
Sequential Parameter Optimization Applied to
Self-Adaptation for Binary-Coded
Evolutionary Algorithms

Mike Preuss and Thomas Bartz-Beielstein

Dortmund University, D-44221 Dortmund, Germany.
mike.preuss@cs.uni-dortmund.de, thomas.bartz-beielstein@udo.edu

Summary. Adjusting algorithm parameters to a given problem is of crucial impor-
tance for performance comparisons as well as for reliable (first) results on previously
unknown problems, or with new algorithms. This also holds for parameters con-
trolling adaptability features, as long as the optimization algorithm is not able to
completely self-adapt itself to the posed problem and thereby get rid of all param-
eters. We present the recently developed sequential parameter optimization (SPO)
technique that reliably finds good parameter sets for stochastically disturbed algo-
rithm output. SPO combines classical regression techniques and modern statistical
approaches for deterministic algorithms as Design and Analysis of Computer Exper-
iments (DACE). Moreover, it is embedded in a twelve-step procedure that targets
at doing optimization experiments in a statistically sound manner, focusing on an-
swering scientific questions.

We apply SPO to a question that did not receive much attention yet: Is self-
adaptation as known from real-coded evolution strategies useful when applied to
binary-coded problems? Here, SPO enables obtaining parameters resulting in good
performance of self-adaptive mutation operators. It thereby allows for reliable com-
parison of modified and traditional evolutionary algorithms, finally allowing for well
founded conclusions concerning the usefulness of either technique.

1 Introduction

The evolutionary computation (EC) field currently seems to experience a state of
flux, at least as far as experimental research methods are concerned. A purely theo-
retical approach is not reasonable for many optimization problems. In fact, there is
a huge gap between theory and experiment in evolutionary computation. However,
empiricism in EC cannot compensate this shortcoming due to a lack of standards.
A broad spectrum of presentation techniques makes new results almost incompara-
ble. At present, it is intensely discussed which experimental research methodologies
should be used to improve the acceptance and quality of evolutionary algorithms
(EA).

Several authors from related fields (Hooker (1996), Moret & Shapiro (2001),
and Johnson (2002)) and from within EC (Whitley et al. (1996), Eiben & Jela-



2 Mike Preuss and Thomas Bartz-Beielstein

sity (2002)) have criticized usual experimental practice. Besides other topics, they
ask for increased thoughfulness when selecting benchmark problems, a better struc-
tured process of experimentation, including presentation of results, and proper use
of statistical techniques.

In the light of the no free lunch theorem (NFL, Wolpert & Macready (1997)),
research aims are gradually changing from demonstration of superiority of new al-
gorithms towards experimental analysis, addressing questions as: What makes an
algorithm work well on a certain problem class? In spite of this development, the so-
called horse race papers1 still seem to prevail. Eiben & Jelasity (2002) report about
the situation in experimental EC and name the reasons for their discontentment
with current practice. Put into positive formulation, their main demands are:

• assembly of concrete research questions and concrete answers to these, no claims
that are not backed up by tests

• selection of test problems and instances motivated by these questions

• utilization of adequate performance measures for answering the questions, and

• reproducibility, which requires all necessary details and/or source code to repeat
experiments

This line is carried further in Eiben & Smith (2003). Partly in response to these
demands, Bartz-Beielstein (2006) proposes SPO as a structured experimentation
procedure based on modern statistic techniques (§4). In its heart, SPO contains
a parameter tuning method that enables adapting parameters to the treated test
problems.

Undoubtedly, comparing badly parametrized algorithms is rather useless. How-
ever, a good parameter set allows for near-optimal performance of an algorithm. As
this statement suggests, parameter tuning is of course an optimization problem on
its own. Following from that, some interesting questions arise when algorithms with
parameter control operators are concerned, because their own adaptibility is in turn
guarded by control parameters, which can be tuned. The broadest of these ques-
tions may be where to put effort into when striving for best performance—tune the
simple algorithm, or tune the adaptability of more complex algorithms—eventually
resulting in recommendations when to apply adaptive operators.

1.1 Parameter Control or Parameter Tuning?

Parameter Control refers to parameter adaptation during the run of an optimization
algorithm, whereas parameter tuning improves their setting before the run is started.
These two different mechanisms are the roots of the two subtrees of parameter
setting methods in the global taxonomy given by Eiben et al. (1999). One may
get the impression that they are contradictory and researchers should aim at using
parameter control as much as possible. In our view, the picture is somewhat more
complex, and the two are rather complementary.

In a production environment, an EA and any alternative stochastic optimization
algorithm would be run several times, not once, possibly solving the next or trying

1 Johnson (2002) uses this term for papers that aim at showing predominance of one
algorithm over (all) others by reporting performance comparisons on (standard)
test problems.



SPO Applied to Self-Adaptation for Binary-Coded EAs 3

the same problem again. This obliterates the separating time factor of above. What
is more, the EA as well as the problem representation will most likely undergo
structural changes during these iterations (new operators, criteria, etc.). These will
entail changes in the “optimal” parameters, too.

Furthermore, parameter control methods do not necessarily decrease the num-
ber of parameters. For example, the 1/5th adaptation rule by Rechenberg (1973)
provides at least three quantities where there has been one—mutation step size—
before, namely the time window length used to measure success, the required success
rate (1/5), and the rate of change applied. Even if their number remains constant, is
it justified to expect that parameter tuning has become simpler now? We certainly
hope so, but need more evidence to decide.

In principle, every EA parameter may be (self-)adapted. However, concurrent
adaptation of many does not seem particularly successful and is probably limited
to two or three at a time. We thus cannot simply displace parameter tuning with
parameter control. On the other hand, manual tuning is surely not the answer, as
well, and grid based tuning seems intractable for higher order design spaces. At this
point, we have three possibilities, either to

• fall back on default values,

• abandon tuning alltogether and take random parameters, or

• to apply a tuning method that is more robust than doing it manually, but also
more efficient than grid search.

We argue that SPO is such a method and thus of particular importance for
experimental studies on non-trivial EAs, as such utilizing self-adaptation. As the
experimental analysis in EC currently is a hot topic, other parameter tuning ap-
proaches are developed, too, e.g. Ramos et al. (2005). But whatever method is used,
there is hardly a way around parameter tuning, at least for scientific investigations.
SPO will be discussed further in §4 .

1.2 Self-adaptation for Binary Representations

When comparing recent literature, it is astounding that for real-coded EAs as e.g.
evolution strategies (ES), self-adaptation is an almost ubiquitously applied feature,
at least as far as mutation operators are concerned. In binary-coded EA however, it
did not become a standard method. Optimization practicioners working with binary
representations seem largely unconvinced that it may be of any use. What may be
the reason for this huge difference? One could first think of traditional reasons.
Of the three standard evolutionary methods for numerical optimization, genetic
algorithms (GA), evolutionary programming (EP) and evolution strategies, the last
one first adopted self-adaptation in various forms to improve mutation operators
(Rechenberg (1978); Schwefel (1974, 1981)), followed by EP in Fogel (1992). These
two mainly work with real-valued representations. Nevertheless, since then so much
time has passed that it is hard to imagine that others would not employ a technique
that clearly provides an advantage. Considering this, tradition appears not as a
substantial reason for the divergent developments.

In fact, meanwhile, several authors have tried to transfer self-adaptation to EAs
for binary encodings: Bäck (1992); Bäck & Schütz (1995); Schütz (1996); Smith
& Fogarty (1996); Smith (2001); Stone & Smith (2002); Greenwood (2003). If we



4 Mike Preuss and Thomas Bartz-Beielstein

accept the view of an evolutionary epistemology underlying the development of our
scientific domain, so that mostly successful changes are inherited to the next stages,
these studies have apparently not been very convincing. Either they were ignored
by the rest of the field, or they failed to provide reason good enough for a change.
Let us assume the latter case. In consequence, most EAs for binary representations
published nowadays still do without self-adaptation.

Evolutionary algorithms employing different forms of self-adaptation are usually
applied to continuous, or, more rarely, ordinal discrete or mixed search spaces. So
the distinction may result from differences in representation. When dealing with
real-valued numbers, it is quite easy to come by a good intuition why adapting
mutation strengths (also called mutation step sizes) during optimization can speed
up search. Features of a fitness landscape changing slowly compared to the fitness
values themselves can be learned, like gradients or covariances (Hansen et al. (1995);
Hansen & Ostermeier (2001)). In a binary space, this intuition is lacking. Definition
of gradients is meaningless if a variable can only take two values. Consequently,
reseach is trying different ways here, e.g. linkage learning or distribution estimation
as in Pelikan et al. (2000). As much as the experiences from continuous search spaces
cannot be simply transferred, neither can the methods. Self-adaptation of mutation
rates, as straightforward continuation of existing techniques for real-valued variables,
if working at all for binary representations, can be expected to work differently.

2 Aims and Methods

Our aims are twofold: To demonstrate usefulness of the SPO approach for experimen-
tal analysis, and to perform an experimental analysis of self-apaptation mechanisms.

Methodologically, we want to convey that SPO is a suitable tool for finding
good parameter sets (designs) within a fixed, low budget of algorithm runs. It seems
safe to assume that a parameter set exists in the parameter design space that is
better than the best of a small (≈ 100) sample. We therefore require that the
best configurations detected by SPO are significantly better than the best of a first
sample. Furthermore, we want to suggest a flexible yet structured methodology for
performing and documenting experimentation by employing a parameter tuning
technique.

Concerning the experimental analysis of self-adaptation mechanisms on binary
represented problems, our aim is to collect evidence for or against the following
conjectures:

• Well parametrized self-adaptation significantly speeds up optimization when
compared to well tuned constant mutation rates for many problems.

• Detecting good parameter sets for self-adaptive EAs is usually not significantly
harder than doing so for non self-adaptive EAs.

• Problem knowledge, e.g., shared properties or structural similarities of problem
classes, gives useful hints for selecting a self-adaptation mechanism.

Before these conjectures are detailed, we give an overview of existing parameter
tuning methods.



SPO Applied to Self-Adaptation for Binary-Coded EAs 5

3 Parameter Optimization Approaches

Modern search heuristics have proved to be very useful for solving complex real–
world optimization problems that cannot be tackled through classical optimization
techniques (Schwefel et al., 2003). Many of these search heuristics involve a set of
exogenous parameters, i.e., values are specified before the run is performed, that
affect their convergence properties. The population size in EA is a typical example
for an exogenous strategy parameter. The determination of an adequate population
size is crucial for many optimization problems. Increasing the population size from 10
to 50 while keeping the number of function evaluations constant might improve the
algorithm’s performance—whereas a further increase might result in a performance
decrease, if the number of function evaluations remains constant.

