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Intro and Motivation

• Synonyms
• Metamodels
• Surrogates
• Response surface models
• Approximation models
• Simulation models
• Data-driven models
• Emulators

• From Latin surrogatus
– a replacement for something, a substitute or alternative
Perfect passive participle of surrogare

• Variant of subrogare, from
• Sub (under) + rogare (ask)
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Most common applications
• Engineering design
• Long, expensive fitness function evaluations

• Finite elements models
• Computational fluid dynamics models

• Examples
• Airfoil design
• Ship propulsion systems
• etc.

Image taken
from [Naujoks et al., 2007]
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Additional variable geometry parameters for the linear jet
in contrast to the more simple propeller blade optimization
are:

• the hub’s diameter and length
• the nozzle’s length and profile angle.

This results in an optimization problem featuring 14 deci-
sion parameters in contrast to the nine decision parameters
of the pure propeller blade optimization problem described
above. The stator is not included into the optimization yet.

Again, like in the task presented before, a geometry to
deliver more or less thrust compared to the desired value
is “punished” with a higher target value. By a similar
”punishment” of a geometry generating cavitation and a
“reward” for efficiency we calculate a single target value
which is returned to the optimization program after every
hydrodynamic simulation.

Fig. 2. Visualization of the linear jet propulsion systems, within the two-
dimensional view, the three different parts blades, hub and nozzle can be
identified.

III. META-MODEL-ASSISTED EVOLUTIONARY

OPTIMIZATION

The idea to assist direct search algorithms by meta-models
has first been explored by Torczon et al. [8], [9] for pattern
search algorithms. A similar approach can be employed
in evolutionary algorithms (EA) by incorporating a pre-
screening procedure before the offspring population is eval-
uated with the time consuming evaluation tool. Algorithm
1 gives an outline of MAEA which is, in fact, a modified
version of the basic (µ+�)-EA described by Bäck, Hammel,
and Schwefel [10] or Beyer and Schwefel [11]. Two features
distinguish MAEA from standard EA.

1) All exactly evaluated individuals are recorded and
stored in a database. Up to 15 nearest neighbors are
considered to set up the meta-model for each of the �

individuals per generation.

Fig. 3. Visualization of a more complex propulsion systems featuring rotor,
hub, and nozzle. Within the three-dimensional figure of the geometry, the
nozzle had to be hidden except for the corresponding grid to see the other
components. Nevertheless, this view enables to see the composition of hub
and blades in more detail.

2) During the pre-screening phase, the objective function
values for new solutions are predicted by the meta-
model, before deciding whether they need to be re-
evaluated by the exact and costly tool.

Thereby, at generation t, the set of offspring solutions G

t

is reduced to the subset of offspring solutions Q

t

, which will
be evaluated exactly and will also be considered in the final
selection procedure (cf. [1]).

Algorithm 1 (µ + ⌫ < �)-MAEA
t 0

P

t

 init() /* P

t

: Set of solutions */
evaluate P

t

precisely
initialize database D

while t < t

max

do
G

t

 generate(P
t

) /* � new offsprings */
evaluate G

t

with meta-model
Q

t

 select(G
t

) /* |Q
t

| = ⌫ */
evaluate Q

t

precisely
update database
P

t+1

 select(Q
t

[ P

t

) /* Select µ best */
t t + 1

end while

A. Pre-screening procedures

A ranking algorithm, applied over the offspring population
G

t

, identifies the most promising individuals in the new
generation. In the general case, this algorithm is based on the
values ŷ(x) (predictions for f(x)) and ŝ(x) (corresponding
standard deviations) obtained for each individual x 2 G

t

through the meta-model. Comparisons with objective func-
tion values for the parent population P

t

are necessary. Vari-
ous criteria for identifying promising solutions are discussed
by Emmerich et al. [1]. Once the promising subset Q

t

of G

t

has been found, its members undergo exact evaluations.

Image taken
from [Naujoks et al., 2007]
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Other areas

. . . where surrogates are applied, involved, used . . .

• No explicit fitness function available
• Fitness depending on external factors, e.g. human interactions
• Music and arts

• Uncertain environments
• Noisy environments
• Robustness wrt. design variables
• Dynamic fitness landscapes

• Smoothing multi-modal fitness landscapes
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Overview

• Motivation

• Concepts and methods

• Practical approach: instructive application

• Typical problems in application

• Open Issues / Research perspectives / Fields of Interest
• Multi-criteria optimization
• Combinatorial optimization

• Discussion
• Typical problems and their solutions
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Surrogate Modeling - Concepts and Methods

Questions to Answer:

1 What is the core concept of surrogate modeling?
2 How does a typical surrogate optimization cycle work?
3 Which models are common for surrogate optimization?
4 Example method: E�cient Global Optimization
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Costly real world (blackbox) problems
• Real-world applications: commonly blackbox problems (machines, complex

processes)
• Available information is very sparse, properties of the objective function are

di�cult or impossible to determine,
• No a priori information about modality, convexity, gradients, or the minimal

function value f(x

ú
) is known

• Most complex problems arise if physical experiments are involved. Aside from
being costly in terms of needed resources (manpower, material, time)

• Wrong values can lead to hazardous e�ects, e.g., damaging or destroying
experimental material.

• Instead of physical experiments, simulations are used, e.g., from the field of
Computational Fluid Dynamics (CFD).

