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1 Problem Description

Precipitation is a key parameter in the water cycle and plays an important
role in both weather and climate. Nevertheless, an accurate assessment
of the Spatio-temporal variability of rainfall is severely limited [1]. The
traditional approach to determine the spatial distribution of rainfall is
to use a dense network of rain gauge stations over the study area [2, 3].
However, in developing countries, hard to access areas and even over the
ocean this rain gauge network can be sparse or non-existent. The use of
rainfall estimation algorithms on satellite imagery to generate Satellite
Rainfall Estimates (SRE) has helped to partially solve this problem,
as satellites provide imagery at high temporal and spatial resolution.
The SREs are algorithm-based precipitation datasets. These algorithms
use information collected by infrared (IR) sensors aboard geostationary
(GEO) satellites and passive or active microwave sensors aboard low-earth
orbit (LEO) satellites. It is worth to mention that the SREs are estima-
tes of the rainfall constructed with indirect measurements. Therefore,
SREs may be used incorrectly if a validation process is not carried out [4].
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Several SRE have been recently developed such as the Multi-source
Weighted Ensemble Precipitation (MSWEP) [5], the Climate Prediction
Center Morphing technique product (CMORPH) [6], the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural
Networks-Climate Data Record (PERSIANN-CDR) [8], the Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Ana-
lysis [9], and the Climate Hazards group Infrared Precipitation with
Stations dataset (CHIRPS) [10] among others.

Zambrano-Bigiarini et al. [1], evaluated the temporal and spatial per-
formance of the above mentioned SREs over Chile in a monthly scale.
The authors concluded that despite continuous improvement on most
SRE products, different types of discrepancies between SREs and ground
observations might be reduced by using local observations to calibrate the
satellite estimates. Following these results we propose a bias correction
for the SREs using regression methods to correct the satellite estimate
error for the Imperial river basin in Chile. The study area has a rain
gauge network of 13 station which record the real rainfall value. We
model the SRE against the ground station measurements using Gaussian
process and Bayesian regression methods. The regression will be carried
out using yearly and seasonal time frames to find out which applies better
for the error correction. The obtained models will be analysed to discover
which method better fits the area of study and the error characteristics
will be evaluate to find possible patterns. Additionally it is of our interest
to investigate how the two different regression methods perform in this
task.

1.1 Study Area

The Imperial river basin is a chilean catchment located in the ninth region
named Araucania, one of the fifteen regions of Chile. The Imperial basin
has an area of 12.763 Km? with 540599 inhabitants and a river length of
about 230 kilometres. Fig. 1 shows the location of the basin together
with the location of the 13 rainfall gauge stations it contains.

According to the General Water Direction of Chile (DGA), this basin
presents two climate types. A tempered warm rainy climate with a medi-
terranean influence in the center and low sectors. On the other hand, the
highest areas present a tempered cold rainy climate with mediterranean
influence. Both climates record a mean on annual precipitation of about
1245 mm and 1850 mm respectively.
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Figure 1: Imperial river basin located in Chile. The image show the area of study
and the location of the 13 gauge stations used for this work.

The Imperial basin presents a pluvial hydrological regime. In other words,
the water resource comes mainly for the rainfall. This characteristic is
related to the low snow accumulation associated with the relative small
altitude in the Andean mountain range on its latitude [11].

1.2 Data Description

The selected rainfall dataset covers the period from January 2003 up to
December 2015 on a daily basis. The data is observed across 13 rain
gauge stations dispersed across the area of study as seen is Fig. 1. This
result in a total of 4748 data points for each station. The collected
information is organised in 13 data frames, one for each station. All data
frames contain the following data:

e The date on which the measurement was taken.

e The precipitation value in millimetres (mm) measured by the rain
gauge (observed values).

e The SRE precipitation value in mm yearly recorded for the specific
station area (SRE_annual).

e The SRE precipitation value in mm seasonally recorded for the
specific station area (SRE_ seasonal).
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Table 1: Summary of the available rain gauge and SRE information for station 7.