SPO is based on statistical design of experiments (DOE) which has its ori-
gins in agriculture and industry. However, DOE has to be adapted to the special
requirements of computer programs. For example, computer program are per se de-
terministic, thus a different concepts of randomness has to be considered. Law &
Kelton (2000) and Kleijnen (1987, 1997) demonstrated how to apply DOE in sim-
ulation. Simulation is related to optimization (simulation models equipped with an
objective function define a related optimization problem), therefore we can benefit
from simulation studies.

DOE related parameter studies were performed to analyze EA: Schaffer et al.
(1989) proposed a complete factorial design experiment, Feldt & Nordin (2000) use
statistical techniques for designing and analyzing experiments to evaluate the indi-
vidual and combined effects of genetic programming parameters. Myers & Hancock
(2001) presented an empirical modeling of genetic algorithms. François & Lavergne
(2001) demonstrate the applicability of generalized linear models to design evolu-
tionary algorithms. These approaches require up to 100,000 program runs, whereas
SPO is applicable even if a small amount of function evaluations are available only.

Because the search for useful parameter settings of algorithms itself is an opti-
mization problem, meta-algorithms have been proposed. Bäck (1996) and Kursawe
(1999) presented meta-algorithms for evolutionary algorithms. But these approaches
do not solve the original problem completely, because they require the determina-
tion of additional parameter setting of the meta-algorithm. Furthermore, we argue
that the experimenter’s skill plays an important role in this analysis. It cannot be
replaced by automatic “meta” rules.

SPO can also be run on auto-pilot without any user intervention. This conve-
nience cannot be obtained for free: The user gains limited insight into the working
mechanisms of the tuned algorithm and, which is even more severe, the validity and
thus the predictive power of the regression model might be quite poor.

The reader should note that our approach is related to the discipline of experi-
mental algorithmics, which offers methodologies for the design, implementation, and
performance analysis of computer programs for solving algorithmic problems (Deme-
trescu & Italiano, 2000; Moret, 2002). Further valueable approaches have been pro-
posed by McGeoch (1986), Barr & Hickman (1993), and Hooker (1996).

Design and analysis of computer experiments (DACE) as introduced in Sacks
et al. (1989) models the deterministic output of a computer experiment as the real-
ization of a stochastic process. The DACE approach focuses entirely on the correla-
tion structure of the errors and makes simplistic assumptions about the regressors. It
describes “how the function behaves,” whereas regression as used in classical DOE



6 Mike Preuss and Thomas Bartz-Beielstein

describes “what the function is” (Jones et al., 1998, p. 14). DACE requires other ex-
perimental designs than classical DOE, e.g., Latin hypercube designs (LHD) (McKay
et al., 1979).

We claim that it is beneficial to combine some of these well-established ideas
from DOE, DACE, and further statistical techniques to improve the acceptance
and quality of evolutionary algorithms.

4 Sequential Parameter Optimization Methodology

How can optimization practitioners determine if concepts developed in theory work
in practice? Hence, experiments are necessary. Experiment has a long tradition in
science. To analyze experimental data, statistical methods can be applied. It is not
a trivial task to answer the final question “Is algorithm A better than algorithm B?”
Results that are statistically significant are not automatically scientifically mean-
ingful.

Example 4.1 (Floor and ceiling effects). The statistical meaningful result “all
algorithms perform equally” can be scientifically meaningless, because the problem
instances are too hard for any algorithm. A similar effect occurs if the problem
instances are too easy. The resulting effects are known as floor or ceiling effects,
respectively. �

SPO is more than a simple combination of existing statistical approacches. It is
based on the new experimentalism, a development in the modern philosophy of
science, which considers that an experiment can have a life of its own. SPO provides
a statistical methodology to learn from experiments, where the experimenter should
distinguish between statistical significance and scientific meaning.

An optimization run is considered as an experiment. An optimal parameter set-
ting, or statistically speaking, an optimal algorithm design, depends on the problem
at hand as well as on the restrictions posed by the environment (i.e., time and hard-
ware constraints). Algorithm designs are usually either determined empirically or
set equal to widely used default values. SPO is a methodology for the experimental
analysis of optimization algorithms to determine improved algorithm designs and
to learn, how the algorithm works. The proposed technique employs computational
statistic methods to investigate the interactions among optimization problems, al-
gorithms, and environments.

An optimization practitioner is interested in robust solutions, i.e., solutions inde-
pendent from the random seeds that are used to generate the random numbers during
the optimization run. The proposed statistical methodology provides guidelines to
design robust algorithms under restrictions, such as a limited number of function
evaluations and processing units. These restrictions can be modeled by considering
the performance of the algorithm in terms of the (expected) best function value for
a limited number of function evaluations.

To justify the usefulness of our approach, we analyze the properties of several
algorithms from the viewpoint of a researcher who wants to develop and understand
self-adaptation mechanisms for evolutionary algorithms. SPO provides numerical
and graphical tools to test if the statistical results are really relevant or have been
caused by the experimental setup only. It is based on a framework that permits a



SPO Applied to Self-Adaptation for Binary-Coded EAs 7

delinearization of the complex steps from raw data to scientific hypotheses. Sub-
stantive scientific questions are broken down into several local hypotheses, that can
be tested experimentally. The optimization process can be regarded as a process
that enables learning. SPO consists of the twelve steps that are reported in Ta-
ble 1. These steps and the necessary statistical techniques will be presented in the
following. SPO has been applied on search heuristics in the following domains:

1. machine engineering: design of mold temperature control (Mehnen et al., 2005;
Weinert et al., 2004; Mehnen et al., 2004)

2. aerospace industry: airfoil design optimization (Bartz-Beielstein & Naujoks,
2004)

3. simulation and optimization: elevator group control (Bartz-Beielstein et al.,
2005c; Markon et al., 2006)

4. technical thermodynamics: nonsharp separation (Bartz-Beielstein et al., 2005b)
5. economy: agri-environmental policy-switchings (de Vegt, 2005)

Other fields of application are in fundamental research:

1. algorithm engineering: graph drawing (Tosic, 2006)
2. statistics: selection under uncertainty (optimal computational budget alloca-

tion) for PSO (Bartz-Beielstein et al., 2005a)
3. evolution strategies: threshold selection and step-size adaptation (Bartz-Beielstein,

2005)

Table 1: Sequential parameter optimization (SPO). This approach combines meth-
ods from computational statistics and exploratory data analysis to improve (tune)
the performance of direct search algorithms.

Step Action

(S-1) Preexperimental planning
(S-2) Scientific claim
(S-3) Statistical hypothesis
(S-4) Specification of the

(a) optimization problem
(b) constraints
(c) initialization method
(d) termination method
(e) algorithm (important factors)
(f) initial experimental design
(g) performance measure

(S-5) Experimentation
(S-6) Statistical modeling of data and prediction
(S-7) Evaluation and visualization
(S-8) Optimization
(S-9) Termination: If the obtained solution is good enough, or the maximum num-

ber of iterations has been reached, go to step (S-11)
(S-10) Design update and go to step (S-5)
(S-11) Rejection/acceptance of the statistical hypothesis
(S-12) Objective interpretation of the results from step (S-11)



8 Mike Preuss and Thomas Bartz-Beielstein

4. other evolutionary algorithms: genetic chromodynamics (Stoean et al., 2005)
5. computational intelligence: algorithmic chemistry (Bartz-Beielstein et al., 2005b)
6. particle swarm optimization: analysis und application (Bartz-Beielstein et al.,

2004a)
7. numerics: comparison and analysis of classical and modern optimization algo-

rithms (Bartz-Beielstein et al., 2004b)

Further projects, e.g., vehicle routing and door-assignment problems and the appli-
cation of methods from computational intelligence to problems from bioinformatics
are subject of current research. An SPO-toolbox is freely available under the follow-
ing link: http://www.springer.com/3-540-32026-1.

4.1 Tuning

In order to find an optimal algorithm design, or to tune the algorithm, it is necessary
to define a performance measure. Effectivity (robustness) and efficiency can guide
the choice of an adequate performance measure. Note that optimization practitioners
do not always choose the absolute best algorithm. Sometimes a robust algorithm or
an algorithm that provides insight into the structure of the optimization problem
is preferred. From the viewpoint of an experimenter, design variables (factors) are
the parameters that can be changed during an experiment. Generally, there are two
different types of factors that influence the behavior of an optimization algorithm:

• problem specific factors, e.g., the objective function
• algorithm specific factors, i.e., the population size or other exogenous parameters

We will consider experimental designs that comprise problem specific factors and
exogenous algorithm specific factors. Algorithm specific factors will be considered
first. Endogenous can be distinguished from exogenous parameters (Beyer & Schwe-
fel, 2002). The former are kept constant during the optimization run, whereas the
latter, e.g., standard deviations, are modified by the algorithms during the run. Con-
sider DA, the set of all parameterizations for one algorithm. An algorithm design
XA is a set of vectors, each representing one specific setting of the design variables
of an algorithm. A design can be specified by defining ranges of values for the de-
sign variables. A design point xa ∈ DA presents exactly one parameterization of an
algorithm. Note that a design can contain none, one, several or even infinitely many
design points. The optimal algorithm design is denoted as X∗A. The term “optimal
design” can refer to the best design point x∗a as well as the most informative design
points (Pukelsheim, 1993; Santner et al., 2003).

Let DP denote the set of all problem instances for one optimization problem.
Problem designs XP provide information related to the optimization problem, such
as the available resources (number of function evaluations) or the problem’s dimen-
sion.

An experimental design XE ∈ D consists of a problem design XP and an al-
gorithm design XA. The run of a stochastic search algorithm can be treated as an
experiment with a stochastic output Y (xa, xp), with xa ∈ DA and xp ∈ DP . If the
random seed is specified, the output would be deterministic. This case will not be
considered further, because it is not a common practice to specify the seed that is
used in an optimization run. Our goals of the experimental approach can be stated
as follows:



SPO Applied to Self-Adaptation for Binary-Coded EAs 9

(G-1) Efficiency. To find a design point x∗a ∈ DA that improves the performance of
an optimization algorithm for one specific problem design point xp ∈ DP .

(G-2) Robustness. To find a design point x∗a ∈ DA that improves the performance
of an optimization algorithm for several problem design points xp ∈ DP .

Performance can be measured in many ways, e.g., as the best or the average function
value for n runs. Statistical techniques to attain these goals will be presented next.