• Require a lot of computational power and are very time demanding

Inevitable need to evaluate candidate solutions in the search space to retrieve any
information and high demand on resources for each of these evaluations.
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Surrogate Modeling - Application Layers

L1 The Real-World Application
• Direct optimization is very costly or impossible as incorrectly chosen decision

variable values
• Evaluations involve resource demanding prototype building or even hazardous

experiments
L2 The Simulation Model

• Complex computational model from fluid- or structural dynamics
• Single simulation process may take minutes, hours, or even weeks to compute
• Available computational power limits the amount of available evaluations

L3 The Surrogate Model
• Data-driven regression model
• The accuracy heavily depends on the underlying surrogate type and number of

available information
• Typically cheap

L4 The Optimization Process
• Any suitable optimization algorithm (deterministic, stochastic, metaheuristic...)
• Can be tuned
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Surrogate Modeling - Core Concept
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Surrogate Modeling - Costs and Benefits

• Each layer L1 to L4 imposes di�erent evaluation costs and solution
accuracies:

• Most expensive: L1 real world
• Commonly cheapest: L2 Surrogate Model
• Modeling process itself requires computational resources for evaluations,

construction or validation of the surrogate.

The main benefit of using surrogates is the reduction of needed fitness evaluations
on the objective function during the optimization.

• An other advantage is the availability of a surrogate itself, which can be
utilized to gain further problem insight.
-> This is particularly valuable for blackbox problems.

• The initial sampling design plan has a major impact on the optimization
performance and should be carefully selected.
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Surrogate Modeling - Optimization Cycle

A common optimization process using surrogates is outlined by the following steps:

1 Sampling the objective function to generate a set of evaluated points
2 Selecting a suitable surrogate
3 Constructing the surrogate using the evaluated points
4 Utilizing the surrogate to predict new promising locations
5 Evaluating the objective function on one (or more) of the identified locations
6 Updating the surrogate and repeating the optimization cycle
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Surrogate Modeling - Important Publications

Important publications featuring overviews or surveys on surrogate modeling and
surrogate optimization:

• Design and analysis of computer experiments, [Sacks et al., 1989]
• A taxonomy of global optimization methods based on response surfaces,

[Jones, 2001]
• Surrogate-based analysis and optimization, [Queipo et al., 2005]
• Recent advances in surrogate-based optimization, [Forrester and Keane, 2009]
• Surrogate-assisted evolutionary computation: Recent advances and future

challenges, [Jin, 2011]
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Linear Models

• Combination of linear predictor functions of each input to model the output
• Basic LM: y = —0 + —1x1 + —2x2 + · · · + —nxn + Á, where Á is the error term
• Extensions: Interactions between inputs, quadratic terms, response surface

models, polynomial regression
• Polynomial model takes the form

y = a0 + a1x + a2x

2
+ a3x

3
+ · · · + anx

n
+ Á

Pro: white box, easy to interpret / analyse, simple and fast

Con: not suitable for complex functions, overfitting (by using too many terms)
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Decision Trees and Random Forests
• Decision Trees [Breiman et al., 1984] model the objective function by using

tree-based approximations.
• At each node of the tree a split is made on the basis of an decision variable

value
• The prediction of a new point is given by the mean value of associated points
• Random Forests Regression [Breiman, 2001] a large number of decision trees

is combined to an ensemble predictor
• Usually, each tree in the ensemble is fitted using a subset of the evaluated

points to avoid overfitting (bagging)
• Predictions of new individuals are then given by a cumulated mean of all

predictors in the ensemble

Pro: easy to interpret white box model (decision trees), fast, binary+integer+real
variables

Con: complex to interpret (RF), bad fit for complex functions (decision tree), no
smooth surface, overfitting (too large tree)
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Artificial Neural Networks and Deep Learning
• Neural Networks [Haykin, 2004; Hornik et al., 1989] are inspired by the

biological brain
• They utilize so-called connected neurons to learn and approximate the

behavior of a function
• Neurons are weighted transform functions
• Several layers of neurons: input, output and hidden layers
• Layers consist of neurons with di�erent forward an/or backward connections
• Deep learning [Deng and Yu, 2014; Hinton et al., 2006]:
• Complex structured networks with multiple processing layers and/or multiple

non-linear transformations and stacked model approaches
• Excellent results in approximation and specially classification tasks
• Highly computational complex, lot of resources needed

Pro: very accurate (deep learning), universal approximator

Con: high computational e�ort, di�cult to interpret, very complex (Deep
Learning)
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Symbolic Regression

• Symbolic Regression [Flasch et al., 2010] is a high level method to fit a
human-readable mathematical model

• Based on Genetic Programming (GP)
• Mathematical expressions building blocks (+, ≠, sin, cos, exp ...)
• Model is evolved using an evolutionary population-based approach

Pro: easy to interpret, fast prediction

Con: high computational complexity (building process)
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Kriging

• Kriging or Gaussian Process Regression [Sacks et al., 1989] is used to model
the error term of the model instead of the linear coe�cients

• Simplest form: —0 + Á, where —0 is the mean
• The Á is then expressed by an gaussian stochastic process.
• Modeling of the error term Á with help of a covariance distance matrix
• The correlation between errors is related to the distance between the

corresponding points
• The covariance matrix is utilized to predict unknown candidates.
• Outstanding feature of Kriging models: uncertainty measure for the

prediction and Expected Improvement (EI):

Pro: suitable for complex functions, uncertainty measurment and EI

Con: not suitable for high dimensional data, high computational e�ort
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Expected Improvement
Improvement:

• Current best point for minimization: x

ú with function value f(x

ú
)

• For a new point x’, the improvement in our objective function is
[f(x

ú
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Õ
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Expected Improvement
2

found in [7]. Recent publications show, that metamodels are
beneficial to speed up the evolutionary search in constrained
and multi-objective optimization [15], [16], [17], [18], though
there are still open questions.

Recently, screening methods also consider the confidence of
the predicted output have been suggested [3], [9], [13], [19].
This information can be obtained through Gaussian Random
Field models which predict the unknown evaluation result by
means of a Gaussian distribution. The use of confidence in-
formation increases the prediction accuracy of the metamodel
and helps guiding the search towards less explored regions in
the search space. This also prevents premature convergence.