observed SRE annual SRE seasonal

Min. : 0.000 Min. : 0.000 Min. : 0.000

1st Qu.: 0.000  1st Qu.: 0.000  1st Qu.: 0.000

Median : 0.000 Median : 0.000 Median : 0.000

Mean : 2.489 Mean : 3.081 Mean : 2.933

3rd Qu.: 0.000 3rd Qu.: 3.082 3rd Qu.: 2.034

Max. :99.000 Max. :77.818 Max. :108.237
NA’s 4 NA’s :3

Y UL i W N~

The rain gauge measurements are used as the real precipitation value and
the models will use it as its dependent variable. The SRE information is
available in two formats annual and seasonal. The seasons are a quarterly
subdivision of the year corresponding to December - February, March -
May, June - August, and September - November. For each station the
SRE which showed more closeness to the observed rainfall values on that
season was selected. This means that a year of seasonal data consists
of a mixture of several SREs. On the other hand, the SRE annual
data covers the whole year using only one satellite measurement, in this
case all the annual data comes from the SRE PERSIANN-CDR. It is
good to mention again that these satellites not necessarily represent an
accurate reading of the studied area and the error in the estimates is still
considerable.

Table 1 shows the summary of the data for station 7 as enumerated by
the map in Fig 1. It can be seen that the majority of the data points are
close to zero.

The SREs data is obtained from the public data set of the center for
hydrometeorology and remote sensing (CHRS). The data from the ground
stations are taken from the Chile center of climate science and resilience
(CR). Included in the data there were four missing values all of which
happened on the same days across all stations. We assumed this was due
to a non-recurrent error on the SRE and omitted the missing data points
from the analysis.
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2 Gaussian Process

Gaussian process regression, also know as kriging, is an interpolation
method that works by placing a prior distribution on an unknown function.
This function is evaluated at the input data points X = {z;}? ; and
response observations Y = {y;}_; are collected. These observations are
used to update the prior distribution into a posterior distribution by
means of bayesian inference. In this sense, kriging assumes the observed
points come from some multivariate Gaussian distribution and are related
between them by the kernel function. The kernel function used in our
study is given by

K(z,2') = exp(= ) (vilws — &™) (1)

The obtained posterior distribution distribution of y is given by a Gaussian
process:
ylX,y ~ N(m(x),s*(x)) (2)

Where m(z) is the maximum a posteriori probability at x and s?(z) is
the estimations mean squared error.

2.1 Cluster Kriging

One of the major problems of Kriging is its high time and space complexity
for large datasets. To help with this issue we divided the data set into
smaller not overlapping clusters. For each cluster a Kriging model is built.
A global posterior model is obtained by a weighted linear combination of
the models as suggested by [13]. The global posterior is defined then as:

y|X,1/NN(Zwimi(QT%ZwiS?(x)) (3)

i=1
Where m; and s; represent the mean and variance of the model in the i—th
cluster. The weights w; in the equation were calculated by minimizing
the variance of the process [13].

w; = SZQ(x)/ZSZZ(x) (4)
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3 Bayesian Regression

The essential of the Bayesian methods is their use of probability for
quantifying uncertainty in inferences based on statistical analysis [15].
Bayesian regression follow the Bayes’ rule to make inferences from the
data. Let y represent the observed precipitation values, x the SRE and 6 a
sequence of unknown parameters. We can infer the posterior distribution
in terms of the likelihood and prior knowledge as shown in Eq. 5.

p(0ly) < p(y|0)p(0) ()

Given the nature of the data, we choose to use a logarithmic transforma-
tion on the observed values to allow the posterior to be sampled from a
normal distribution. In these terms the likelihood p(y|0) is defined as:

log(y +1) ~ N(u,0) (6)

The prior distributions for the parameters u and ¢ are assumed to be
normally distributed since not much previous information is known.

4 Experiments

The experiments were executed using SPOT [12] for the Gaussian process
regression and rstan [14] for the Bayesian regression.