4.2 Stochastic Process Models as Extensions of Classical
Regression Models

The classical DOE approach consists of three steps: Screening, modeling, and opti-
mization. Each step requires different experimental designs. Linear regression mod-
els are central elements of the classical design of experiments approach (Draper &
Smith, 1998; Montgomery, 2001). We propose an approach that extends the classical
regression techniques, because the assumption of a linear model for the analysis of
computer programs and the implicit model assumption that observation errors are
independent of one another are highly speculative (Bartz-Beielstein, 2006). To keep
the number of experiments low, a sequential procedure has been developed. Our
approach relies on a stochastic process model, that will be presented next.

We consider each algorithm design with associated output as a realization of a
stochastic process. Kriging is an interpolation method to predict unknown values
of a stochastic process and can be applied to interpolate observations from com-
putationally expensive simulations. Our presentation follows concepts introduced
in Sacks et al. (1989), Jones et al. (1998), and Lophaven et al. (2002b).

Consider a set of m design points x = (x(1), . . . , x(m))T with x(i) ∈ Rd. In the
design and analysis of computer experiments (DACE) stochastic process model, a
deterministic function is evaluated at the m design points x. The vector of the m
responses is denoted as y = (y(1), . . . , y(m))T with y(i) ∈ R. The process model
proposed in Sacks et al. (1989) expresses the deterministic response y(x(i)) for a
d-dimensional input x(i) as a realization of a regression model F and a stochastic
process Z,

Y (x) = F(β, x) + Z(x). (1)

DACE Regression Models

We use q functions fj : Rd → R to define the regression model

F(β, x) =

qX
j=1

βjfj(x) = f(x)Tβ. (2)

Regression models with polynomials of orders 0, 1, and 2 have been used in our
experiments. Regression models with a constant term only, i.e., f1 = 1, have been
applied successfully to model the data and to predict new data points in the sequen-
tial approach.



10 Mike Preuss and Thomas Bartz-Beielstein

DACE Correlation Models

The random process Z(·) (Equation 1) is assumed to have mean zero and covariance
V (w, x) = σ2R(θ, w, x) with process variance σ2 and correlation model R(θ, w, x).
Consider an algorithm with d factors (parameters). Correlations of the form

R(θ, w, x) =

dY
j=1

Rj(θ, wj − xj)

will be used in our experiments. The correlation function should be chosen with re-
spect to the underlying process (Isaaks & Srivastava, 1989). Lophaven et al. (2002a)
discuss seven different models. The Gaussian correlation function is a well-known
example. It is defined as

GAUSS : Rj(θ, hj) = exp(−θjh
2
j ), (3)

with hj = wj − xj , and for θj > 0. The regression matrix R is the matrix with
elements

Rij = R(xi, xj) (4)

that represent the correlations between Z(xi) and Z(xj). The vector with correla-
tions between Z(xi) and a new design point Z(x) is

r(x) = (R(x1, x), . . . , R(xm, x)) . (5)

Large θj ’s indicate that variable j is active: function values at points in the vicinity
of a point are correlated with Y at that point, whereas small θj ’s indicate that
also distant data points influence the prediction at that point. The empirical best
unbiased linear predictor (EBLUP) can be shown to be

ŷ(x) = fT (x)β̂ + rT (x)R−1(y − F β̂), (6)

where

β̂ =
“
FTR−1F

”−1

FTR−1y (7)

is the generalized least-squares estimate of β in Equation 1, f(x) are the q regression
functions in Equation 2, and F represents the values of the regression functions in
the m design points.

Maximum likelihood estimation methods to estimate the parameters θj of the
correlation functions from Equation 3 are discussed in Lophaven et al. (2002a).
DACE methods provide an estimation of the prediction error on an untried point x,
the mean squared error (MSE) of the predictor

MSE(x) = E (ŷ(x)− y(x)) . (8)

The stochastic process model, which was introduced as an extension of the classical
regression model will be used in our experiments. Next, we have to decide how to
generate design points, i.e., which parameter settings should be used to test the
algorithm’s performance.



SPO Applied to Self-Adaptation for Binary-Coded EAs 11

Space Filling Designs and Expected Improvement

Often, designs that use sequential sampling are more efficient than designs with
fixed sample sizes. Therefore, we specify an initial design X

(0)
A ∈ D(0)

A first. Latin
hypercube sampling (LHS) was used to generate the initial algorithm designs. Con-
sider n number of levels being examined and d design variables. A Latin hypercube
is a matrix of n rows and d columns. The d columns contain the levels 1, 2, . . . , n,
randomly permuted, and the d columns are matched at random to form the Latin
hypercube. The resulting Latin hypercube designs are space-filling designs. McKay
et al. (1979) introduced LHDs for computer experiments, Santner et al. (2003) give
a comprehensive overview.

Information obtained in the first runs can be used for the determination of the
second design X

(1)
A in order to choose new design points sequentially and thus more

efficiently.
Sequential sampling approaches have been proposed for DACE. For example,

in Sacks et al. (1989) sequential sampling approaches were classified to the existing
meta-model. We will present a sequential approach that is based on the expected
improvement. In Santner et al. (2003, p. 178) a heuristic algorithm for unconstrained
global minimization problems is presented. Consider one problem design point xp.

Let y
(t)
min denote the smallest known minimum value after t runs of the algorithm,

y(x) be the algorithm’s response, i.e., the realization of Y (x) in Equation (1), and
let xa represent a specific design point from the algorithm design XA. Then the
improvement is defined as

I(xa) =


y
(t)
min − y(xa), y

(t)
min − y(xa) > 0

0, otherwise
(9)

for xa ∈ DA. As Y (·) is a random variable, its exact value is unknown. The goal is
to optimize its expectation, the so-called expected improvement . New design points,
which are added sequentially to the existing design, are attractive “if either there is
a high probability that their predicted output is below [minimization] the current
observed minimum and/or there is a large uncertainty in the predicted output.”
This leads to the expected improvement heuristic (Bartz-Beielstein, 2006). Based on
theorems from Schonlau (1997, p. 22) we implemented a program to estimate and
plot the main factor effects. Furthermore, three dimensional visualizations produced
with the DACE toolbox (Lophaven et al., 2002b) can be used to illustrate the
interaction between two design variables and the associated mean squared error of
the predictor.

Algorithm 1 describes the SPO in a formal manner. The selection of a suitable
problem instance is done in the pre-experimental planning phase to avoid floor and
ceiling effects (l.2). Latin hypercube sampling can be used to determine an initial set
of design points (l.3). After the algorithm has been run with these k initial parameter
settings (l.5), the DACE process model is used to discover promising design points
(l.10). Note that other sample statistics than the mean, e.g., the median, can be
used in l.6. The m points with the highest expected improvement are added to the
set of design points, where m should be small compared to s. The update rule for the
number of reevalutions r(t) (l.13-15) guarantees that the new best design point x

(t+1)
b

has been evaluated at least as many times as the previous best design point x
(t)
b .

Obviously, this is a very simple update rule and more elaborate rules are possible.
Other termination criteria exist besides the budget based termination (l.17).



12 Mike Preuss and Thomas Bartz-Beielstein

Algorithm 1 Sequential parameter optimization
1: procedure SPO(DA, DP ) /* Algorithm und problem design */
2: Select p ∈ DP and set t = 0 /* Select problem instance */

3: X
(t)
A = {x1, x2, . . . , xk} /* Sample k initial points, e.g., LHS */

4: repeat
5: yij = Yj(xi, p)∀xi ∈ X(t)

A and j = 1, . . . , r(t) /* Fitness evaluation */

6: Y
(t)
i =

Pr(t)

j=1 y
(t)
ij /r

(t) /* Sample statistic for the ith design point */
7: xb with b = arg mini(yi) /* Determine best point */
8: Y (x) = F(β, x) + Z(x) /* DACE model from Eq. 1 */
9: XS = {xk+1, . . . , xk+s} /* Generate s sample points, s� k */

10: y(xi), i = 1, . . . , k + s /* Predict fitness from the DACE model */
11: I(xi) for i = 1, . . . , s+ k /* Expected improvement (Eq. 9) */

12: X
(t+1)
A = X

(t)
A ∪ {xk+i}mi=1 /∈ X

(t)
A /* Add m promising points */

13: if x
(t)
b = x

(t+1)
b then

14: r(t+1) = 2r(t) /* Increase number of repeats */
15: end if
16: t = t+1 /* Increment iteration counter */
17: until Budget exhausted
18: end procedure

4.3 Experimental Reports

Surprisingly, despite around 40 years of empirical tradition, in EC a standardized
scheme for reporting experimental results never developed. The natural sciences, e.g.
physics, possess such schemes as de-facto standards. We argue that for both groups,
readers and writers, an improved report structure is beneficial: As with the com-
mon overall paper structure (introduction, conclusions, etc.), a standard provides
guidelines for readers, what to expect, and where. Writers are steadily reminded to
describe the important details needed to understand and possibly replicate their ex-
periments. For the structured documentation of experiments, we propose organizing
their presentation into 7 parts, as follows.

ER-1: Focus/Title
Briefly names the matter dealt with, the (possibly very general) objective,
preferably in one sentence.

ER-2: Pre-experimental planning
Reports the first—possibly explorative—program runs, leading to task and setup
(steps ER-3 and ER-4) . Decisions on used benchmark problems or performance
measures may often be influenced by the outcome of preliminary runs. This
may also include negative results, e.g. modifications to an algorithm that did
not work, or a test problem that turned out to be too hard, if they provide new
insight.

ER-3: Task
Concretizes the question in focus and states scientific and derived statistical hy-
potheses to test. Note that one scientific hypothesis may require several, some-
times hundreds of statistical hypotheses. In case of a purely explorative study,



SPO Applied to Self-Adaptation for Binary-Coded EAs 13

as with the first test of a new algorithm, statistical tests may be not applicable.
Still, the task should be formulated as precise as possible.

ER-4: Setup
Specifies problem design and algorithm design, containing fixed and variable
parameters and criteria of tackled problem, investigated algorithm and chosen
performance measuring. The information in this part should be sufficient to
replicate an experiment.

ER-5: Experimentation/Visualization
Gives raw or produced (filtered) data on the experimental outcome, additionally
provides basic visualizations where meaningful.

ER-6: Observations
Describes exceptions from the expected, or unusual patterns noticed, without
subjective assessment or explanation. As an example, it may be worthwile to
look at parameter interactions. Additional visualizations may help to clarify
what happens.

ER-7: Discussion
Decides about the hypotheses specified in step 4.3, and provides necessarily
subjective interpretations for the recorded observations.

