. Furthermore, we experimentally compare the R functions on 
different time series using four different ratios of missing data. Our results show that either an 
interpolation with seasonal kalman filter from the zoo package or a linear interpolation on seasonal 
loess decomposed data from the forecast package were the most effective methods for dealing with 
missing data in most of the scenarios assessed in this paper. 

 

Introduction 
 

Time series data can be found in nearly every domain, for example, biology (Bar-Joseph et al., 2003), 
finance (Taylor, 2007), social science (Gottman, 1981), energy industry (Billinton et al., 1996) and 
climate observation (Ghil and Vautard, 1991). But nearly everywhere, where data is measured and 
recorded, issues with missing values occur. Various reasons lead to missing values: values may not 
be measured, values may be measured but get lost or values may be measured but are considered 
unusable. Possible real life examples are: markets are closed for one day, communication errors 
occur or a sensor has a malfunction. Missing values can lead to problems, because often further data 
processing and analysis steps rely on complete datasets. Therefore missing values need to be replaced 
with reasonable values. In statistics this process is called imputation. 

Imputation is a huge area, where lots of research has already been done. Examples of popular 
techniques are Multiple Imputation (Rubin, 1987), Expectation-Maximization (Dempster et al., 1977), 
Nearest Neighbor (Vacek and Ashikaga, 1980) and Hot Deck (Ford, 1983) methods . In the research field 
of imputation, univariate time series are a special challenge. Most of the sufficiently well performing 
standard algorithms rely on inter-attribute correlations to estimate values for the missing data. In 
the univariate case no additional attributes can be employed directly. Effective univariate algorithms 
instead need to make use of the time series characteristics. That is why it is senseful to treat univariate 
time series differently and to use imputation algorithms especially tailored to their characteristics. 

Until now only a limited number of studies have taken a closer look at the special case of univariate 
time series imputation. Good overview articles comparing different algorithms are yet missing. With 
this paper we want to improve this situation and give an overview about univariate time series 
imputation. Furthermore, we want to give practical hints and examples on how univariate time series 
imputation can be done within R 1. 

The paper is structured as follows: Section Univariate Time Series defines basic terms and intro- 
duces the datasets used in the experiments. Afterwards section Missing Data describes the different 
missing data mechanisms and how we simulate missing data in our experiments. Section Univariate 
time series imputation gives a literature overview and provides further details about the R imple- 
mentations tested in our experiments. The succeeding section explains the Experiments in detail and 
discusses the results. The paper ends with a short Summary of the gained insights. 

 

Univariate Time Series 
 

Definition 

A univariate time series is a sequence of single observations o1, o2, o3, ... on at successive points t1, t2, 
t3, ... tn in time. Although a univariate time series is usually considered as one column of observations, 
time is in fact an implicit variable. This paper only concerns equi-spaced time series. Equi-spaced 
means, that time increments between successive data points are equal |t1  − t2 |  =  |t2  − t3 |  = ...   = 
|tn−1 − tn|. 

 
 

1The R code we used is available online in the GitHub repository http://github.com/SpotSeven/ 
uniTSimputation. 

http://www.th-koeln.de/
http://cran.r-project.org/package%3Dzoo
http://cran.r-project.org/package%3Dforecast
http://github.com/SpotSeven/uniTSimputation
http://github.com/SpotSeven/uniTSimputation
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For representing univariate time series, we use the ts {stats} time series objects from base R. There 
are also other time series representation objects available in the packages xts (Ryan and Ulrich, 2014), 
zoo (Zeileis and Grothendieck, 2005) or timeSeries (Team et al., 2015). While ts objects are limited to 
regularly spaced time series using numeric time stamps, these objects offer additional features like 
handling irregular spaced time series or POSIXct timestamps. Since we do not need these additions, 
we chose to use ts objects for our experiments. Also important to note is, that we assumed that the 
frequency (number of observations per season) of the time series is either known or set to one. 

#' Example for creating a ts object with a given frequency 

#' Working hours of an employee recorded Monday till Friday 
workingHours <- c(8.2, 8.2, 7.9, 8.3, 7.2, 8.2, 8.5, 7.2, 8.7,  7.1) 
tsWorkingHours <- ts(workingHours, frequency = 5) 

 

Data Characteristics 

For the later experimental part of the paper, we decided to compare performance of the imputation 
algorithms on four different time series datasets provided in the TSA (Chan and Ripley, 2012) package. 
One reason for choosing these datasets (besides other reasons explained in the following paragraphs) 
is, that these are well-known and frequently used in literature. 