In this paper, the term pre-screening will denote the use of
metamodels for the selection of promising members which are
not evaluated so far. Criteria that can be used to support pre-
screening procedures by incorporating confidence information
are introduced; their concept is discussed and statistical studies
of their performance are presented. These criteria figure out
improvements in a set of new (offspring) solutions, assuming
that the unknown response is described by a Gaussian distri-
bution.

In order to extend the application domain of the proposed
methods, pre-screening criteria used in single-objective prob-
lems will be generalized to constrained and multi-objective
problems. After scrutinizing a number of mathematical opti-
mization problems, a challenging aerodynamic design problem
with 3 objectives and 6 constraints will be solved. The results
presented below indicate that it is very beneficial to consider
the confidence information within a MAEA, in order to
improve its robustness.

The structure of this paper is as follows: In section II,
GRFM are presented and discussed. In section III, the single-
and multi-objective EA used are presented. In section IV,
the integration of GRFM in single- and multi-objective EA
is outlined. Finally, using a number of academic test cases
(section V) and a real-world test problem (section VI), the
efficiency of the proposed MAEA is investigated.

II. GAUSSIAN RANDOM FIELD METAMODELS

The Gaussian Random Field (GRF) theory constitutes a
powerful framework for building metamodels based on data
obtained through computer experiments. Gaussian Random
Field Models (GRFM) will be defined below, by first putting
emphasis to the information required by the model as well
as its responses after training. Later, statistical assumptions,
limitations and practicalities related to the model itself and its
use will be discussed.

In the literature, GRFM are also known under different
names, such as Kriging, Gaussian processes and Gaussian
random functions methods. The term Kriging points directly
to the origin of these prediction methods dating back to the
sixties, when the mining engineer Krige used GRFM-like
models to predict the concentration of ore in gold- and uranium
mines [20]. Today, Kriging includes a wide class of spatial
prediction methods which do not necessarily assume Gaussian
fields.

Note that the latter assumption is essential in our algorithms
and the term GRFM is used herein in the standard (strict)
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y
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x

Predicted 
Function

Fig. 1. Outputs of Gaussian Random Field Metamodels using a R ! R
mapping example.

sense. On the other hand, the term Gaussian random functions
[21] might be misleading, because a random function is often
associated with a single random variable instead of a set
of them. However, in the present paper, the term Gaussian
Random Field seems to be more appropriate than Gaussian
Process [22] since this paper is dealing with a multidimen-
sional – spatial – rather than a one-dimensional – temporal –
input space [23].

Apart from the predicted objective function value, another
information provided by a GRFM is a measure of confidence
for its prediction. It is reasonable that the confidence is
expected to be higher if the training point density in the
neighborhood of a newly proposed point is higher. Another
important output of the metamodel is the variance of the output
values and the average correlation between responses at neigh-
boring points. A GRFM interpolates data values and estimates
their prediction accuracy. It provides the mean value and the
standard deviation for a one-dimensional Gaussian distribution
which represents the likelihood for different realizations of
outcomes to represent a precise function evaluation. Figure 1
illustrates the use of GRFM in an example mapping R ! R.

The user of modern optimization methods desires to operate
the metamodel in the most efficient manner, i.e. to maximize
its prediction capabilities and minimize the CPU cost for
its training. For this purpose, a better understanding of the
statistical assumptions, limitations and practicalities related to
the model itself and its use are needed.

Let y : Rd ! R be the output of a computationally
expensive computer experiment and X = {x(1)

, . . . ,x

(m)}
be a set of m input configurations which are available along
with the corresponding responses y

(1)

= y(x

(1)

), y

(2)

=

y(x

(2)

), . . . , y

(m)

= y(x

(m)

). No assumption on the regularity
of the distribution of x(1), . . . , x(m) in S is made.

In GRF theory, the aim is to build a non-time-consuming
tool capable of predicting the output corresponding to a new
point x0 2 S, according to an approximated Rd ! R mapping.
With x

0 2 X , the precise objective function value is returned.
This corresponds to the well known exact interpolation prob-
lem for which a large variety of methods, ranging from splines
[24] to radial basis networks [25] and Shepard polynomials
[26], are available.

The basic assumption in modeling with GRFM is that the
output function is a realization (sample-path) of a Gaussian

Image taken from [Emmerich et al., 2006]

Intuition: Expected Improvement is every possible improvement value weighted by
its probability
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Method Example: E�cient Global Optimization

• E�cient Global Optimization (EGO) by [Jones et al., 1998a] is a surrogate
optimization framework specialized on utilizing Kriging and expected
improvement

• Focus on optimization of expensive blackbox functions
• The original version of EGO starts by sampling the objective function by a

space-filling experimental design
• Example: LHD with approximate k = 10n points: convenient, finite-decimal

value for the inter-point spacing, e.g., 21 design points for 2-dimensions
• Kriging surrogate is fit using maximum likelihood estimation on the selected

points
• The surrogate is then manually analyzed by applying di�erent diagnostic tests
• If it is satisfactory the iterative optimization process is started, if not, the

objective function is tried to be transformed (by log or inverse
transformation) to acquire a better fit.
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Method Example: E�cient Global Optimization

The optimization cycle has following steps:

1 Calculate and maximize expected improvement on surrogate by a exact
branch-and-bound algorithm

2 Sample the objective function where expected improvement is maximized
3 Re-estimate the Kriging surrogate including the new candidate by maximum

likelihood estimation

The authors introduce a stopping criterion, which is reached if the expected
improvement is less than one percent of the current best candidate
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EGO Pseudo-Code Phase I: Building