This scheme is tightly linked to the 12 steps of experimentation suggested in
Bartz-Beielstein (2006) and depicted in Table 1, but on a slightly more abstract level.
The scientific and statistical hypothesis steps are treated together in part ER-3, and
the SPO core (parameter tuning) procedure, much of which may be automated, is
included in part ER-5. In our view, it is especially important to divide parts ER-6
and ER-7, to facilitate different conclusions drawn by others.

5 Self-Adaptation Mechanisms and Test Problems

In order to prepare a meaningful experiment, we want to take up the previously
cited warning words from Johnson (2002) and Eiben & Jelasity (2002) concerning
the proper selection of ingredients for a good setup and carefully select mechanisms
and problems to test.

5.1 Mechanisms: Self-Adaptive, Constant, Asymmetrical

Meyer-Nieberg & Beyer (2006), to be found in this volume, give an extensive ac-
count of the history and current state of adaptation mechanisms in evolutionary
algorithms. However, in this work, we consider only self-adaptive mechanisms for bi-
nary represented (often combinatorial) problems. Self-adaptiveness basically means
to introduce unbiased deviations into control parameters and let the algorithm chose
the value that apparently works best. Another possibility would be to use a rule set
as in the previously stated 1/5th rule by Rechenberg (1973), which grants adapta-
tion, but not self-adaptation. The mechanism suggested by Greenwood (2003) is of
this type. Others aim for establishing a feedback loop between the probability of
using one operator and the fitness advancement this operator is responsible for, e.g.
Julstrom (1997); Igel & Kreutz (2003); Thierens (2005).



14 Mike Preuss and Thomas Bartz-Beielstein

Thus, whereas several adaptation techniques have been proposed for binary rep-
resentations, few are purely self-adaptive. The mechanisms proposed in Bäck &
Schütz (1995) and Smith (2001) have this property, though they origin from very
different sources. The former is a variant of a self-adaptation scheme designed for
real-valued search spaces; the latter has been shaped especially for binary search
spaces and to overcome premature convergence. Mutation of the mutation rate in
Bäck & Schütz (1995) is accomplished according to the formula:

p′k =
1

1 + 1−pk
pk

exp(−γNk(0, 1))
, (10)

where Nk(0, 1)) is a standard normally distributed random variable. p′k stands for
the new, and pk the current mutation rate, which must be prevented from be-
coming 0 as this is a fixpoint of the iteration. The approach of Smith (2001) is
completely different; it employs a discrete, small number q of mutation rates, one
of which is selected according to the innovation rate z, so that the probability for
alteration in one generation respects pa = z · (q − 1)/q. The q values are given as
pm ∈ {0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1} and thus un-
balanced in the interval [0, 1]. We employ a different set to facilitate comparison
with the first mechanism that produces balanced mutation rates. Thereby, the differ-
ences are reduced to continuity or discreteness with and without causal relationship
between new and old values (the second mechanism is stateless). In the following
experiment, we also set q to ten, with pm ∈ {0.001, 0.01, 0.05, 0.1, 0.3, 0.7, 0.9, 0.95,
0.99, 0.999}.

Depending on the treated problem, it sometimes pays to use asymmetric mu-
tation, that is, different mutation rates for ones and zeroes, as has been shown
e.g. for certain instances of the Subset Sum problem by Jelasity (1997). In Jelasity
et al. (2002) a meta-algorithm—itself an EA—was used to learn good mutation rate
pairs. In this work, we also want to enable comparison between constant and self-
adaptive asymmetric mutation rates by simply extending the two named symmetric
self-adaptive mechanisms to two independently adapted mutation rates in the fash-
ion of the asymmetric constant rate operator. It shall not be concealed that recent
theoretical investigations also deal with asymmetric mutation operators, e.g. Jansen
& Sudholt (2005), even though their notion of asymmetry is slightly different.

5.2 Problems and Expectations

We chose a set of six test problems that maybe divided into three pairs, according to
similar properties. Our expectation is that shared problem attributes lead to com-
parable performance and parametrization of algorithms. However, we are currently
not able to express problem similarity quantitatively. Thus, our experimental study
may be seen as a first explorative attempt in this direction.

wP-PEAKS and SUFSAMP

wP-PEAKS stands for weighted P-PEAKS generator, a modification of the original
problem by Jong et al. (1997), which employed random N -bit strings to represent
the location of P peaks in search space. A small/large number of peaks results
in weakly/strongly epistatic problems. Originally, each peak represented a global



SPO Applied to Self-Adaptation for Binary-Coded EAs 15

optimum. We employ a modified version (Giacobini et al. (2006)) by adding weights
wi ∈ R+ with only w1 = 1.0 and w[2...P ] < 1.0, thereby requiring the optimization
algorithm to find the one peak bearing the global optimum instead of just any peak.
In our experiments, P and N were 100, and wi ∈ [0.9, 0.99] for local optima.

The SUFSAMP problem has been introduced by Jansen et al. (2005) as test for
the fraction of neighborhoods actually visited by an EA when building the offspring
generation. The key point is that only one of the direct neighbours, the one that
provides the highest fitness gain, leads towards the global optimum. Thus, it is
essential to perform sufficient sampling (high selection pressure) to maintain the
chance of moving in the right direction. We used an instance with bitlength 30 for
our tests, this is just beyond the point where the problem is solved easily.

Both problems are by far not similar, but still somewhat related because they
are extreme in requiring global and local exploration. In case of the wP-PEAKS,
the whole search space is to cover to find the best peak, in SUFSAMP the local
neighborhood must be covered well to get hold of the path to the global optimum.

MMDP and COUNTSAT

The Massively Multimodal Deceptive Problem (MMDP) as suggested by Goldberg
et al. (1992) is a multiple of a 6 bit deceptive subproblem which has its maximum
for 6 or 0 bits set, its minimum for 1 or 5 bits set, and a deceptive local peak at 3
set bits. The fitness of a solution is simply the sum over all subproblems. From the
mode of construction, it becomes clear that mutation is deliberately mislead here
whether recombination is essential. We use an instance with 40 blocks of 6 bit, each.

The COUNTSAT problem is an instance of the MAXSAT problem suggested by
Droste et al. (2000). Its fitness only depends on the number of set bits, all set to 1
in the global optimum. Our test instance is of length 40.

These two problems share the property that their fitness values are invariant to
permutations of the whole (COUNTSAT) or separate parts (MMDP) of the genome.
Consequently, Giacobini et al. (2006) empirically demonstrate the general aptitude
of self-adaptive mutation mechansisms on these problems.

Number Partitioning and Subset Sum

The (Min) Number Partitioning Problem (MNP) requires arranging a set of long
numbers, here 35 with 10 digits length each, into two groups adding up to the same
sum. Fitness of a solution candidate is measured as the remaining difference in sums,
meaning this is a minimization problem. It was treated e.g. in Berretta & Moscato
(1999); Berretta et al. (2004) by means of a memetic algorithm. We used a randomly
determined instance for each optimization run.

The Subset Sum problem is related to the MNP in that from a given collection
of positive integers, a subset must be chosen to achieve a predetermined sum. This
time, the target sum does not directly depend on the overall sum of the given
numbers but can be any attainable number. Additionally, all solution candidates
approaching it from above are counted as infeasible. We use the same setup as in
Jelasity et al. (2002), made up of 100 numbers from within [0, 2100] and a density
of 0.1, thus constructing the target sum from 10 of the original numbers. For each
optimization run, an instance of this form is randomly created.

As stated, both are set selection problems. However, the expected fraction of
ones in a good solution is different: Around 0.5 for the MNP, and 0.1 for the Subset



16 Mike Preuss and Thomas Bartz-Beielstein

Sum. Therefore, me may expect asymmetric mutation rates (self-adpative or not)
to perform well on the latter, and symmetric on the former.

6 Assessment via Parameter Optimization

Within this section, we perform and discuss an SPO-based experiment to collect
evidence for or against the claims made in §2. However, allowing for multiple starts
during an optimization run on one and simultaneously employing algorithms with
enormous differences in speed and quality on the other hand complicates assessing
performance by means of standard measures like the MBF (mean best fitness), AES
(average evaluations to solution), or SR (success rate). This is also confirmed by
other views, e.g. Rardin & Uzsoy (2001), who express that dealing with aggregated
measures, especially for multistart algorithms, requires some creativity. Additionally,
we want to investigate the “tunability” of an algorithm-problem pair, for which no
common measures exist. We therefore resort to introducing the needed, prior to
describing the experiment itself.

6.1 Adequate Measures

LHS Average and Best

For assessing tunability of an algorithm towards a problem, the best performance
found by a parameter optimization method shall be related to a base performance
that is easily obtained without, or by manual tuning. Additionally, comparison to a
simple hillclimber makes sense, as the more complex EAs should be able to attain
better solutions than these to claim any importance.

The performance achieved by manual tuning surely depends on the expertise of
the experimenter. As a substitute for this hardly quantifiable measure we propose to
employ the best performance contained in an LHS of size 10×#parameters, which
in our case resembles the result of an initial SPO step. In contrast to the best, the
average performance of all LHS design points is an approximation of the expected
quality of a random configuration. Moreover, the variance of this quantity hints to
low large the differences are. Large variances may indicate two things at once: a)
There are very bad configurations the user must avoid, and b) there exist very good
configurations that cover only a small amount of the parameter space and are thus
hard to find. Low variances, however, mean that the algorithm is neither tunable
nor mis-configurable. In consequence, we suggest to observe the measures fhc, the
MBF of a standard hillclimber, fLHSa, the average fitness of an LHS design, σLHSa,
its standard deviation, fLHSb, fitness of the best configuration of an LHS, and fSPO,
the best performance achieved when tuning is finished.

AEB: Average Evaluations to Best

The AES needs a definition of success and is thus a problem-centric measure. If the
specified success rarely occurs, its meaning is questionable. Lowering the quality of
what counts as success may lead from floor to ceiling effect if performance differences
of the algorithms in scope are large and the meaning of success is not carefully



SPO Applied to Self-Adaptation for Binary-Coded EAs 17

balanced. We turn this measure into an algorithm-centric one by taking the average
of the number of evaluations needed to obtain the peak performance in each single
optimization run. Stated differently, this is the average time an algorithm continues
to make progress. This quantity still implies dependency of the time horizon of the
experiment (the total number of evaluations allowed), but in contrast to the AES, it
is always defined. The AEB alone is of limited value, as fast converging algorithms
are prefered, regardless of the quality of their final best solution. However, it is useful
for defining the following measure.