 
The datasets we chose are (see also figure 1): 

• airpass - Monthly total international airline passengers from 01/1960 - 12/1971 
• beersales - Monthly beer sales in millions of barrels, 01/1975 - 12/1990 
• SP - Quarterly S&P Composite Index, 1936Q1 - 1977Q4 
• google - Daily returns of the google stock from 08/20/04 - 09/13/06 

 
Monthly total international airline passengers 
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Figure 1: Time series datasets used for the experimental part of the paper. 
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http://cran.r-project.org/package%3Dxts
http://cran.r-project.org/package%3Dzoo
http://cran.r-project.org/package%3DtimeSeries
http://cran.r-project.org/package%3DTSA
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#' Code for making the datasets available and plotting them 
library("TSA") 
data(list = c("airpass", "SP", "google", "beersales")) 
par(mfrow=c(4,1), cex.main = 1.8, cex.lab = 1.4) 
plot(airpass,main = "Monthly total international airline passengers", xlab="Month", 

ylab = "No. Air Pass.") 
plot(SP,main ="Quarterly S&P Composite Index", xlab="Quarter", 

ylab = "Rate S&P") 
plot(google,main = "Daily returns of the google stock", xlab="Day", 

ylab = "Returns") 
plot(beersales, main = "Monthly beer sales in millions of barrels", xlab="Month", 

ylab ="Megabarrel") 
 

Choosing the number of considered datasets is a trade-off between creating meaningful results and 
keeping complexity low. Usually, results are more significant the more different datasets are compared. 
On the other hand, it is not possible to make a very detailed analysis for a higher number of datasets. 
Instead of comparing on a high number of datasets we chose four datasets, which we thought are 
representative for different time series characteristics. In the following the different characteristics of 
the time series are explained. 

 
Two common approaches to describe and examine time series are autocorrelation analysis and 
separation into trend , seasonal  and irregular   components. 

 
Decomposition 
Time series data can show a huge variety of patterns and, for analysis, it can be useful to isolate 
these patterns in separate series. Time series decomposition seeks to split the time series into single 
component series each representing a certain characteristic or pattern. (the original time series can 
later on be reconstructed by additions or multiplications of these components) 
There are typically three components of interest: 

 
• trend component - expresses the long term progression of the time series (secular variation). 

This means there is a long term increase or decrease in the mean level. The trend does not 
necessarily have to be linear. 

• seasonal component - reflects level shifts that repeat systematically within the same period 
(seasonal variation). This means there is a common pattern repeating for example every month, 
quarter of the year or day of the week. Seasonality is always of a fixed and known period. 

• irregular component - describes irregular influences. These are the residuals, after the other 
components have been removed from the time series. The irregular component may be, but is 
not necessarily completely random. It can show autocorrelation and cycles of unpredictable 
duration. 

 
There are different techniques for doing the decomposition into components. The basic method is 
a decomposition by moving averages, but there exist more robust and versatile methods like STL 
(Seasonal and Trend decomposition using Loess) decomposition (Cleveland et al., 1990). In figure 2 a 
STL decomposition of the air passengers dataset can be seen. 

Considering trend and seasonal influences is very important for the results of time series analysis. 
Getting trend and seasonal effects right can improve forecasting and even imputation results a lot. 
Thus decomposition is a popular technique and especially often used for seasonal adjustment. 

Looking again at figure 1, it can be seen why we chose exactly these four datasets. The google 
dataset is showing no trend and no seasonality at all, appearing to be nearly random. A quite typical 
behavior for short time observations for financial time series. The SP dataset is showing a clear trend 
but no seasonality. This is a really common long term observation for stock prices. In the beer sales 
series it can be seen that there is more beer consumption in the hot summer months. But the overall 
beer consumption over the years stays nearly constant. Meanwhile the amount of air passengers 
increase significantly over the years, but also shows seasonal shifts. 
Hence, the chosen data sets have the following features: 

• no trend, no seasonality (google) 
• trend, no seasonality (SP) 
• no trend, seasonality (beersales) 
• trend, seasonality (airpassengers) 

http://www.th-koeln.de/
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Loess Seasonal Decomposition of airpass 
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Figure 2: Loess seasonal decomposition of airpass time series dataset. 
 
 

#' Code for doing a seasonal loess decomposition 
stlDecomp <- stl(airpass, s.window = "periodic") 
plot(stlDecomp) 

 

#' Code for doing a seasonal Moving Averages decomposition 
library(forecast) 
maDecomp <- decompose(airpass) 
plot(maDecomp) 

 
 

Autocorrelation 
Autocorrelation, also called serial correlation, is a measure of the internal correlation within a time 
series. It is a representation of the degree of similarity between the time series and a lagged version 
of itself. The calculation process is similar to getting correlations between two different time series, 
except that one time series is used twice, once in its original form and once in a lagged version. 

The original idea of measuring autocorrelation is that forecasting (and also imputation) of a time 
series is possible because future usually depends on the past. High autocorrelation values mean that 
the future is strongly correlated to the past. Thus autocorrelation can be an indicator for the ability to 
create reliable forecasts and imputations. 