Algorithm 1.1: EGO

begin
phase 1, initial surrogate building:
initialize population X of size k based on a space-filling DOE
evaluate X on f(x)

xc = best candidate in f(X)
fit Kriging surrogate model fm with X by maximum likelihood estimation
manually verify fm by diagnostic tests
if verify(fm)=false then

transform f(x) by log or inverse and repeat fitting process
end

end

Naujoks, Stork, Zae�erer, Bartz-Beielstein 23 / 74



EGO Pseudo-Code Phase II: Optimization

Algorithm 1.2: EGO

begin
phase 2, use and refine surrogate:
while not termination-condition do

xnew = calculate and maximize EI on surrogate model by
branch-and-bound optimization
if EI(xnew)/|f(xc)| < 0.01 then

stop algorithm
end
evaluate f(xnew)

add xnew to X
xc = best candidate in f(X)

re-estimate fm with X by maximum likelihood estimation
end

end
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Overview

• Motivation

• Concepts and methods

• Practical approach: instructive application

• Typical problems in application

• Open Issues / Research perspectives / Fields of Interest
• Multi-criteria optimization
• Combinatorial optimization

• Discussion
• Typical problems and their solutions
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A practical example

• language: R
• installation of R and more: https://cran.r-project.org/

• optional / recommended IDE: RStudio https://www.rstudio.com/

• R tutorial:
https://cran.r-project.org/doc/manuals/r-release/R-intro.html

• Uses a 1-dim benchmark function from Forrester et al. [2008]
• See following code
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## To install the required packages, uncomment the following lines:
# install.packages("SPOT")
library("SPOT") #load required package: SPOT

## Initialize random number generator seed. Reproducibility.
set.seed(1)

## Define objective function
objectFun <- function(x){

(6*x-2)^2 * sin(12*x-4)
}

## Plot the function:
curve(objectFun(x),0,1)
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## Now, let us assume objectFun is expensive.
## First, we start with making some initial
## design of experiment, which in this case
## is simply a regular grid:
x <- seq(from=0, by=0.3,to=1)

## Evaluate with objective:
y <- sapply(x,objectFun)

## Add to plot:
curve(objectFun(x),0,1)
points(x,y)
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## Build a model (here: Kriging, with the SPOT package.
## But plenty of alternatives available)
fit <- forrBuilder(as.matrix(x),as.matrix(y),

control=list(uselambda=FALSE #do not use nugget effect (regularization)
))

## Evaluate prediction based on model fit
xtest <- seq(from=0, by=0.001,to=1)
pred <- predict(fit,as.matrix(xtest),predictAll=T)
ypred <- pred$f
spred <- pred$s

## Plot the prediction of the model:
curve(objectFun(x),0,1)
points(x,y)
lines(xtest,ypred,lty=2,lwd=2)

## Plot suggested candidate solution
points(xtest[which.min(ypred)],ypred[which.min(ypred)],col="black",pch=20,cex=2)

Naujoks, Stork, Zae�erer, Bartz-Beielstein 18.09.2016



0.0 0.2 0.4 0.6 0.8 1.0

−5
0

5
10

15

x

ob
je
ct
Fu
n(
x)

Naujoks, Stork, Zae�erer, Bartz-Beielstein 18.09.2016



## Calculate expected improvement (EI)
ei <- 10^(-spotInfillExpImp(ypred,spred,min(y)))
## note: the function used above returns negative
## log. of EI, for optimization purposes.

## Plot EI
curve(objectFun(x),0,1)
points(x,y)
lines(xtest,ypred,lty=2,lwd=2)
par(new = T)
plot(xtest,ei,lty=3,lwd=2, type="l", axes=F, xlab=NA, ylab=NA,

ylim=rev(range(ei)))
axis(side = 4); mtext(side = 4, line = 1.4, �EI�)

## Determine solution that maximizes EI
newx <- xtest[which.max(ei)]

## Plot suggested candidate solution, based on EI
points(newx,max(ei),col="red",pch=20,cex=2)

## Add data
x <- c(x,newx)
y <- c(y,objectFun(newx))
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## Now repeat the same as often as necessary:
repeatThis <- expression({

curve(objectFun(x),0,1)
points(x,y)
fit <- forrBuilder(as.matrix(x),as.matrix(y),

control=list(uselambda=FALSE
))

xtest <- seq(from=0, by=0.001,to=1)
pred <- predict(fit,as.matrix(xtest),predictAll=T)
ypred <- pred$f
spred <- pred$s
lines(xtest,ypred,lty=2,lwd=2)
points(xtest[which.min(ypred)],ypred[which.min(ypred)],col="black",pch=20,cex=2)
ei <- 10^(-spotInfillExpImp(ypred,spred,min(y)))
par(new = T)
plot(xtest,ei,lty=3,lwd=2, type="l", axes=F, xlab=NA, ylab=NA,

ylim=rev(range(ei)))
axis(side = 4); mtext(side = 4, line = 1.4, �EI�)
points(xtest[which.max(ei)],max(ei),col="red",pch=20,cex=2)
newx <- xtest[which.max(ei)]
x <- c(x,newx)
y <- c(y,objectFun(newx))

})
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eval(repeatThis)
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• EI looks noisy, strange
• Predicted mean is completely o� target
• Why?