RFA: Ressource Favoring Aggregate

Assessing robustness and efficiency of an optimization algorithm at the same time
is difficult, especially in situations where the optimum is seldomly reached, or even
worse, is unknown. Common fitness measures as the MBF, AES, or SR, apply only
to one of the two aspects. Combined measures as the success performance suggested
by Auger & Hansen (2005) require definition of success, as well. Two possibilities
remain to resolve this dilemma: Multicriterial assessment, or aggregation. We choose
the latter and use a robustness favoring aggregate (RFA), defined as:

RFA = ∆f ·
˛̨̨̨
∆f

AEB

˛̨̨̨
, ∆f =


MBF − fhc : minimization
fhc −MBF : maximization

(11)

The RFA consists of fitness progress, relative to the hillclimber, multiplied by the
linear relative progress rate, which depends on the average number of evaluations
to reach the best fitness value (AEB). It weights robustness higher than efficiency,
but takes both into account. Using solely the linear relative progress rate is no
alternative; it rates fast algorithms achieving poor quality equal to slow algorithms
able to attain good quality. If an algorithm performs better than the hillclimber
(in quality), its RFA is negative, positive otherwise. Note that this is only one of a
virtually unlimited number of ways to define an aggregate.

6.2 Experiment

Apply SPO to EAs including different self-adaptive mechanisms and fixed
rate mutation, compare tunability and achievable quality.

Pre-experimental planning:
The originally intended performance measure (MBF) has been exchanged with the
RFA fitness measure, due to first experiences with certain EA configurations on
the MMDP problem, namely with asymmetric mutation operators. RFA provides a
gradient even between the best found configurations that always solved the problem
to optimality before, even for increased problem sizes (100 or more 6-bit groups).

Task:
Based on the aims named in §2, we investigate two scientific claims:

1. Tuned self-adaptative mutation allows for better performance than tuned con-
stant mutation for many problems.

2. The tuning process is not significantly harder for self-adaptive mutation.



18 Mike Preuss and Thomas Bartz-Beielstein

Table 2: Algorithm design for the six EA variants. Only asymmetric mutation oper-
ators need a second mutation rate and its initialization range (∗). The learning rate
(∗∗) is only applicable to adaptive mutation operators, hence not used for variants
with constant mutation rates. Algorithm designs thus have 7, 8, 9, or 10 parameters.

Parameter name N/R Min Max Parameter name N/R Min Max

Population size µ N 1 500 Maximum age κ N 1 50
Selection pressure λ/µ R+ 1 10 Recombination prob. pr R 0 1
Stagnation restart rs N 5 30 Learning rate∗∗ τ R 0.0 1.0

Mutation rate pm R+ 10−3 1.0 Mut. rate range r(pm) R 0 0.5

Mutation rate 2∗ pm2 R+ 10−3 1.0 Mut. rate 2 range∗ r(pm2) R 0 0.5

Additionally, the third aim shall be achieved by searching for patterns in the
virtual relation between problem class properties and performance results. We per-
form statistical hypothesis testing by employing bootstrap permutation tests with
the commonly used significance level of 5%. For accepting the first hypothesis, we
demand a significant difference between the fastest self-adaptive and the fastest non-
adaptive EA variant for at least half of the tested problems. The second claim is
more difficult to test; in absence of a well-defined measure, we have to resort to just
expressing the impression obtained from evaluating data and visualizations.

Setup:
The optimization algorithm used is a panmictic (µ, κ, λ)-ES with different mutation
operators and 2-point crossover for recombination. As κ is one of the factors the
parameter optimization is allowed to change, the degree of elitism (complete for
κ ≥ max(#generations), none for kappa = 1), that is the time any individual may
survive within the population, maybe varied. As common for binary representations,
mutation works with bit flip probabilities (rates). We employ 6 different modes of
performing mutation, namely constant rates, the self-adaptative method of Schütz
(1996), and the self-adaptive method of Smith (2001), each in turn symmetrical and
asymmetrical (2 mutation rates, one for 0s and 1s, respectively). Table 2 shows the
algorithm design for all variants. Note that not every parameter applies to all mu-
tation operators. Parameter ranges are chosen relatively freehanded, bounded only
by ressource limits (µ, λ) or to enable a reasonable gradient (rs , κ) in configu-
ration qualities. Two features of the used algorithm variants may appear unusual,
namely the recombination probability, allowing for gradually switching recombina-
tion on and off, and the stagnation restart, enabling restarts after a given number
of generations without improvement.

SPO parameters are kept at default values where possible. However, the total
budget of allowed runs always is a design choice. We set this to 1000 as compromise
between effectivity and operability. The initial LHS size is set to 10 ·#parameters
—following practical experience, also suggested by Schonlau et al. (1998)— with 4
repeats per configuration, the maximum number of repeats to 64. Testing is per-
formed at siginificance level 5 %.



SPO Applied to Self-Adaptation for Binary-Coded EAs 19

number of evaluations

be
st

 c
on

fig
ur

at
io

n 
qu

al
ity

 (
R

F
A

 fi
tn

es
s)

400 600 800 1000

−
1.

0e
−

07
−

6.
0e

−
08

●●

● ●

●

●

● ●

problem:wP−PEAKS

400 600 800 1000

−
8

−
6

−
4

−
2

0

●

●

● ●

●
● ●

problem:SUFSAMP

constant, symmetric
constant, asymmetric

Schütz, symmetric
Schütz, asymmetric

Smith, symmetric
Smith, asymmetric

●

●

Fig. 1: SPO performance on weighted P-PEAKS (left) and SUFSAMP (right) prob-
lems. Points denote the best configurations found up to the corresponding number of
evaluations (runs), using all repeats available after 1000 runs to reduce noise. Except
the last one, all points stand for changed configurations regarded as better by SPO.
The ones tried inbetween are estimated as worse than the current best. The graphs
start on the left with the best configuration of the initial LHS (fLHSb).

The tackled problems are the 6 named in §5. For each problem and mutation
operator variant (6× 6 = 36), we perform a separate SPO run (1000 algorithm runs
each).

Experimentation/Visualization:
The development of the SPO runs on either of the 6 problems is presented in figures
1, 2, and 4. Note that for the depicted configurations, we use information gained
after a SPO is finished, which is more than that available at runtime, due to pos-
sible re-evaluations (additional runs) of good configurations. Restriction to runtime
information leads to heavily increased noise that would render the figures almost
useless. Numerical results for the weighted P-PEAKS, Subset Sum, and MMDP
problems are given in table 4, the last column giving error probabilities for rejecting
the hypothesis that fLHSb and fSPO are equal (p-values), based on all measures of
this configuration obtained during the SPO run.

Observations:
As is evident from figures 1 to 4, there are two different behaviors of the six algo-
rithm variants on on the considered test problems: Either a clear distinction into two
groups of three can be recognized (SUFSAMP, COUNTSAT, and MMDP), or the
curves are much more intermingled. A closer look at the constituents of these groups
reveals that the separating feature is the symmetry type. For the COUNTSAT and
MMDP problems, the better group is formed by all three asymmetric mutation vari-
ants, whereas all three symmetric variants are performing better on the SUFSAMP
problem.



20 Mike Preuss and Thomas Bartz-Beielstein

number of evaluations

be
st

 c
on

fig
ur

at
io

n 
qu

al
ity

 (
R

F
A

 fi
tn

es
s)

400 600 800 1000

−
2.

5e
−

08
−

1.
5e

−
08

−
5.

0e
−

09

●● ● ● ● ●

●

● ●

problem:COUNTSAT

400 600 800 1000

−
12

−
10

−
8

−
6

−
4

−
2

0 ● ●

●

●

●

● ●

problem:MMDP

constant, symmetric
constant, asymmetric

Schütz, symmetric
Schütz, asymmetric

Smith, symmetric
Smith, asymmetric

●

●

Fig. 2: SPO performance on COUNTSAT (left) and MMDP (right) problems. Re-
marks of fig. 1 apply here as well.

For the wP-PEAKS problem, we obtain two suprising obvservations:

1. At both ends of the performance spectrum, we find the self-adaptation variant
of Smith, the symmetric being the best, the asymmetric the worst.

2. Ordering of the symmetric/asymmetric variants of one type is not the same for
all, for the variants using the self-adaptation of Schütz, it is reversed.

As the SUFSAMP problem was constructed to favor enumerating the local neigh-
borhood, it can be expected that SPO adjusts the selection pressure to high values.
A look at the parameter distributions of the best variant, figure 3, reveals that SPO
surprisingly circumvented doing so by more frequently using higher maximum age
values; at the same time, the mean stagnation restart time was also increased.

The number partitioning problem results suprisingly indicate constant asym-
metric mutation as the best and self-adaptation after Schütz as the worst variant,
the latter being obviously very hard to improve. The tuning process on this as well
as on the Subset Sum problem (figure 4), looks much more disturbed than e.g. on
the MMDP, containing many huge jumps.

Discussion:
A look at table 4 reveals that for the chosen, discrete test problems, averaged per-
formances and standard deviations are most often very similar. In contrast to the
situation usually found for real-valued test problems treated with SPO, the noise
level here makes further improvement very difficult. It obviously cannot be easily
lowered by increasing the number of repeats as the best configurations typically
already reached the imposed maximum of 64 runs. This hardship is probably due
to the discrete value set of the objective functions which hinder achieving narrow
result distributions. It does not render SPO useless, but its performance seems to
be limited tighter than for the real-valued case.



SPO Applied to Self-Adaptation for Binary-Coded EAs 21

1=
be

st
 g

ro
up

, 3
=

w
or

st
 g

ro
up

0 10 20 30 40 50

1

2

3

●

●

●

maximum age

0 100200300400500

1

2

3

●

●

●

population size

2 4 6 8 10

1

2

3

●

●

●

selection pressure

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

●

●

●

learning rate
0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

●

●

●

mutation rate

0.0 0.1 0.2 0.3 0.4 0.5

1

2

3

●

●

●

mut.rate range

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

●

●

●

recombination prob.

5 10 15 20 25 30

1

2

3

●

●

●

stagnation restart

Fig. 3: Parameter distributions of configurations chosen by SPO (including the
initial LHS) on the SUFSAMP problem with symmetric self-adaptation after Schütz,
separated into three equally sized groups according to measured fitness.

number of evaluations

be
st

 c
on

fig
ur

at
io

n 
qu

al
ity

 (
R

F
A

 fi
tn

es
s)

400 600 800 1000

−
7 

 e
+

10
−

5 
 e

+
10

−
3 

 e
+

10 ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ●

problem:Number Partitioning

400 600 800 1000

−
1.

0e
+

49
−

6.
0e

+
48

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

problem:Subset Sum

constant, symmetric
constant, asymmetric

Schütz, symmetric
Schütz, asymmetric

Smith, symmetric
Smith, asymmetric

●

●

Fig. 4: SPO performance on Number Partitioning (left) and Subset Sum (right).