When the autocorrelation is computed the resulting numbers range from +1 to -1. A value of one 
means that there is a perfect positive association, a value of minus one means that there is a perfect 
negative association and zero means there is no association. 

In figure 3 autocorrelation plots of the lags for the time series used in our experiments can be 
seen. The blue striped line marks the limit, under which the autocorrelation is not statistically 
significant. Looking at the air passengers and the SP series, it can be seen that there is a strong 
positive autocorrelation for both of them. Beersales shows repeating patterns of positive and negative 
autocorrelations, typical for seasonality. Remarkable is the google dataset, which by contrast shows no 
autocorrelation over the significance line. This dataset was chosen to see how imputation algorithms 
will perform for series that have no clear patterns and show white noise characteristics. 

#' Code for creating autocorrelation plot 

#' No plot function call, because it is already called within acf 
par(mfrow=c(2,2), cex.main = 1.8, cex.lab = 1.4) 
acf(airpass) 
acf(SP) 
acf(google) 
acf(beersales) 
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Figure 3: Autocorrelation plot for the time series used in the experiments . 

 
 

Missing Data 
 

Missing Data Mechanisms 

Depending on what causes missing data, the gaps will have a certain distribution. Understanding 
this distribution may be helpful in two ways. First, it may be employed as background knowledge 
for selecting an appropriate imputation algorithm. Second, this knowledge may help to design a 
reasonable simulator, that removes missing data from a test set. Such a simulator will help to generate 
data where the true values (i.e., the potentially ideal imputation data) is known. Hence, the quality of 
an imputation algorithm can be tested. 

Missing data mechanisms can be divided into three categories ’Missing completely at random’ 
(MCAR) , ’Missing at random’ (MAR ) and ’Not missing at random’ (NMAR ). In practice, assigning 
data-gaps to a category can be blurry, because the underlying mechanisms are simply unknown. While 
MAR and MNAR diagnosis needs manual analysis of the patterns in the data and application of 
domain knowledge, MCAR can be tested for with t-test or Little’s test (Little, 1988). In the R package 
MissMech (Jamshidian et al., 2014) a function for MCAR diagnosis can be found. 

The vast majority of missing data methods require MAR or MCAR, since the missing data mech- 
anism is said to be ignorable for them (Rubin, 1976). Since MAR enables imputation algorithms to 
employ correlations with other variables, algorithms can achieve better results than for MCAR. NMAR 
is called non-ignorable, because in order to do the imputation a special model for why data is missing 
and what the likely values are has to be included. 

For univariate time series the picture for missing data mechanisms looks slightly different. At 
first view there is only one variable in the data. But indeed time (which is implicitly given) has to be 
treated like a variable when determining the missing data mechanism of a dataset. Another difference 
is that time series imputation algorithms do not need to rely solely on covariates for missing value 
estimation, they can also use time series characteristics. This makes estimating missing values for 
MCAR data a lot of easier. For univariate time series imputation MAR and MCAR is nearly the same. 

 

Missing completely at random (MCAR) 

In MCAR there is no systematic mechanism on the way the data is missing. Missing data points 
occur entirely at random. This means there are two requirements: First, the probability for a  certain 
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observation being missing is independent from the values of other variables. Second, the probability 
for an observation being missing is also independent of the value of the observation itself. Since there 
are no other variables existent for univariate time series (except time as implicit variable), condition 
one can be simplified to: The probability for a certain observation being missing is independent of the 
point of time of this observation in the series. 
Example: Sensor data is recorded 24/7 from a field test and sent via radio signals to a back-end. Due 
to unknown reasons and on random occasions sometimes the transmission fails. 

 
P(r|Yobserved, Ymissing ) = P(r) 

 
Missing at random (MAR) 

Like in MCAR, in MAR the probability for an observation being missing is also independent of the 
value of the observation itself. But it is dependent on other variables. Since there are no other variables 
other than time (implicitly given) for univariate time series, it can be said, that in MAR the probability 
for an observation being missing is dependent of the point in time of this observation in the series. 
Example: Machine sensor data are more likely to be missing on weekends (since it is shut down on 
some weekends). 

 
P(r|Yobserved, Ymissing ) = P(r|Yobserved ) 

 
Not missing at random (NMAR) 

NMAR observations are not missing in a random manner. The data are not MCAR and not MAR. That 
means, the probability for a observation being missing depends on the value of the observation itself. 
Furthermore the probability can (but must not necessarily) be dependent on other variables (point of 
time for univariate time series). 
Example: Temperature sensor gives no values for temperatures over 100 degrees. 

 
P(r|Yobserved, Ymissing ) = P(r|Yobserved, Ymissing ) 

 
 
 

Simulation of Missing Data 

Evaluating performance of imputation algorithms has one difficulty: Comparing the results on real 
missing data is not possible, since the actual values are in fact missing. Thus it will never emerge how 
much the imputed vales differ from the real values. A performance comparison can only be done for 
simulated missing data. This means a complete series is taken and data points are artificially removed. 
Later on, imputed values and real values can be compared. The characteristics of the function created 
for the experiments are shown in table 1. 