• Common practical problem
• Numerical issue
• Closeness of solutions
• Problem for Kriging model

• Near identical rows in correlation matrix
• Badly conditioned

• Often, Kriging implementations will crash
• Here, nonsensical predictions

• Potential remedy: use nugget (regularization) + reinterpolation
[Forrester et al. 2008]
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## repeat as often as necessary (but now with regularization):
repeatThis <- expression({

curve(objectFun(x),0,1)
points(x,y)
fit <- forrBuilder(as.matrix(x),as.matrix(y),

control=list(
uselambda=TRUE, # Use nugget (parameter lambda)
reinterpolate=T # Reinterpolation, to fix uncertainty estimates

))
xtest <- seq(from=0, by=0.001,to=1)
pred <- predict(fit,as.matrix(xtest),predictAll=T)
ypred <- pred$f
spred <- pred$s
lines(xtest,ypred,lty=2,lwd=2)
points(xtest[which.min(ypred)],ypred[which.min(ypred)],col="black",pch=20,cex=2)
ei <- 10^(-spotInfillExpImp(ypred,spred,min(y)))
par(new = T)
plot(xtest,ei,lty=3,lwd=2, type="l", axes=F, xlab=NA, ylab=NA,

ylim=rev(range(ei)))
axis(side = 4); mtext(side = 4, line = 1.4, �EI�)
points(xtest[which.max(ei)],max(ei),col="red",pch=20,cex=2)
newx <- xtest[which.max(ei)]
x <- c(x,newx)
y <- c(y,objectFun(newx))

})
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Overview

• Motivation

• Concepts and methods

• Practical approach: instructive application

• Typical problems in application

• Open Issues / Research perspectives / Fields of Interest
• Multi-criteria optimization
• Combinatorial optimization

• Discussion
• Typical problems and their solutions
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Typical Problems in Practice

• Previous slides: numerical issues (Kriging)

• Other, more general issues:
• Problem definition

• What is the objective
• What variables impact the objective
• ...

• Algorithm design, selection of:
• Model
• Optimizer
• Parameters
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Typical Problems in Practice: Problem definition

• Very important, crucial to success
• Often underestimated
• Information based on

• Discussions with application experts, practitioners
• Literature
• Experience
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Typical Problems in Practice: Problem definition
• Consider the following:

• Aims and goals
• What are they?
• Can they be clearly defined?
• Can they be evaluated

(measured, computed)?
• Cost of evaluation?
• Budget?
• Desired accuracy?

• Variables a�ecting the
objective(s)

• How many?
• Independent variables?
• Disturbance variables?
• Data types?

• Constraints?
• Noise?
• Interfacing, data exchange

• Repeat the aforementioned, e.g.,
after first results

Surrogate Model Optimization

Costly
Experiment or

 Simulation

Compute
Objective(s)

Measurements 
& Results

Disturbance 
Param

eters

Objectives

Independent 
Parameters

O
bjectives

OptimizerModel

Independent 
Param

eters

N
oise
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Typical Problems in Practice: Model Selection

Spline 
models

Linear regression

Kriging

Support Vector Machines

Neural 

Networks

Symbolic Regression

RBFN
s

Random Forest

Regression 

Trees

• Large variety of models available
• Which to choose?

• Potential solutions:
• Use the "default" (e.g., Kriging / EGO)
• Exploit problem knowledge
• Select performance-based or combine ->

Ensembles (open issue)
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Typical Problems in Practice: Model Selection

• No problem is truly black-box
• Use what you know, e.g.:

• Number of parameters
• 20 or more: Kriging and related loose

performance
• Data types

• Continuous: Kriging, SVMs, RBFNs
• Integer, binary, categorical parameters:

e.g., Random Forest
• Mixed: Treed Gaussian Processes (TGP)
• Structured / combinatorial (e.g.:

permutations, trees): see later slides
• Data set sizes (budget)

• Large: Kriging may become slow
• Small: Take care to use models that avoid

overfitting
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Typical Problems in Practice: Model Selection

• Structure of the fitness landscape:
• Highly multi-modal: do not use simple linear models
• Smooth: Kriging or related
• Large plateaus or discontinuities: Kriging variants may perform poorly
• Known trend: Use Kriging with trend function.

• Cost of the objective function
• Rather high: Complex, powerful models (Kriging, SVMs)
• Rather low: Less complex, cheaper models (linear regression,

tree-based,
k-Nearest Neighbor)

• Requirements of understandability / learning from the model
• Variable importance: most models
• Rule extraction: regression trees
• Human readable formulas: linear models, genetic programming

(symbolic regression)
• Availability of derivatives

• e.g., Gradient Enhanced Kriging ?

$$$

?

Naujoks, Stork, Zae�erer, Bartz-Beielstein 33 / 74



Typical Problems in Practice: Model Selection

• Other considerations
• Customer / Practitioner preferences and knowledge

• Do they understand the models
• Do they trust results from the models

• Your own preferences & experience
• e.g., with regards to parameterization
• or implementation

• Note, various model types often quite similar & related, interchangeable
• e.g.: Spline models - Kriging - SVM - RBFN
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Typical Problems in Practice: Implementation

• Once models are selected -> Implementation
• Can have significant impact
• Options

• Frequently employed packages/libraries
• Quality
• Community support
• Examples, documentation
• Continuity of development

• Less frequently used work
• For special tasks?
• Because of specific features?

• Do it yourself
• None other available (or too slow, buggy)
• Specific features not available
• More fun , but also more work /
• You know what the model really does
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Typical Problems in Practice: Optimizer Selection

• Similar considerations as for models

• Optimizer also depends on model type (and vice versa)

• Smooth, di�erentiable models like Kriging: gradient-based optimizers are fine

• Non-smooth (tree-based): GA, DE, PSO

• Multimodality (of prediction or infill criterion, e.g., EI):
Population based, restarts, niching, etc.

• Simple linear regression: analytical
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Typical Problems in Practice: Parameter Selection

• Similar to model selection / optimizer selection ...
• ... but with more attention to details

• Use expert / literature suggestions
• Exploit problem knowledge

• Parameters a�ect:
• complexity,
• cost of modeling,
• cost of model optimization,
• noise handling,
• robustness,
• smoothness,
• ...