Another unexpected conclusion is that asymmetric mutation operators often
perform very well on functions usually treated with symmetric constant mutation
rates. COUNTSAT and MMDP are best approximated with asymmetric mutation
operators, the former with the constant, the latter with the self-adaptive variant by
Schütz. Table 3 lists the 2 best variants for each problem and the p-Values obtained
from the comparison. Concerning aim 1 of §2, we cannot verify the original claim.
There are problems for which self-adaptation is very useful, and there are some
where it is not. Only in 2 of the six test cases, they have significant advantage.



22 Mike Preuss and Thomas Bartz-Beielstein

Table 3: Bootstrap Permutation hypothesis tests between performances of the best
constant and the best self-adaptive variant for each problem. The tests use all best
configuration runs available after SPO is finished, this is in most cases 64.

Problem Best Variant Second Variant p-Value Significant?

wP-PEAKS Smith, symmetric constant, symmetric 0.125 No

SUFSAMP Schütz, symmetric constant, symmetric 2e-05 Yes

COUNTSAT constant, asymmetric Schütz, asymmetric 0.261 No

MMDP Schütz, asymmetric constant, asymmetric 0.008 Yes

Number Part. constant, asymmetric Schütz, symmetric 0.489 No

Subset Sum constant, asymmetric Schütz, asymmetric 0.439 No

Concerning the effort needed for tuning constant and self-adaptive mutation
operators, we cannot account for a clear difference, thereby adhering to the original
claim that tuning efforts are similar. However, there is neither statistical evidence
in favor nor against this statement.

Nevertheless, when comparing the final best configurations to the average LHS
results, it becomes clear that without any tuning, algorithms may easily be miscon-
figured, leading to performance values much worse than that of a simple EA-based
hillclimber. Moreover, the best point of an initial LHS appears as a reasonable es-
timate for the quality achievable by tuning. Within this experiment, the LHS best
fitness fLHSb has always been superior to that of the (single-start) hillclimber.

Is it possible to derive any connection between the properties of the tackled
problems and the success of different self-adaptation variants? We can detect simi-
larities in the progression of the SPO runs, e.g. between COUNTSAT and MMDP,
and Number Partitioning and Subset Sum, like the huge jumps found in case of
the latter; these probably indicate result distributions much more complex than for
the former. However, it appears difficult to foresee if self-adaptation enhanced EAs
will perform better or worse. In case of the MMDP, recombination is likely to pre-
serve existing good blocks that may be optimized individually so that mutation rate
schedules, once learned, can be successfully reaplied. But without further tests, this
is rather speculation.

7 Conclusions

We motivated and explained the SPO procedure and, as a test case, applied it to
self-adaptive EA variants for binary coded problems. This study revealed why self-
adaptation is rarely applied for these problem types: It is hard to predict whether
it will increase performance, and which variant to choose. However, if properly
parametrized, it can be significantly faster than well tuned standard mutation oper-
ators. Modeling only a rough problem-mechanism interaction would require a much
more thouroughly conducted study than presented here.

Surprisingly, specialized and seldomly used operators like the (constant and self-
adaptive) asymmetric mutation performed very well when parametrized accordingly.
This probably leads the way to superior operators still to develop—with or without
self-adaptation. Mutation rate learning seems to provide rather limited potential.



T
a
b
le

4
:

B
es

t
fo

u
n

d
co

n
fi

gu
ra

ti
o

n
pe

rf
o

rm
a

n
ce

s,
m

ea
n

va
lu

e
o

f
L

H
S

,
be

st
o

f
L

H
S

,
a

n
d

be
st

a
ft

er
S

P
O

is
fi

n
is

h
ed

,
o

n
th

e
w

ei
gh

te
d

P
-

P
E

A
K

S
,

S
u

bs
et

S
u

m
,

a
n

d
M

M
D

P
p

ro
bl

em
s.

B
es

id
es

th
e

R
F

A
fi

tn
es

s
m

ea
su

re
u

se
d

w
it

h
in

S
P

O
(t

o
m

in
im

iz
e,

re
la

ti
ve

to
h

il
lc

li
m

be
r)

,
w

e
a

ls
o

gi
ve

th
e

M
B

F
a

n
d

A
E

B
pe

rf
o

rm
a

n
ce

m
ea

su
re

s.
A

E
B

va
lu

es
a

re
m

ea
n

t
a

s
m

u
lt

ip
le

s
o

f
1
0
3
.

N
o

te
th

a
t

w
P

-P
E

A
K

S
a

n
d

M
M

D
P

(4
0

)
a

re
to

be
m

a
xi

m
iz

ed
w

it
h

o
p

ti
m

a
l

va
lu

es
a

t
1
.0

a
n

d
4
0
.0

,
re

sp
ec

ti
ve

ly
,

a
n

d
S

u
bs

et
S

u
m

is
to

be
m

in
im

iz
ed

to
0
.0

.

H
il
lc

li
m

b
er

,
f h

c
L

H
S

m
ea

n
,
f L

H
S

a
L

H
S

b
es

t,
f L

H
S

b
S
P

O
b

es
t,
f S

P
O

A
d
a
p
ta

ti
o
n

M
B

F
A

E
B

R
F
A

st
d
d
ev

M
B

F
A

E
B

R
F
A

st
d
d
ev

M
B

F
A

E
B

R
F
A

st
d
d
ev

M
B

F
A

E
B

p
-v

a
l

P
ro

b
le

m
:

w
P

-P
E

A
K

S

n
o
n
e,

sy
m

0
.9

4
5

<
5

4
.7

e-
0
7

9
.5

e-
0
7

0
.8

5
2

6
1
.9

-6
.2

e-
0
8

6
.7

e-
0
8

0
.9

8
4

5
2
.1

-8
.1

e-
0
8

8
.2

e-
0
8

0
.9

9
3

5
0
.4

0
.2

9

n
o
n
e,

a
sy

m
0
.9

4
5

<
5

4
.2

e-
0
7

8
.8

e-
0
7

0
.8

5
1

6
3
.4

-2
.9

e-
0
8

8
.3

e-
0
8

0
.9

6
4

4
8
.8

-6
.1

e-
0
8

2
.5

e-
0
8

0
.9

8
3

3
0
.4

0
.0

0

S
ch

ü
tz

,
sy

m
0
.9

4
5

<
5

5
.0

e-
0
7

9
.1

e-
0
7

0
.8

4
4

6
0
.5

-5
.7

e-
0
8

3
.1

e-
0
8

0
.9

9
5

5
7
.3

-6
.9

e-
0
8

1
.1

e-
0
7

0
.9

8
0

4
6
.2

0
.4

6

S
ch

ü
tz

,
a
sy

m
0
.9

4
5

<
5

4
.1

e-
0
7

1
.1

e-
0
6

0
.8

5
8

6
2
.0

-7
.4

e-
0
8

8
.2

e-
0
8

0
.9

8
4

4
8
.3

-8
.2

-0
8

4
.4

e-
0
8

0
.9

8
4

2
4
.2

0
.3

5

S
m

it
h
,

sy
m

0
.9

4
5

<
5

4
.9

e-
0
7

1
.0

e-
0
6

0
.8

4
6

5
8
.5

-7
.9

e-
0
8

1
.2

e-
0
7

0
.9

9
0

5
4
.2

-1
.1

e-
0
7

1
.6

e-
0
7

0
.9

8
7

4
6
.1

0
.1

2

S
m

it
h
,

a
sy

m
0
.9

4
5

<
5

4
.0

e-
0
7

8
.6

e-
0
7

0
.8

5
8

6
3
.1

-5
.4

e-
0
8

3
.4

e-
0
8

0
.9

8
4

4
1
.6

-5
.4

e-
0
8

3
.4

e-
0
8

0
.9

8
4

4
1
.6

0
.5

0

P
ro

b
le

m
:

S
u
b
se

t
S
u
m

n
o
n
e,

sy
m

5
.5

e+
2
6

3
6
.0

3
.4

e+
5
9

3
.9

e+
6
0

4
.7

e+
3
1

5
4
.7

-7
.3

e+
4
8

1
.2

e+
4
9

1
.6

e+
2
6

4
9
.3

-7
.8

e+
4
8

6
.8

e+
4
8

8
.1

e+
2
5

4
9
.2

0
.4

4

n
o
n
e,

a
sy

m
5
.5

e+
2
6

3
6
.0

1
.4

e+
5
9

6
.4

e+
5
9

3
.2

e+
3
1

5
2
.5

-7
.9

e+
4
8

1
.0

e+
4
9

7
.7

e+
2
5

5
5
.6

-1
.1

e+
4
9

1
.6

e+
4
9

7
.7

e+
2
5

3
8
.0

0
.1

8

S
ch

ü
tz

,
sy

m
5
.5

e+
2
6

3
6
.0

1
.9

e+
5
9

1
.1

e+
6
0

5
.0

e+
3
1

5
3
.9

-4
.9

e+
4
8

6
.6

e+
4
8

2
.0

e+
2
6

5
1
.7

-7
.7

e+
4
8

5
.6

e+
4
8

4
.3

e+
2
5

5
1
.2

0
.0

4

S
ch

ü
tz

,
a
sy

m
5
.5

e+
2
6

3
6
.0

2
.5

e+
5
9

1
.9

e+
6
0

2
.9

e+
3
1

4
9
.4

-1
.0

e+
4
9

1
.2

e+
4
9

4
.2

e+
2
5

5
1
.0

-1
.1

e+
4
9

1
.4

e+
4
9

7
.1

e+
2
5

4
8
.1

0
.4

2

S
m

it
h
,

sy
m

5
.5

e+
2
6

3
6
.0

2
.6

e+
5
9

1
.7

e+
6
0

5
.0

e+
3
1

5
5
.7

-5
.1

e+
4
8

5
.2

e+
4
8

1
.3

e+
2
6

5
8
.3

-7
.0

e+
4
8

9
.0

e+
4
8

8
.8

e+
2
5

5
2
.6

0
.2

1

S
m

it
h
,

a
sy

m
5
.5

e+
2
6

3
6
.0

3
.2

e+
5
9

4
.5

e+
6
0

2
.8

e+
3
1

5
1
.1

-9
.7

e+
4
8

1
.3

e+
4
9

7
.3

e+
2
5

5
2
.5

-9
.7

e+
4
8

1
.3

e+
4
9

7
.3

e+
2
5

5
2
.5

0
.5

0

P
ro

b
le

m
:

M
M

D
P

n
o
n
e,

sy
m

2
3
.8

0
5
8
.1

-1
.1

e-
0
3

1
.4

e-
0
3

2
9
.3

6
2
.0

-4
.3

e-
0
3

2
.3

e-
0
3

3
7
.0

5
4
.3

-4
.3

e-
0
3

4
.3

e-
0
4

3
7
.8

4
5
.7

0
.4

8

n
o
n
e,

a
sy

m
2
3
.8

0
5
8
.1

-0
.2

2
5

0
.7

8
3

3
9
.9

7
.4

-4
.6

0
4
.8

3
4
0

<
5

-7
.1

3
1
1
.7

4
0

<
5

0
.2

3

S
ch

ü
tz

,
sy

m
2
3
.8

0
5
8
.1

-1
.3

e-
0
3

1
.7

e-
0
3

3
0
.0

6
3
.0

-4
.3

e-
0
3

2
.8

e-
0
3

3
6
.0

4
8
.3

-4
.6

e-
0
3

2
.3

e-
0
3

3
7
.6

5
4
.3

0
.3

7

S
ch

ü
tz

,
a
sy

m
2
3
.8

0
5
8
.1

-0
.1

5
5

0
.2

7
4

3
9
.8

8
.1

-2
.2

8
0
.8

9
4

4
0

<
5

-1
2
.0

1
0
.9

4
0

<
5

0
.0

0

S
m

it
h
,

sy
m

2
3
.8

0
5
8
.1

-1
.4

e-
0
3

1
.8

e-
0
3

3
0
.0

6
2
.1

-4
.1

e-
0
3

2
.4

e-
0
3

3
7
.3

5
9
.6

-4
.6

e-
0
3

2
.1

e-
0
3

3
6
.8

4
6
.1

0
.1

8

S
m

it
h
,

a
sy

m
2
3
.8

0
5
8
.1

-0
.1

4
3

0
.2

3
4

3
9
.8

7
.4

-1
.5

6
0
.7

7
4

4
0

<
5

-8
.4

1
6
.5

9
4
0

<
5

0
.0

0



24 Mike Preuss and Thomas Bartz-Beielstein

The invented performance measures, RFA and AEB, were found capable of lead-
ing the meta-search into the right direction. Unfortunately, the absence of well-
defined measures for the tuning process itself currently prevents effectively using
SPO for answering questions concerning the tunability of an algorithm-problem
combination. This problem we want to tackle in future work.

Recapitulating, SPO works on binary problems, and proves to be a valuable
tool for experimental analysis. However, there is room for improvement, first and
foremost by taking measures to reduce the variances within the results of a single
configuration.

Acknowledgment

The research leading to this paper has been supported by the DFG (Deutsche
Forschungsgemeinschaft) as project no. 252441, “Mehrkriterielle Struktur- und Pa-
rameteroptimierung verfahrenstechnischer Prozesse mit evolutionären Algorithmen
am Beispiel gewinnorientierter unscharfer destillativer Trennprozesse”. T. Bartz–
Beielstein’s research was supported by the DFG as part of the collaborative research
center “Computational Intelligence” (531).

The autors want to thank Thomas Jansen for providing his code of the SUF-
SAMP problem, and Silja Meyer-Nieberg and Nikolaus Hansen for sharing their
opinions with us.

References

Auger, A. & Hansen, N. (2005). Performance Evaluation of an Advanced Lo-
cal Search Evolutionary Algorithm. In B. McKay & others (Eds.), Proc. 2005
Congress on Evolutionary Computation (CEC’05) Piscataway NJ: IEEE Press.

Bäck, T. (1992). Self-adaptation in genetic algorithms. In F. Varela & P. Bourgine
(Eds.), Toward a Practice of Autonomous Systems: proceedings of the first Euro-
pean conference on Artificial Life (pp. 263–271).: MIT Press.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York NY:
Oxford University Press.

Bäck, T. & Schütz, M. (1995). Evolution strategies for mixed-integer optimization
of optical multilayer systems. In J. R. McDonnell, R. G. Reynolds, & D. B.
Fogel (Eds.), Evolutionary Programming IV: Proceedings of the Fourth Annual
Conference on Evolutionary Programming (pp. 33–51).: MIT Press, Cambridge,
MA.

Barr, R. & Hickman, B. (1993). Reporting computational experiments with parallel
algorithms: Issues, measures, and experts’ opinions. ORSA Journal on Comput-
ing, 5(1), 2–18.

Bartz-Beielstein, T. (2005). Evolution strategies and threshold selection. In M. J.
Blesa Aguilera, C. Blum, A. Roli, & M. Sampels (Eds.), Proceedings Second Inter-
national Workshop Hybrid Metaheuristics (HM’05), volume 3636 of Lecture Notes
in Computer Science (pp. 104–115). Berlin, Heidelberg, New York: Springer.

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary Computation—
The New Experimentalism. Berlin, Heidelberg, New York: Springer.



SPO Applied to Self-Adaptation for Binary-Coded EAs 25

Bartz-Beielstein, T., Blum, D., & Branke, J. (2005a). Particle swarm optimization
and sequential sampling in noisy environments. In R. Hartl & K. Doerner (Eds.),
Proceedings 6th Metaheuristics International Conference (MIC2005) (pp. 89–94).
Vienna, Austria.

Bartz-Beielstein, T., de Vegt, M., Parsopoulos, K. E., & Vrahatis, M. N. (2004a). De-
signing Particle Swarm Optimization with Regression Trees. Interner Bericht des
Sonderforschungsbereichs 531 Computational Intelligence CI–173/04, Universität
Dortmund, Germany.

Bartz-Beielstein, T., Lasarczyk, C., & Preuß, M. (2005b). Sequential parameter
optimization. In B. McKay & others (Eds.), Proceedings 2005 Congress on Evo-
lutionary Computation (CEC’05), Edinburgh, Scotland, volume 1 (pp. 773–780).
Piscataway NJ: IEEE Press.

Bartz-Beielstein, T. & Naujoks, B. (2004). Tuning Multicriteria Evolutionary Algo-
rithms for Airfoil Design Optimization. Interner Bericht des Sonderforschungs-
bereichs 531 Computational Intelligence CI–159/04, Universität Dortmund, Ger-
many.

Bartz-Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2004b). Design and
analysis of optimization algorithms using computational statistics. Applied Nu-
merical Analysis & Computational Mathematics (ANACM), 1(2), 413–433.

Bartz-Beielstein, T., Preuß, M., & Markon, S. (2005c). Validation and optimization
of an elevator simulation model with modern search heuristics. In T. Ibaraki, K.
Nonobe, & M. Yagiura (Eds.), Metaheuristics: Progress as Real Problem Solvers,
Operations Research/Computer Science Interfaces (pp. 109–128). Berlin, Heidel-
berg, New York: Springer.

Berretta, R., Cotta, C., & Moscato, P. (2004). Enhancing the performance of
memetic algorithms by using a matching-based recombination algorithm. In Meta-
heuristics: computer decision-making (pp. 65–90). Norwell, MA: Kluwer Academic
Publishers.

Berretta, R. & Moscato, P. (1999). The number partitioning problem: an open
challenge for evolutionary computation? In New ideas in optimization (pp. 261–
278). Maidenhead, UK: McGraw-Hill Ltd.

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies—A comprehensive in-
troduction. Natural Computing, 1, 3–52.

de Vegt, M. (2005). Einfluss verschiedener Parametrisierungen auf die Dynamik
des Partikel-Schwarm-Verfahrens: Eine empirische Analyse. Interner Bericht der
Systems Analysis Research Group SYS–3/05, Universität Dortmund, Fachbereich
Informatik, Germany.

Demetrescu, C. & Italiano, G. F. (2000). What do we learn from experimental
algorithmics? In MFCS ’00: Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science (pp. 36–51). Berlin, Heidelberg,
New York: Springer.

Draper, N. R. & Smith, H. (1998). Applied Regression Analysis. New York NY:
Wiley, 3rd edition.

Droste, S., Jansen, T., & Wegener, I. (2000). A natural and simple function which
is hard for all evolutionary algorithms. In IEEE International Conference on
Industrial Electronics, Control, and Instrumentation (IECON 2000) (pp. 2704–
2709). Piscataway, NJ: IEEE Press.



26 Mike Preuss and Thomas Bartz-Beielstein

Eiben, A. & Jelasity, M. (2002). A critical note on experimental research method-
ology in EC. In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC’2002) (pp. 582–587). Piscataway NJ: IEEE.

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2),
124–141.

Eiben, A. E. & Smith, J. E. (2003). Introduction to Evolutionary Computing. Berlin,
Heidelberg, New York: Springer.

Feldt, R. & Nordin, P. (2000). Using factorial experiments to evaluate the effect of
genetic programming parameters. In R. Poli & others (Eds.), Genetic Program-
ming, Proceedings of EuroGP’2000, volume 1802 of Lecture Notes in Computer
Science (pp. 271–282). Berlin, Heidelberg, New York: Springer.

Fogel, D. B. (1992). Evolving Artificial Intelligence. PhD thesis, University of
California, San Diego.

François, O. & Lavergne, C. (2001). Design of evolutionary algorithms—a statistical
perspective. IEEE Transactions on Evolutionary Computation, 5(2), 129–148.

Giacobini, M., Preuß, M., & Tomassini, M. (2006). Effects of scale-free and small-
world topologies on binary coded self-adaptive CEA. In 6th European Conf. Evo-
lutionary Computation in Combinatorial Optimization, Proc. (EvoCOP’06), Lec-
ture Notes in Computer Science (pp. 86–98). Berlin: Springer.

Goldberg, D. E., Deb, K., & Horn, J. (1992). Massively multimodality, deception
and genetic algorithms. In R. Männer & B. Manderick (Eds.), Parallel Prob.
Solving from Nature II (pp. 37–46).: North-Holland.

Greenwood, G. W. (2003). Adapting mutations in genetic algorithms using gene flow
principles. In R. Sarker & others (Eds.), Proc. 2003 Congress on Evolutionary
Computation (CEC’03), Canberra (pp. 1392–1397). Piscataway NJ: IEEE Press.

Hansen, N. & Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2), 159–195.

Hansen, N., Ostermeier, A., & Gawelczyk, A. (1995). On the adaptation of arbi-
trary normal mutation distributions in evolution strategies: The generating set
adaptation. In L. J. Eshelman (Ed.), Proc. 6th Int’l Conf. on Genetic Algorithms
(pp. 57–64). San Francisco, CA: Morgan Kaufmann Publishers, Inc.