 
 

Missing Data Mechanism Missing Data Distribution Amount of Missing Data 
MCAR exponential adjustable 

 

Table 1: Characteristics Missing Data Simulation 
 
 

These characteristics were not chosen arbitrarily. We decided to use six hundred real life univariate 
time series as archetype for the function. These time series datasets provided by an industrial partner 
are recordings of sensor values from field tests. The missing observations in these time series result 
from unspecified transmission problems. The exponential distribution we discovered in this datasets 
is very common for a lot of real life applications. For example it is used for modeling time distance 
between incoming phone calls in call centers (Brown et al., 2005) and also reliability engineering makes 
extensive use of it (Marshall and Olkin, 1967). 

#' Code of the missing data simulation function 
#' @param data -  univariate time series 
#' @param rate - lambda value for exponential distribution 

http://www.th-koeln.de/
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#' @param seed - random seed used for the function 

create.missing <- function(data, rate, seed=NULL) { 

## Only for time series 
if (class(data) != "ts") { 

stop("Provided data is not a time series.") 
} 

 

## No missing data (pass-through) 
if (rate == 0) { 

return(data) 
} 

 

## Save original parameters 
t <- time(data) 
f <- frequency(data) 

 

##Setting of random seed 
if (!is.null(seed)) 

set.seed(seed) 
 

## Initialize index 
a <- 0 

 

## Indices of removed entries 
tempDelete <- numeric(0) 

 

while (a < length(data)) { 

 

## 'ceiling' is to avoid possible zeros 
a <- ceiling(a + rexp(1, rate)) 

 

if ( a <= length(data) ) { 
data[a] <- NA 
tempDelete <- c(tempDelete, a) 

} 
} 

 

return(list(data=data, na.ind=tempDelete)) 

} 

 
 

Univariate time series imputation 
 

Overview Algorithms 

As already mentioned in the Univariate Time Series and Missing Data sections, univariate time series 
are a special imputation case. Instead of covariates like in multivariate datasets, time dependencies 
have to be employed to perform an effective imputation. Literature about time series or longitudinal 
data focuses nearly solely on multivariate datasets. Most papers thereby compare algorithms just on 
one specific dataset, like for example (Honaker and King, 2010) for a political science cross sectional 
dataset. Especially for longitudinal clinical datasets, imputation algorithm comparisons can be found 
(Engels and Diehr, 2003), (Spratt et al., 2010), (Twisk and de Vente, 2002), (Spratt et al., 2010). But none 
consider univariate data. Other articles like (Junninen et al., 2004) consider some univariate algorithms, 
but do not consider the time series aspects. These simple algorithms like mean imputation usually 
do not perform well. All in all there is no overview article or overall comparison solely devoted to 
univariate time series imputation. But there are papers covering some aspects. For example (Kihoro 
et al., 2013) evaluates the use of ARIMA and SARIMA models for imputation of univariate time series. 

 
Techniques capable of doing imputation for univariate time series can be roughly divided into three 
categories: 

http://www.th-koeln.de/
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1. Univariate algorithms 
These algorithms work with univariate inputs, but typically do not employ the time series 
character of the dataset. Examples are: mean, mode, median, random sample 

 
2. Univariate time series algorithms 

These algorithms are also able to work with univariate inputs, but make use of the time series 
characteristics. Examples of simple algorithms of this category are locf (last observation carried 
forward), nocb (next observation carried backward), arithmetic smoothing and linear interpola- 
tion. The more advanced algorithms are based on structural time series models and can handle 
seasonality. 

 
3. Multivariate algorithms on lagged data 

Usually, multivariate algorithms can not be applied on univariate data. But since time is an 
implicit variable for time series, it is possible to add time information as covariates in order to 
make it possible to apply multivariate imputation algorithms. This process is all about making 
the time information available for multivariate algorithms. The usual way to do this is via lags 
and leads. Lags are variables that take the value of another variable in the previous time period, 
whereas leads take the value of another variable in the next time period. 

 
 

Univariate time series imputation in R 

Basically, there are lots of R packages, offering a broad range of imputation tools and functions. There 
are packages for a lot of different imputation techniques, e.g., imputation based on random forests 
missForest (Stekhoven and Bühlmann, 2012), maximum likehood estimation mvnmle (Gross and 
with help from Douglas Bates, 2012), expectation maximization mtsdi (Junger and de Leon, 2012), 
nearest neighbor observation yaImpute (Crookston and Finley, 2007), predictive mean matching 
BaBooN (Meinfelder, 2011), conditional copula specifications CoImp (Lascio and Giannerini, 2014) 
and several other methods. Especially popular are multiple imputation (Rubin and Schenker, 1986) 
implementations like mice (van Buuren and Groothuis-Oudshoorn, 2011), Hmisc (Jr et al., 2015) and 
Amelia (Honaker et al., 2011). Many packages like for example imputeR (Feng et al., 2014), VIM 
(Templ et al., 2013) and others, offer also imputation frameworks containing several algorithms and 
tools. There are plenty other R packages not mentioned yet, providing either tools, visualisations or 
algorithms for imputation (e.g. mitools, HotDeckImputation, hot.deck, miceadds, mi, missMDA, 
ForImp and others). Several other packages also contain imputation functions as side product. 
Unfortunately there is no package that is dedicated solely to univariate time series imputation. 
Evaluating possibilities within R we have taken a look at the following solutions: 