Two regression models were generated for each method, one using the
SRE_ annual data and other using the SRE_ seasonal data. For each case
the first twelve years of data were used as the training set and the last
year was used as the validation set. The goodness-of-fit measures used to
evaluate the models performance are the root mean square error (RMSE)
and the Kling-Gupta efficiency (KGE). KGE is a goodness-of-fit measure
obtained through the decomposition of the squared mean error [16]. This
decomposition facilitates the analysis of the different components of the
model: The correlation (r), the bias (£), and the relative variability in
the simulated and observed values («). All three components have their
optima at unity. The KGE range from oo to 1 and its value is defined as
shown in Eq. 7. The closer to 1 the more accurate the model is

KGE=1—+/(r—12+(a—1)2+ (8 — 1) (7)
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For the Gaussian process regression the kernel terms v and p from Eq. 1
were determined using the maximum likelihood method. The terms values
are updated in every SPOT iteration. After some tests this approach
was deemed to deliver better results than with static « or p values.

To implement the cluster kriging the SRE__annual data set was divided
into 20 clusters using the K-means method. The regression was run 10
times for each station. Each run had a different random seed to proof
the stability of the system.

Since the SRE_ seasonal data was already divided into subgroups, i.e.
the seasons, the cluster kriging was not implemented here. In this case
the analysis was also run 10 times for each station with different random
seeds each.

The Bayesian regression was implemented with a logarithmic transforma-
tion on the response variable with the form:

In(ly+1)|z,0 ~ N(a+ B*z,0) (8)

Uninformative proper priors are used for the parameters «, 8 and o since
no additional information is previously known.

a~ N(0,5), B~ N(0,5), o ~ cauchy(0.001, 10) (9)

The sampling of the posterior distribution of y is done using Hamilto-
nian Monte Carlo sampling. A total of 4 chains were generated for the
posterior. After checking that all the chains converged and were accurate
representations of the posterior distribution the number of iterations for
each chain was set at 10000 including 2000 warmup iterations.

Before comparing the models we need to define a baseline against which
to compare the models with. Since our goal is to approximate the SRE
to the observed rain gauge values as much as possible, a model will be
good when its RMSE and KGE values are better than those on the raw
data. For example, for the annual model the baseline RMSE will be the
RMSE between the station observed and SRE annual values without
any model.
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Figure 2: Boxplot of the RMSE and KGE values between the fitted annual Gaussian
model response and the real rain gauge values respectively. The values are
taken for all runs across all stations. The baseline RMSE and KGE values
are depicted as diamonds. The results are stable between runs, yet the
model had no improvement with respect to the baseline values.

4.1 Results Gaussian Process

The annual Gaussian process regression was done using the cluster kriging
method. The RMSE and KGE fitness measures were computed for all
stations in all 10 runs. The results indicated that the model was stable
since there is no considerable difference between the different runs results.
However, the model did not bring any improvement to the baseline SRE
values. Fig. 2 illustrates this. The RMSE between the model fitted values
and the real observed values for all runs across all stations is plotted
against the baseline RMSE values, depicted in the image as diamonds.
Every station shows a worse RMSE as that of the Baseline. The same is
the case with the KGE, in all stations the baseline value is better than
the model fitted values.
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Figure 3: CDF of the validation set observed values of station 6. The Solid line
indicate the CDF for the validation set observed values. The dashed line
shows the annual Gaussian model predicted values. The dotted line are the
validation set SRE__annual values. It can be seen that the model tends to
underestimate the precipitation. The model predicted values and the
SRE_ annual values also fail to approximate the rain gauge maximum value.

The model doesn’t seem to fit the data well but for completeness and to
understand better the annual data behaviour we also analyse the model
response on the validation set. As was expected based on the results
on the training set ,the predicted model response across stations was
steadily performing worse than the baseline SRE_annual. To illustrate
the divergence between (1) the predicted values, (2) the observed values
and (3) the SRE_annual values, we compare the three measurements
cumulative distribution functions (CFD). Fig. 3 shows the CDFs of the
three measurements for station 6 as an example. It was observed that
the predicted values tend to underestimate the real precipitation before
being truncated at a lower maximum value than the observed values.