• Tuning, benchmarks (open issue)
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Open Issues

• Research perspectives
• Fields of Interest

• Multi-objective:
SAMCO - Surrogate Assisted Multi-Criteria Optimisation

• Combinatorial surrogates models (optimisation)

• ... both handled in more detail later!
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Open Issues

• Meaningful benchmarking and testing of algorithms
• Noise handling
• Complex resource limitations
• High-dimensional / large scale data
• Constraint handling
• Aggregation: Model ensembles, Multi-fidelity models
• Dynamic optimization problems
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Open Issues

• Meaningful benchmarking and testing of algorithms
• Some benchmark sets available
• (Almost?) not considered for evaluation
• No standard implemented
• Depending on people who apply?

• Noise handling
• Surrogates considered for noisy problems
• What about noise in models?

• Complex resource limitations
• Resources like computation times may not be available constantly
• Server availability, di�erent calculation times per job . . .
• Problem handled separately
• Integration of resources handling in algorithm needed
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Open Issues

• High-dimensional / large scale data
• Models may fail / not be applicable
• New models might need to be considered
• New integration schemes needed as well?

• Constraint handling
• Di�erent scenarios possible
• Most common: infeasible o�spring of feasible ancestor

• Easy strategy: just omit . . . optimal?
• Constraints to be considered by models as well?
• Integration in algorithms?
• Optimal strategy?
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Open Issues

• Aggregation: Model ensembles, Multi-fidelity models
• Which model in which situation?

- Again depending on many parameters
- Some results available . . .

• How to aggregate ensembles best?
• Setting may vary over time . . .

• Dynamic optimization problems
• In general: time-varying fitness function
• Surrogates used for forecasting, predicting future values
• Other settings possible . . . see above
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SAMCO

Surrogate-Assisted Multi-Criteria Optimisation

• Intersection of
• Multi-criteria optimisation
• Surrogate-assisted optimisation

• MCO – Multi-Criteria Optimisation
• EMO – Evolutionary Multi-objective Optimisation
• EMOA – Evolutionary Multi-objective Optimisation Algorithm
• MOEA – Multi-Objective Evolutionary Optimisation
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Basics of Multi-criteria optimisation

• Multiple objective functions considered
• Minimize

f : IR

n ≠æ IR

m
, f(x) = (f1(x), . . . , fm(x))

Pareto Dominance
• Solution x dominates solution y

x <p y :… ’i : fi(x) Æ fi(y) (i = 1, . . . m)

÷j : fj(x) < fj(y) (j = 1, . . . m)

• Pareto-Set: Set of all non-dominated solutions in the search space

{x | @z : z <p x}

• Pareto-Front: Image of Pareto-set in objective space
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SAMCO

• Available budget: 100 to 10 000 evaluations
• Di�erent strategies

• Stochastic variation of EAs assisted (e.g. filtering solutions)
• Completely replaced (e.g. optimizing figure of merit)

• Many algorithms already developed
• However

• Very heterogeneous research fields
• Di�erent sciences / faculties involved

- Engineering
- Statistics
- Computer Science

- Mathematics
- Aeronautics
- Agriculture

• Thus: di�erent backgrounds, also di�erent languages to be considered
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SAMCO

• Application driven
• Proposed algorithms tested respective application tasks mainly
• Comparison of di�erent approaches hard to accomplish
• Lacks existence of accepted benchmarks

• Theoretical aspects almost neglected due to focus on practical applications

• Methodological research areas
• Choice of the surrogate model
• Respective figure of merit (or infill criterion)
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SAMCO
• Easiest approach: one model per objective
• Kriging and expected improvement used commonly
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V. METHOD APPLICATION – RESULTS AND DISCUSSION

A. Mathematical Test Problems and Performance Measures

At first, experiments have been conducted on selected math-
ematical test problems in order to compare the performance
of different MAES variants. These variants were tested on
different objective function landscapes, featuring minimization
of a simple convex function (sphere function, appendix A), a
non-isotropic function (ellipsoid function, appendix B), a dis-
continuous function (step function, appendix C) and - finally -
a highly multimodal function (Ackley function, appendix D).

MAES testing was carried out using population sizes of
µ = 5 and � = 100 individuals, among which ⌫ = 20

individuals at most were pre-selected for exact evaluation.
Each run was repeated 20 times, each of which with a different
random number seed.

The median of the best results found after t evaluations
(t  1000) was plotted. In order to get a reliability measure,
the 16th worst function value, i. e. the 80%-quantile of the
distribution of the obtained function values, was recorded and
presented. For similar studies on 20–dimensional test-cases
and with different population sizes the reader should refer to
[9], [19], [45] and recently [3].

B. Prediction Accuracy Measures

It is well known that EA are rank-based strategies that
are invariant to monotonic transformations of the objective
function. Hence, for a metamodel used in conjunction with
an EA to be successful, it suffices this to predict the subset
of G

t

that would be selected by the recombination if all
evaluations were precise improvements with respect to the
parent population P

t

. The so–called retrieval quality of any

pre-screening tool (metamodel) can be measured through the
recall and precision measures defined below.

Let M

µ

(A) denote the subset of the µ best solutions in
A. Pre-screening aims at identifying the members of G

t

\
M

µ

(G

t

[P

t

) which will enter the next generation. Thus, it is
desirable that

Q

t

⇡ G

t

\ M

µ

(G

t

[ P

t

). (47)

It is reasonable that none of the metamodels could always
retrieve the ensemble of relevant individuals out of G

t

. A
non-satisfactory metamodel is one which: (a) fails capturing
a considerable part of G

t

\ M

µ

(G

t

[ P

t

) or (b) in order to
capture as many as possible of them, it additionally selects too
many irrelevant individuals.