 
 

Amelia and mtsdi 
The Amelia and mvnmle package offer some extra options for time series support. Amelia has 
two ways of time series support included: One approach works by directly adding lags or leads 
as covariates, the other one is adding covariates that correspond to time and its polynomials. This 
works perfectly fine for multivariate datasets, but for univariate inputs the imputation function is 
not applicable. We tested these packages because the manuals mentioned time series imputation and 
did not explicitly exclude univariate inputs. But actually, our tests showed that both packages are 
designed only for processing multivariate data and are not applicable for univariate data. Providing 
univariate data ends up in an error signaling wrong input. 

#' Working code for a multivariate dataset 
require("Amelia") 
#load multivariate dataset with NAs (dataset included in Amelia package) 
data(freetrade) 

 

#Impute with polytime option 

out1 <- amelia(freetrade, ts = "year", cs = "country", polytime =  2) 
 

#Impute with lags and leads option 

out2 <- amelia(freetrade, ts = "year", cs = "country", lags = "tariff", leads =  "tariff") 

 

Error message from Amelia amelia function for univariate input: 

Amelia Error Code:  42 

There is only 1 column of data. Cannot impute. 

http://www.th-koeln.de/
http://cran.r-project.org/package%3DmissForest
http://cran.r-project.org/package%3Dmvnmle
http://cran.r-project.org/package%3Dmtsdi
http://cran.r-project.org/package%3DyaImpute
http://cran.r-project.org/package%3DBaBooN
http://cran.r-project.org/package%3DCoImp
http://cran.r-project.org/package%3Dmice
http://cran.r-project.org/package%3DHmisc
http://cran.r-project.org/package%3DAmelia
http://cran.r-project.org/package%3DimputeR
http://cran.r-project.org/package%3DVIM
http://cran.r-project.org/package%3Dmitools
http://cran.r-project.org/package%3DHotDeckImputation
http://cran.r-project.org/package%3Dhot.deck
http://cran.r-project.org/package%3Dmiceadds
http://cran.r-project.org/package%3Dmi
http://cran.r-project.org/package%3DmissMDA
http://cran.r-project.org/package%3DForImp
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The mtsdi package provides an EM algorithm based method for imputation of missing values in 
multivariate normal time series. It accounts for spatial and temporal correlation structures. Temporal 
patterns can be modelled using an ARIMA(p,d,q). But as with Amelia, this functionality is not 
applicable to univariate data. Providing the imputation function with univariate data throws an error. 

 
Error message from mtsdi mniimput function for univariate input: 

Error in dimnames(S[, , j]) <- list(names[[2]], names[[2]]) : 
'dimnames' applied to non-array 

 

 
VIM, mice, and imputeR 
Evaluating these packages, it turned out that all three do not accept univariate input. All three give 
error messages signaling wrong input for non multivariate data. Although for mice it seems just 
a formal issue, since it is capable of using this (simple) univariate imputation techniques: overall 
mean, linear regression, stochastic regression, random sample, predictive mean matching. To use 
these functions the time series with the missing values has to be added together with another column 
without missing data to a data.frame. The input of the second column is arbitrary, since it is only there 
to bypass the input checking. 

 
 

forecast and zoo 
forecast and zoo were the only packages we found that do both: work for univariate data and provide 
advanced time series support. Imputation is not the main focus of either package, but since they deal 
with (univariate) time series, in general they offer these functions as useful additions. The zoo package 
offers with na.aggregate(), na.StructTS(), na.locf(), na.approx(), na.spline() functions especially for 
univariate time series. The forecast package has just one but advanced function: na.interp(). Most 
of the functions tested in our experiments were from these two packages, since these are the only 
functions for time series data that run with univariate data. 

 
 

Custom solutions 
Our focus was to test out of the box imputation solutions in R, that can be applied within one or two 
lines of code. As it can be seen above, there are only a few functions offering this for univariate time 
series. Basically, only the functions from zoo and forecast fit this requirement. But looking not only at 
out of the box functions, there are additional possibilities for univariate time series imputation in R. 
But these techniques require a little bit more coding effort. 