Hooker, J. (1996). Testing heuristics: We have it all wrong. Journal of Heuristics,
1(1), 33–42.

Igel, C. & Kreutz, M. (2003). Operator adaptation in evolutionary computation
and its application to structure optimization of neural networks. Neurocomputing,
55(1-2), 347–361.

Isaaks, E. H. & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics.
Oxford, U.K.: Oxford University Press.

Jansen, T., De Jong, K. A., & Wegener, I. (2005). On the choice of the offspring
population size in evolutionary algorithms. Evolutionary Computation, 13(4),
413–440.

Jansen, T. & Sudholt, D. (2005). Design and analysis of an asymmetric mutation
operator. In B. McKay & others (Eds.), Proc. 2005 Congress on Evolutionary
Computation (CEC’05), Edinburgh, Scotland, volume 1 (pp. 190–197). Piscataway
NJ: IEEE Press.

Jelasity, M. (1997). A wave analysis of the subset sum problem. In T. Bäck
(Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms
(ICGA97) (pp. 89–96). San Francisco, CA: Morgan Kaufmann.



SPO Applied to Self-Adaptation for Binary-Coded EAs 27

Jelasity, M., Preuß, M., & Eiben, A. E. (2002). Operator learning for a problem class
in a distributed peer-to-peer environment. In J. J. M. Guervós, P. Adamidis, H.-
G. Beyer, J. L. Fernández-Villacañas, & H.-P. Schwefel (Eds.), Parallel Problem
Solving from Nature – PPSN VII, Proc. Seventh Int’l Conf., Granada (pp. 172–
183). Berlin: Springer.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of al-
gorithms. In M. H. Goldwasser, D. S. Johnson, & C. C. McGeoch (Eds.), Data
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS
Implementation Challenges (pp. 215–250). Providence: American Mathematical
Society.

Jones, D., Schonlau, M., & Welch, W. (1998). Efficient global optimization of ex-
pensive black-box functions. Journal of Global Optimization, 13, 455–492.

Jong, K. A. D., Potter, M. A., & Spears, W. M. (1997). Using problem generators
to explore the effects of epistasis. In T. Bäck (Ed.), Proceedings of the Seventh
ICGA (pp. 338–345).: Morgan Kaufmann.

Julstrom, B. A. (1997). Adaptive operator probabilities in a genetic algorithm that
applies three operators. In SAC ’97: Proceedings of the 1997 ACM symposium on
Applied computing (pp. 233–238). New York, NY: ACM Press.

Kleijnen, J. P. C. (1987). Statistical Tools for Simulation Practitioners. New
York NY: Marcel Dekker.

Kleijnen, J. P. C. (1997). Experimental design for sensitivity analysis, optimization,
and validation of simulation models. In J. Banks (Ed.), Handbook of Simulation.
New York NY: Wiley.

Kursawe, F. (1999). Grundlegende empirische Untersuchungen der Parameter von
Evolutionsstrategien – Metastrategien. Dissertation, Fachbereich Informatik, Uni-
versität Dortmund, Germany.

Law, A. & Kelton, W. (2000). Simulation Modeling and Analysis. New York NY:
McGraw-Hill, 3rd edition.

Lophaven, S., Nielsen, H., & Søndergaard, J. (2002a). Aspects of the Matlab Tool-
box DACE. Technical Report IMM-REP-2002-13, Informatics and Mathematical
Modelling, Technical University of Denmark, Copenhagen, Denmark.

Lophaven, S., Nielsen, H., & Søndergaard, J. (2002b). DACE—A Matlab Kriging
Toolbox. Technical Report IMM-REP-2002-12, Informatics and Mathematical
Modelling, Technical University of Denmark, Copenhagen, Denmark.

Markon, S., Kita, H., Kise, H., & Bartz-Beielstein, T., Eds. (2006). Modern Super-
visory and Optimal Control with Applications in the Control of Passenger Traffic
Systems in Buildings. Berlin, Heidelberg, New York: Springer.

McGeoch, C. C. (1986). Experimental Analysis of Algorithms. PhD thesis, Carnegie
Mellon University, Pittsburgh PA.

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code. Technometrics, 21(2), 239–245.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Henkenjohann, N. (2004). Sys-
tematic analyses of multi-objective evolutionary algorithms applied to real-world
problems using statistical design of experiments. In R. Teti (Ed.), Proceedings
Fourth International Seminar Intelligent Computation in Manufacturing Engi-
neering (CIRP ICME’04), volume 4 (pp. 171–178). Naples, Italy.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Lasarczyk, C. W. G. (2005).
Multiobjective evolutionary design of mold temperature control using DACE



28 Mike Preuss and Thomas Bartz-Beielstein

for parameter optimization. In H. Pfützner & E. Leiss (Eds.), Proceedings
Twelfth International Symposium Interdisciplinary Electromagnetics, Mechanics,
and Biomedical Problems (ISEM 2005), volume L11-1 (pp. 464–465). Vienna,
Austria: Vienna Magnetics Group Reports.

Meyer-Nieberg, S. & Beyer, H.-G. (2006). Self-adaptation in evolutionary algo-
rithms. In F. Lobo, C. Lima, & Z. Michalewicz (Eds.), Parameter Setting in
Evolutionary Algorithms, Studies in Computational Intelligence. Berlin Heidel-
berg New York: Springer.

Montgomery, D. C. (2001). Design and Analysis of Experiments. New York NY:
Wiley, 5th edition.

Moret, B. M. & Shapiro, H. D. (2001). Algorithms and experiments: The new (and
old) methodology. Journal of Universal Computer Science, 7(5), 434–446.

Moret, B. M. E. (2002). Towards a discipline of experimental algorithmics. In M.
Goldwasser, D. Johnson, & C. McGeoch (Eds.), Data Structures, Near Neighbor
Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
DIMACS Monographs 59 (pp. 197–213). Providence RI: American Mathematical
Society.

Myers, R. & Hancock, E. (2001). Empirical modelling of genetic algorithms. Evolu-
tionary Computation, 9(4), 461–493.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (2000). Linkage problem, distribution
estimation, and bayesian networks. Evolutionary Computation, 8(3), 311–340.

Pukelsheim, F. (1993). Optimal Design of Experiments. New York NY: Wiley.
Ramos, I. C. O., Goldbarg, M. C., Goldbarg, E. G., & Neto, A. D. D. (2005). Logistic

Regression for Parameter Tuning on an Evolutionary Algorithm. In B. McKay
& others (Eds.), Proc. 2005 Congress on Evolutionary Computation (CEC’05),
volume 2 (pp. 1061–1068). Piscataway NJ: IEEE Press.

Rardin, R. L. & Uzsoy, R. (2001). Experimental evaluation of heuristic optimization
algorithms: A tutorial. J. Heuristics, 7(3), 261–304.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog Verlag.

Rechenberg, I. (1978). Evolutionsstrategien. In B. Schneider & U. Ranft (Eds.),
Simulationsmethoden in der Medizin und Biologie (pp. 83–114). Berlin: Springer-
Verlag.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis
of computer experiments. Statistical Science, 4(4), 409–435.

Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The Design and Analysis of
Computer Experiments. Berlin, Heidelberg, New York: Springer.

Schaffer, J. D., Caruana, R. A., Eshelman, L., & Das, R. (1989). A study of con-
trol parameters affecting online performance of genetic algorithms for function
optimization. In J. D. Schaffer (Ed.), Proceedings of the Third International Con-
ference on Genetic Algorithms (pp. 51–60). San Mateo CA: Morgan Kaufman.

Schonlau, M. (1997). Computer Experiments and Global Optimization. PhD thesis,
University of Waterloo, Ontario, Canada.

Schonlau, M., Welch, W. J., & Jones, R. R. (1998). Global versus local search in
constrained optimization of computer models. In New Development and Appli-
cations in Experimental Design, number 34 in IMS Lecture Notes (pp. 11–25).
Institute of Mathematical Statistics, Beachwood, OH.



SPO Applied to Self-Adaptation for Binary-Coded EAs 29

Schütz, M. (1996). Eine Evolutionsstrategie für gemischt-ganzzahlige Optimierprob-
leme mit variabler Dimension. Interner Bericht der Systems Analysis Research
Group SYS–1/96, Universität Dortmund, Fachbereich Informatik.

Schwefel, H.-P. (1974). Adaptive Mechanismen in der biologischen Evolution und ihr
Einfluß auf die Evolutionsgeschwindigkeit. Technical report, Technical University
of Berlin. Abschlußbericht zum DFG-Vorhaben Re 215/2.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chichester:
Wiley.

Schwefel, H.-P., Wegener, I., & Weinert, K., Eds. (2003). Advances in Computational
Intelligence—Theory and Practice. Berlin, Heidelberg, New York: Springer.

Smith, J. & Fogarty, T. C. (1996). Self-adaptation of mutation rates in a steady
state genetic algorithm. In Proceedings of 1996 IEEE Int’l Conf. on Evolutionary
Computation (ICEC ’96) (pp. 318–323).: IEEE Press, NY.

Smith, J. E. (2001). Modelling gas with self adaptive mutation rates. In L. Spector
& et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001) (pp. 599–606). San Francisco, California, USA: Morgan
Kaufmann.

Stoean, C., Preuss, M., Gorunescu, R., & Dumitrescu, D. (2005). Elitist Genera-
tional Genetic Chromodynamics - a New Radii-Based Evolutionary Algorithm for
Multimodal Optimization. In B. McKay & others (Eds.), Proc. 2005 Congress
on Evolutionary Computation (CEC’05), volume 2 (pp. 1839 – 1846). Piscataway
NJ: IEEE Press.

Stone, C. & Smith, J. E. (2002). Strategy parameter variety in self-adaptation
of mutation rates. In W. B. Langdon & et al. (Eds.), GECCO (pp. 586–593).:
Morgan Kaufmann.

Thierens, D. (2005). An adaptive pursuit strategy for allocating operator prob-
abilities. In GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation (pp. 1539–1546). New York, NY: ACM Press.

Tosic, M. (2006). Evolutionäre Kreuzungsminimierung. Diploma thesis, University
of Dortmund, Germany.

Weinert, K., Mehnen, J., Michelitsch, T., Schmitt, K., & Bartz-Beielstein, T. (2004).
A multiobjective approach to optimize temperature control systems of moulding
tools. Production Engineering Research and Development, Annals of the German
Academic Society for Production Engineering, XI(1), 77–80.

Whitley, D., Rana, S. B., Dzubera, J., & Mathias, K. E. (1996). Evaluating evolu-
tionary algorithms. Artificial Intelligence, 85(1-2), 245–276.

Wolpert, D. & Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82.