The retrieval accuracy, practically in relation to the first of
the two unpleasant situations just mentioned, i. e. the ratio
the relevant solutions retrieved from G

t

to the number of all
relevant solutions in G

t

, is quantified as follows:

recall(t) =
|M

µ

(G

t

[ P

t

) \ Q

t

|
|M

µ

(G

t

[ P

t

) \ G

t

| , (48)

where the optimal values is recall(t) = 1.
On the other hand, precision(t) is a measure for controlling

the second unpleasant metamodel behavior. This is expressed
by the ratio of the number of correctly retrieved solutions to
the total number of retrieved solutions, namely:

precision(t) =
|M

µ

(G

t

[ P

t

) \ Q

t

|
|Q

t

| (49)

The optimal value for this criterion is precision(t) = 1.
Unfortunately, in contrast to quantitative measures such as

y � ŷ plots, specificity measures cannot be evaluated without
performing extra evaluations with the costly evaluation tool.
Hence, these are useful for statistics on simple academic cases
but not for real–world problems.

C. Implementation details

The basic evolution strategy corresponds to the one de-
scribed previously in section IV. The initial step-size was
set to 0.05% of the search space width. The database is
formed only by exact evaluations. The metamodel is used
from the first generation on. As soon as there are more than
2d solutions in the database, the algorithm switches to the
local metamodeling strategy as described in section II. For all
strategies, the maximal number of pre-selected individuals was
set to µ.

D. Results – Discussion on the performance

The first comparison was conducted on the 20-dimensional
sphere model (cf. appendix A). The median of the best found
solution is shown in Figure 10. All metamodel-based strategies
outperformed conventional strategies (i.e. (5+20)-ES, (5+35)-
ES4, (5+100)-ES) since they ask considerably less function

4This strategy has been added in order to be comparable with Ulmer et al.
[9].

Image taken from [Emmerich et al., 2006]
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Alternative approaches

ParEGO – Pareto E�cient Global Optimisation [Knowles, 2006]

• Converts di�erent cost values into single one
• Parameterized scalarizing weight vector (augmented Tchebyche� function)
• Using augmented Tchebyche� function
• Di�erent weight vector at each iteration
• Weight vector is drawn uniformly at random
• Allows for gradually building an approximation to whole Pareto front

• Learns a Gaussian processes model of search landscape
• Scalar costs of all previously visited solutions is computed
• DACE model of landscape is constructed by maximum-likelihood
• Solution that maximizes expected improvement becomes next point
• Evaluation on real, expensive cost function
• Update after every function evaluation

• Ensures that weakly dominated solutions are rewarded less than Pareto
optimal ones
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Alternative approaches

RASM – Rank-based aggregated surrogate models [Loshchilov et al.,
2010]

• Mono-surrogate approach again
• Single surrogate model to reflect Pareto dominance in EMO framework
• Locally approximates Pareto dominance relation

• Ranking neighbor points within the objective space
• O�spring filter estimating whether they improve on their parents in terms of

approximated Pareto-dominance
• Used for o�spring generation in standard EMOA

• Modeling Pareto dominance within the rank-SVM framework
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Existing libraries and approaches

• Many libraries already existing, e.g.
- mlrMBO
- DiceKriging
- SUMO
- parEGO

- GPareto
- SPOT
- Shark
- QstatLab

• Overview on SAMCO homepage:
http://samco.gforge.inria.fr/doku.php?id=surr_mco

• However: up-to-date overview is missing
• List algorithms contained
• Compare strengths and weaknesses
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SAMCO Promising research areas

• Multiple objectives with di�erent response surfaces
+ specific requirements of set- and indicator- based optimization

• New variants of models
• New infill criteria

• Approaches beyond one model per objective function
• Model dominance relations
• Model performance indicator landscapes

• Ensembles of Surrogates
• Multiple surrogates simultaneously or successively

- To improve overall quality of prediction of each objective
- Model evolves over time from a coarse grained to finer one
- Di�erent parts of search space with significantly di�erent behavior
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SAMCO Promising research areas

• Collect existing approaches and libraries

• Benchmarking Surrogate-Assisted Optimizers lacks rigorously
• Review of common test functions (academic vs. real-world)
• Understand weaknesses and strengths of each algorithm
• Algorithm recommendations for practice

• Overview on SAMCO homepage:
http://samco.gforge.inria.fr/doku.php?id=benchmarking
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Overview

• Motivation

• Concepts and methods

• Practical approach: instructive application

• Typical problems in application

• Open Issues / Research perspectives / Fields of Interest
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• Typical problems and their solutions
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Discrete / combinatorial / structured search spaces

• Well established in expensive, continuous optimization

What about combinatorial / discrete optimization problems?

• Let’s get an overview
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Survey: combinatorial surrogates
Mixed variables

model optimizer cost budget dimension remarks / topics reference

RBFN ES cheap /
≥ expensive

560 /
280

15 /
23

benchmark /
real-world:
medical image analysis

Li et al. [2008]

Random Forest,
Kriging NSGA2 ≥expensive - 4-76 algorithm tuning Hutter et al. [2010]

RBFN +
cluster GA cheap 2,000 12

benchmark,
real-world:
chemical industry

Bajer and Hole�a [2010]

RBFN +
GLM GA cheap several

thousand 4-13
benchmark,
real-world:
chemical industry

Bajer and Hole�a [2013]

SVR NSGA2 ? 2,000 10 finite element,
multi criteria Herrera et al. [2014]

Binary strings
model optimizer cost budget dimension remarks / topics reference

ANN SA expensive ? 16 real world,
pump positioning Rao and Manju [2007]