 
For example it is also interesting to look at: 

 
• Kalman filter with arima state space model 
• Multivariate algorithms on lagged data 
• Forecast/Backcast combinations 

 
For our experiments we just used the second option, the multivariate imputation algorithms on lagged 
data. We did not test more custom code solutions, because our interest was in out of the box functions. 
But to have an impression, here is an example what the kalman/arima combination would look like. 

 
#' Perform imputation with auto.arima and Kalman filter 

library(forecast) 
 

## Airpass used as an example 
data <- AirPassengers 

 

## Set missing values 
data[c(10,13,15)] <- NA 

 

## Fit arima model 

fit <- auto.arima(data) 
 

## Use Kalman filter 

kal <- KalmanRun(data, fit$model) 

http://www.th-koeln.de/
http://cran.r-project.org/package%3Dzoo
http://cran.r-project.org/package%3Dforecast
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tmp <- which(fit$model$Z == 1) 

id <- ifelse (length(tmp) == 1, tmp[1], tmp[2]) 
 

## Fill in the values 

id.na <- which(is.na(data)) 
data[id.na] <- kal$states[id.na,id] 
print(data) 

 

 

Functions used for the experiments 

In this section the R functions used for the experiments are described and it is explained how to apply 
them in R. 

 
na.aggregate (zoo) 
’Generic function for replacing each NA with aggregated values. This allows imputing by the overall 
mean, by monthly means, etc.’ (Zeileis and Grothendieck, 2005). In our experiments we just use 
the overall mean. Computing the overall mean is a very basic imputation method, it is the only 
tested function that takes no advantage of the time series characteristics. It is very fast, but has clear 
disadvantages. One disadvantage is that mean imputation reduces variance in the dataset. Also, 
imputing the overall mean is obviously a bad idea in case of datasets with a strong trend. 

 
#' Perform imputation with na.aggregate 

library("zoo") 
na.aggregate(data) 

 

 
 

na.locf (zoo) 
’Generic function for replacing each NA with the most recent non-NA prior to it. For each individual, 
missing values are replaced by the last observed value of that variable’ (Zeileis and Grothendieck, 
2005). This is probably the most simple algorithm that takes advantage of the time series characteristics 
of the data. Since there is often a strong relationship between a current observation at point in time tn 
and it predecessor at tn−1 this can be a quite successful method. Daily temperature data is an example 
where this works quite well, the temperature for the next day is very likely similar to its predecessor. 
The method has drawbacks, e.g. when there are huge differences between observation at point in time 
tn  and it predecessor at tn−1  (e.g. time series with strong seasonality). 

#' Perform imputation with na.locf 
library(zoo) 
# first value can not be imputed with locf 
if ( is.na( data[1] ) ) { 

data[1] <- mean( data, na.rm = T ) 
} 
na.locf(data) 

 

 
 

na.StructTS (zoo) 
’Generic function for filling NA values using seasonal Kalman filter. The function performs an interpo- 
lation with a seasonal Kalman filter. The input time series hereby has to have a frequency’ (Zeileis and 
Grothendieck, 2005). 

 
#' Perform imputation with na.StructTS 

library(zoo) 
#The first value of the time series must not be missing 
if ( is.na( data[1 ]) ) { 

data[1] <- mean(data, na.rm = T) 
} 
na.StructTS(data) 

 

 
 

na.interp (forecast) 
’Uses linear interpolation for non-seasonal series and a periodic stl decomposition with seasonal series 

http://www.th-koeln.de/
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to replace missing values’ (Hyndman, 2014). The seasonal component is removed from the time series 
in the first step, on the remaining component a linear interpolation is done to impute the values and 
afterward the seasonal component is added again. This methods is especially supposed to be a good 
fit, where a clear and strong seasonality can be expected. 

 
#' Perform imputation with na.interp 

library(forecast) 
na.interp(data) 

 

 
 

na.approx (zoo) 
’Generic functions for replacing each NA with interpolated values. Missing values (NAs) are replaced 
by linear interpolation via approx’ (Zeileis and Grothendieck, 2005). Since the na.interp function 
also uses linear interpolation, but first decomposes the time series, it will be interesting to see, if this 
preprocessing step improves the results compared to just using na.approx. 

 
#' Perform imputation with na.approx 

library(zoo) 
na.approx(data, rule = 2) 

 

 
 

ar.irmi (VIM + own) 
This function is not available from an R package, but can be found in the code belonging to this paper. 
It is a combination of creating lags for the time series to get a multivariate dataset and afterwards 
applying the irmi function from the VIM package. The function irmi (iterative robust model-based 
imputation) uses in each step of the iteration one variable as a response variable and the remaining 
variables serve as the regressors. (Templ et al., 2013) 

 
#' Perform imputation an lagged data with ar.irmi 

library(VIM) 
ar.irmi(data, lags = 10) 

 
 

The ar.irmi function internally first calls the create.lags function in order to create the lags and then it 
calls the irmi function. For creating lags we did not use the function lag from stats, because instead of 
computing a lagged version of the time series, it’s shifting back the time base by a given number of 
observations. The lag function from zoo also did not fit our needs, so that we created an own function. 
Although we did not use it, we want to mention the DataCombine (Gandrud, 2015) package, whose 
slide function would have perfectly fitted our needs. We just discovered the package too late and had 
already finished our experiments. 