Apart from the model fitted and predicted values, the model uncer-
tainty was also explored. The standard deviation of the fitted values
has a maximum value of 6.326e~°! while for the predicted values it has
a maximum of 4.404e~%2. This uncertainty values are well inside the
tolerance limits for rainfall and thus the model uncertainty is not an issue.

The Gaussian process seasonal regression showed a considerable impro-
vement in terms of RMSE and KGE fitness. The stability of the model
runs was also improved with almost no identifiable difference between
the different runs. For the training set Fig. 4 shows the fitted model
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Figure 4: RMSE and KGE for the seasonal Gaussian model fitted values for one
season across all stations. The baseline RMSE and KGE are depicted for
comparison. For the most cases the model fitted values RMSE improved
the baseline measurements and approximated the train set observed values
better than the SRE season data.

values RMSE and KGE for all stations for one season. Again the baseline
RMSE and KGE values are illustrated as triangles in the figure. It can
be seen that in almost all cases the model fitted values approximated
better the station observed values than the SRE_season values did. It
muss be mentioned that this behaviour was not stable for all seasons in
terms of RMSE. There were some seasons that performed poorly against
the baseline RMSE values. However, the KGE values was for all stations
and all seasons always better than the baseline.

Since our main use for the fitted model values is on retrospective ap-
plications where the stations real values are always available, we will
analyse more closely the model results on the training set. The training
set observed values CDF for one season of station 2 can be seen on
Fig. 5. The behaviour observed in the figure is replicated in the other
stations. Here it can be seen that the model fitted values CDF follows the
observed values closely despite the difference in RMSE previously noted.
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Figure 5: CDF of the training set observed values for station 2 in one season. The
Solid line indicates the CDF for the observed values. The dotted line are
the values for the validation set satellite measurements. Here the dashed
line indicating the seasonal Gaussian model fitted values is not visible due
to it overlapping the observed values in spite of the worse RMSE
performance.

This performance improvement was also observed on the validation set
where the model predicted values were able to predict the whole range of
precipitation, contrary to the case observed in Fig. 3.

Evaluated on the training set the standard deviation of the fitted values
had a maximum value of 8.444e~2. However, on the validation set the
predicted values had a maximum deviation of up to 1.840. This value
is worse than what we expected but still inside the tolerance limits for
precipitation values.

4.2 Bayesian regression

The converge of all the chains in the Bayesian regression was controlled
using three different criteria: The effective sample size (ESS), Rhat, and
the Monte Carlo standard error (MCSE).

ESS gives insight to the autocorrelation within chains. A large value
indicates there are enough independent samples in a chain. The Rhat
criteria checks that the chains have converged to a common distribution
by measuring the variance within and between chains. If the chains are
not converging then its value will be greater than one. MCSE measures
the uncertainty associated with the Monte Carlo approximation and has
zero as its ideal value.
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Figure 6: RMSE and KGE measurements of the Bayesian annual regression fitted
values. The baseline fitness measurements are also included for comparison.
The model performed worse for both fitness measurements. However, it
improved in a small scale the KGE Gaussian process annual regression
performance.

During the execution of the Hamiltonian Monte Carlo on all models there
was no evidence to assume that the chains were not converging or that the
Monte Carlo samples were not representative of the posterior distribution.

As with the Gaussian process regression we start by generating and
analysing the model using the SRE__annual data. The model follows
close in behaviour and improves in a small scale the Gaussian process
annual results KGE measures. Fig. 6 shows the RMSE and KGE
behaviour of the model against the baseline values for all stations. Here
the model RMSE and KGE where computed using the mean of the 4
chains converged results.
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Figure 7: CDF of the validation set observed values for station 6. The solid line
indicates the observed values CDF. The dotted line are the SRE__annual
values. The dashed line are the annual Bayesian model predicted values.
The model fails to predict non-zero values and is truncated on a lower
precipitation value. This is due to the predicted posterior having its density
centred at zero.