RBFN GA cheap dimension2 10-25 NK-Landscape Moraglio and Kattan [2011a]

RBFN GA expensive 100 10-40 benchmark,
package deal negotiation Fatima and Kattan [2011]

Kriging GA cheap dimension2 10-25 NK-Landscape Zae�erer et al. [2014b]
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Survey: combinatorial surrogates

Permutations

model optimizer cost budget dimension remarks / topics reference

custom brute force expensive 28 6
signed permutation,
real world:
weld sequence

Voutchkov et al. [2005]

RBFN GA cheap 100 30 - 32 benchmark Moraglio et al. [2011]
Kriging GA cheap 100 12 - 32 benchmark Zae�erer et al. [2014b]
Kriging GA cheap 200 10 - 50 distance selection Zae�erer et al. [2014a]

Kriging ACO cheap 100 -
1,000 50 - 100 benchmark,

tuning Pérez Cáceres et al. [2015]

RBFN GA* instance
dependent 1,000 50 - 1,928

numerical stability,
real world:
cell suppression

Smith et al. [2016]

Kriging brute force,
GA cheap 100 5 - 10 kernel definiteness Zae�erer and Bartz-Beielstein [2016]

*Di�erent integration: GA produces random solutions, which are filtered by the model in each iteration
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Survey: combinatorial surrogates
Trees

model optimizer cost budget remarks / topics reference
RBFN GA cheap 100 symbolic regression Moraglio and Kattan [2011b]

kNN GA expensive 30,000 Phenotypic similarity,
genetic programming Hildebrandt and Branke [2014]

RBFN* GA cheap 100 symbolic regression,
parity Kattan and Ong [2015]

Random Forest GA cheap 15,000 benchmark,
genetic programming Pilát and Neruda [2016]

*two models: semantic and fitness

Other
model optimizer cost budget dimension remarks / topics reference

k-NN GA rather
cheap

20000 -
200000 161 - 259

real-valued+structure,
real-world,
protein structure

Custódio et al. [2010]

Kriging GA expensive few
hundreds

graph-based,
real-world,
protein structure

Romero et al. [2013]

ANN DE cheap several
hundreds 40 - 500 assignment problem,

dynamic Hao et al. [2016]
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Summary: Strategies

• Strategies of dealing with discrete / combinatorial search
spaces

• Inherently discrete models (e.g., regression trees)
• simple, but may not be e�cient/feasible for any

representation

• Dummy variables
• Only for linear regression, vector-based

• Feature based
• Extract real-valued features from genotype / phenotype
• Requires good features

• (Dis)similarity measure based (distance, kernel)
• Requires good measure
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Summary: Types of Models

• As varied as in the continuous case:

• Custom, application specific models (expert
knowledge, physics)

• Artificial Neural Networks (ANN)

• Markov Random Fields [Allmendinger et al., 2015]

• Random Forest (Integer, Mixed Integer Problems)

• (Probabilistic models - in Estimation of Distribution
Algorithms)

• (Pheromone trails - in Ant Colony Optimization)
• ”Classical” kernel-based (similarity-based) models:

• k-Nearest Neighbour (k-NN)
• Radial Basis Function Networks (RBFN)
• Support Vector Regression (SVR)
• Kriging (Gaussian Processes)

Linear 
regression

Markov Random FieldsKriging

Support Vector Machines

Neural 

Networks

k-NN

RBFN
s

Random Forest

custom

Proba- 

bilist
ic 

Models
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Why kernel based approach, Kriging?

• Conceptually simple:
• Replace kernel or distance function
• e.g., with Gaussian kernel and arbitrary distance:

k(x, x

Õ
) = exp(≠◊d(x, x

Õ
))

• Transfer of popular method from continuous domain
• Powerful predictor

• Elegant parameter fitting (maximum likelihood estimation)

• Uncertainty estimate, Expected Improvement

æ E�cient Global Optimization EGO [Jones et al., 1998b]

• Note:
• None of these features exclusive to Kriging
• Closely related to other model types
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Combinatorial Surrogates: Research Questions

• Which kernel/distance works best and why?

• How to choose a suitable kernel/distance?

• Or else, combine?

• Genotypic vs phenotypic distances? [Hildebrandt and Branke, 2014]

• Definiteness?

• Dimensionality issues? Dimensionality reduction? See e.g., the very high
dimensional problems in [Smith et al., 2016]

• Comparison of model types?1

• And again: benchmarking / testing?

1If you want to compare your approach to our methods: R Package for Combinatorial
E�cient Global Optimization CEGO - https://cran.r-project.org/package=CEGO.
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Research Question: Choosing a Distance / Kernel
[Zae�erer et al., 2014a]

* Choice crucial for success
* Use prior knowledge (if available?)
* Cross-validation
• Fitness Distance Correlation (FDC)

(potentially misleading)
FDC
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note: larger FDC values are better

• Maximum Lilkelihood Estimation
(MLE) (seems to work well)
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note: smaller performance values are better
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Research Question: Definiteness
[Zae�erer and Bartz-Beielstein, 2016]

So we can just replace the distance or kernel function with something appropriate
and everything is fine, right?

Common requirement for kernels (distances): Definiteness2

• Definiteness may be unknown / lacking
• Designing definite kernels may be hard / infeasible
• Required: correction procedure
• Some results from SVM field [Ong et al., 2004; Chen et al., 2009; Loosli

et al., 2015] Survey: [Schleif and Tino, 2015]
• Can be transfered to Kriging, with some tweaks
2Positive semi-definite kernel matrix: all eigenvalues are positive or zero
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That’s all Folks. Thanks for hanging on.

• Any questions?

• Discussion:

• Problems you encountered in practice?

• New directions, challenges?

• What is missing in the field?

• Interesting applications?
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