#' Transform a univariate time series to a matrix with lags as  columns. 
#' @param data The time series. 
#' @param lags The maximum amount of lags to be created. 
#' @return A data frame with the lags in the columns. 

 

create.lags <- function(data, lags = 0) { 
if (lags < 1) { 

warning("No lags introduced.") 
return(data) 

} 

data.new <- data.frame(data[(lags+1):length(data)]) 
cnames <- "x" 
for (i.lag in 1:lags) { 

ind <- (lags + 1 - i.lag) : (length(data) - i.lag) 
data.new <- cbind(data.new, data[ind]) 
cnames <- c(cnames, paste("lag", as.character(i.lag), sep =  "_")) 

} 

colnames(data.new) <- cnames 
return(data.new) 

} 

http://www.th-koeln.de/
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Experiments 
 

Description 

To compare the different R functions, we performed experiments with different time series datasets. All 
code from our experiments can be found online under http://github.com/SpotSeven/uniTSimputation. 

 
In order to quantify the performance of imputation algorithms the following steps have to be done: 

 
1. Take a complete time-series tscompl 

2. Create missing values in tscompl to get tsincompl 

3. Apply the algorithms to tsincompl to get tsimp 

4. Compare the differences between tscompl and tsincompl 

In our paper we examine the special case of imputation of univariate time series and compare 
several state of the art solutions available within R packages. To be able to compare results we took a 
two step approach. In the first step we artificially deleted values in complete datasets with a missing 
data simulation function we developed based on the occurrence of missing data in a real life example 
(MCAR). The second step was to apply the earlier introduced imputation functions and to evaluate 
the performance of the algorithms in terms of Root Mean Square Error (RMSE) and Mean Absolute 
Percentage Error (MAPE) for the imputed values. 

The chosen datasets for the experiments are described in section Univariate Time Series. For step 
2 a defined function that creates missing values with a realistic distribution is needed. Details of our 
missing value creation function can be found in section Missing Data. All algorithms used in step 3 
are described in detail in section Univariate time series imputation. For step 4, we need error metrics 
to evaluate which algorithm gives the best result. The metrics we used are describes in the following 
subsection. 

The experiments were performed with four different missing data rates (0.1, 0.3, 0.5, 0.7). The rate 
represents the λ value of the exponential distribution (which is the foundation of the missing data 
creation function). The same rate can hereby lead to a slightly differing absolute value of observations 
missing. Since the performance of the algorithms also depends on which specific observations are 
deleted by the missing data creation function, we ran this function with 25 different random seeds. So 
all in all, our experiments were performed with 25 (different random seeds) * 4 ( different rates) * 6 
(different algorithms) = 600 runs for each dataset. 

 

Imputation Targets and Measurements 

As error metric we are relying on MAPE and RMSE, two very common metrics. Adding the MAPE 
as error metric is important because for datasets with a strong trend, the RMSE may not be the best 
metric. Of course, it depends on the requirements of the specific application (as specified by a user) 
whether RMSE or MAPE represent the quality of the algorithm well. Hence, we added both metrics. 

For example, the air passengers datasets starts with very low values and ends up with very high 
values. The missing observations later in the dataset would have an very high impact on the RMSE, 
while the first ones would only have a small impact. In such cases a error metric based on the difference 
in percent between imputed value and real value can give a more realistic view than a metric that 
calculates the difference as absolute value. 

 

RMSE The root mean square error (RMSE) between the imputed value �̅�  and the respective true value 
time series y , i.e., 

 

     RMSE(𝑦, 𝑦): = √∑  𝑛
𝑡=1 (𝑦𝑡−𝑦𝑡)2

𝑛
 

 
 

MAPE The mean absolute percentage error (MAPE) between the imputed value �̅�  and the respective 
true value time series y, i.e., 

 
 

     MAPE(𝑦, 𝑦): =
∑𝑛

𝑡=1
|𝑦𝑡−𝑦𝑡|

|𝑦𝑡|

𝑛
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Results of the experiments 

For each dataset a MAPE and a RMSE figure comparing different R functions for univariate time series 
imputation will be shown. One point in the figure is equivalent to one imputation result (given as 
MAPE or RMSE) for one variation of the time series (same series, but with differing missing values, 
due to different random seeds). The colors in the figures mark different missingness rates. 