Again the CDF of the model predicted values was examined to find
differences between the Bayes and Gaussian process regression on data
forecasting. Fig. 7 shows the CDF of the observed, predicted and
SRE_ annual values on the validation set for station 6. The divergence
of the model from the real data is clear. Since the posterior distribution
of the model predicted values has most of its density around zero, it fails
to predict non-zero values and has a maximum predicted precipitation
value of only 4 mm.

Following the same criteria as exposed in the annual analysis, the con-
vergence and representativeness of the chains for the seasonal regression
was confirmed.

As was already seen on the Gaussian process regression analysis, the mo-
del behaviour across seasons changes. This implies that at some seasons
the model fitted RMSE outperforms the baseline RMSE values. However,
for all seasons the model fitted KGE was worse than the baseline in all
stations, as seen in Fig. 8. This means that overall the model was not
doing better that the SRE_ season data.

Fig. 9 shows the divergence of the fitted values of the seasonal Bayes
regression against the observed values on the training set. In the figure
it can again be seen how the model fails to fit precipitation values not
close to zero.
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Figure 8: RMSE and KGE of the fitted seasonal bayesian model values for one season
across all stations. The baseline RMSE and KGE are also showed for
comparison. Even though some stations showed an improved performance
on the fitted RMSE values, the KGE performance was consistently worse.

5 Conclusions

The aim of this work was to implement and test a bias correction method
for satellite rainfall estimates on the Imperial basin in Chile. This was
encouraged by the low accuracy SREs can have under some space and
time conditions. We tested two regression methods on two SRE data .
The first SRE data class was annual data, this data was collected using
only one SRE. The second SRE data class was seasonal data, this data
consisted on a combination of SREs. These two data classes were used
to test the data aggregation procedures implemented to fit the SRE time
scales (annual and seasonal). The two tested regression models were
Gaussian process and Bayesian regression. From our analysis it was
clear that any bias correction needed to be carried out using seasonal
data. Since the combination of two or more SRE improved the rainfall
estimates in the varying conditions of the seasons.
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Figure 9: CDF of the validation set observed values of station 6. The Solid line
indicates the CDF of the validation set observed values. The dashed line
shows the seasonal Bayes model predicted values. The dotted line are the
validation set SRE__season values. It is apparent that the model fails to
predict precipitation values ranges away from zero.

Overall Gaussian process regression delivered better and more accurate
results when working with seasonal data while the Gaussian process
annual model showed no improvement at all. There are some factors
that could have contributed to the lack of improvement in the annual
Gaussian process regression. First, the use of cluster kriging may have
introduced an unknown amount of error into the annual model. This
error could also have been aggravated by the varying size of the clusters.
It is possible that the use of a cluster method that generates fix sized
non-overlapping clusters could bring some improvement to the annual
analysis. This however needs to come in hand with a better SRE.

Even though the Bayesian regression did not show satisfying results it was
interesting to discover that it was considerably faster that the Gaussian
regression. Given that the intention of the bias correction model is for it
to be used in bigger areas with denser rain gauge networks, the speed in
which the model can be generated is important. Taking this into account,
it is in our interests to keep exploring the possibility of implementing
the bias correction using the Bayesian regression. For this we propose
future experiments using hurdle or zero-inflated models that allow to
have separate distributions for zero and non-zero values.

The Bayesian regression results also highlighted the differences between
RMSE and KGE measures of fitness. Where the RMSE for the Baye-
sian annual model showed no improvement, the KGE showed an small
improvement. The same was the case with the seasonal Bayesian model
where the RMSE showed an improvement but KGE steadily showed a
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worse performance. It is clear that in the latter case the RMSE was
overestimating the model skill. This can be due to the choice of baseline
with which the models are compared. A more detailed inspection of the
KGE components showed an improvement in the bias () values for the
Bayes regression models, while the correlation and variability did not
show any improvement.
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