 
Airpass 
Looking at figure 4 it can be seen, that na.StructTS and na.interp show the best results. This is probably 
because they can handle seasonality in the data better than the other algorithms. Airpass has both 
seasonality and trend. The trend is probably the reason why mean imputation (na.aggregate) shows 
the poorest results (huge differences in the mean level). The other three algorithms are located in the 
middle between this two poles. As can be seen in figure 5, RMSE and MAPE lead to similar results. 

 

 

 
Figure 4: MAPE imputation results for airpass series. 

 
 

 

 

Figure 5: RMSE imputation results for airpass series. 
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beersales 
The beersales series also has a clear seasonality. Thus, it is not surprising, that na.interp and StructTS 
again show the best results. Here, the results of the na.interp function seem even a little bit better than 
the ones from na.StructTS. StructTS shows more negative outliers, while na.interp gives more constant 
results. Approx and ar.irmi follow this two algorithms quite close, while locf and na.aggregate come 
in last with some distance. Since this series has no clear trend, na.aggregate is not as far behind the 
other algorithms as for the airpass dataset. It is also interesting to compare na.approx and na.interp, 
both functions use linear interpolation, but na.interp does this on seasonal loess decomposed data. 
This seems to give a small gain. As can be seen by looking at the two figures also for this dataset, 
RMSE and MAPE lead to the same results. 

 
 
 

 

 

Figure 6: MAPE imputation results for beersales series. 
 
 

 

 

Figure 7: RMSE imputation results for beersales series. 
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google 
The google dataset was the series without seasonality and without trend, being nearly white noise. All 
algorithms show bad results on this dataset, as it could be expected. It is remarkable that na.StructTS 
and ar.irmi show a few very high outliers. The na.approx function gives here exactly the same results 
as na.interp, since there is no seasonality, which na.interp could work on. Because of the outliers in 
na.StructTS and ar.irmi, these two are the worst algorithms on this dataset. The best algorithms seem 
to be both interpolation algorithms and na.locf. But the na.aggregate function seems to be nearly on 
their level. 

 

 

 
Figure 8: MAPE imputation results for google series. 

 
 

 

 

Figure 9: RMSE imputation results for google series. 

http://www.th-koeln.de/


RESEARCH PAPER 16 

Cologne University of Applied Sciences www.th-koeln.de 

 

 

 
 

SP 
The SP dataset was the series with just trend and without seasonality. The best algorithm on this 
dataset seems to be na.approx. This is a quite interesting result, because this means that the seasonal 
adaption in na.interp makes the results worse. Also StructTS shows poorer results than a normal 
interpolation. The mean is again the worst algorithm to choose for this dataset. Last observation 
carried forward lies far away from the results of na.aggregate but still not even close to the best 
algorithms. 

 

 

 
Figure 10: MAPE imputation results for SP series. 

 
 

 

 

Figure 11: RMSE imputation results for SP series. 
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Running Times 
The running times are depicted in figure 12, na.aggregate is clearly the fastest algorithm. The ar.irmi 
is the solution that needs the most computation time. Keeping in mind that ar.irmi showed only 
mediocre results, the computation time seems not to be worth it. What is very interesting is that 
StructTS is several times slower than na.interp. Both showed nearly identical results for imputation, 
so na.interp seems overall the better choice. The na.interp function is also not that much slower than 
na.approx, so the loess decomposition seems not to be very demanding in terms of computing time. 

 

 

 
Figure 12: Running time of the algorithms in seconds. 

 

 
Summary 

 
As shown in sections Univariate Time Series and Missing Data, handling univariate time series with 
standard imputation algorithms may not be the best solution or even impossible. Univariate time 
series require special treatment, since their characteristics are different from multivariate, non-time 
series datasets. Instead of covariates, time dependencies have to be employed to perform an effective 
imputation. 
There are basically three different approaches to perform imputation for univariate time series (see also 
section Univariate time series imputation): Using univariate imputation algorithms without special 
treatment of time series characteristics, explicitly using time series algorithms or using multivariate 
algorithms on lagged data. 
In our experiments the algorithms especially tailored to (univariate) time series imputation performed 
for each tested dataset better or at least equal to all other algorithms. The results for the univariate 
(non-time series) imputation algorithms were clearly inferior to the results of the other algorithms. The 
results for the multivariate algorithm using lagged data was, compared over all datasets, somewhere 
in the middle between the other two algorithm categories. It would be interesting to do additional 
tests with more algorithms from this category. 
In R, there are currently not too many methods that provide imputation for univariate time series out 
of the box. In the future, having an R package that unites several tools and algorithms specifically for 
univariate imputation would be an improvement. From the R implementations tested in this paper, 
na.interp from the forecast package and na.StructTS from the zoo package showed the best overall 
results. The simple methods na.locf and na.aggregate (also from package zoo) were the leaders in 
terms of computation time. But, depending on the dataset, they produced very misleading results 
and should be applied with caution. The approach of using a multivariate algorithm (irmi from 
package VIM) on lagged series showed mediocre results, and was extremely slow compared to all 
other solution. 
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