
Parallelized Bayesian Optimization for
Expensive Robot Controller Evolution

Margarita Rebolledo1, Frederik Rehbach1, A.E. Eiben2, and Thomas
Bartz-Beielstein1

1 Institute For Data Science, Engineering, and Analytics, TH Köln, Germany
firstname.lastname@th-koeln.de

2 Department of Computer Science, Vrije Universiteit Amsterdam, Netherlands
a.e.eiben@vu.nl

Abstract. An important class of black-box optimization problems relies
on using simulations to assess the quality of a given candidate solution.
Solving such problems can be computationally expensive because each
simulation is very time-consuming. We present an approach to mitigate
this problem by distinguishing two factors of computational cost: the
number of trials and the time needed to execute the trials. Our approach
tries to keep down the number of trials by using Bayesian optimization
(BO) –known to be sample efficient– and reducing wall-clock times by
parallel execution of trials. We compare the performance of four par-
allelization methods and two model-free alternatives. Each method is
evaluated on all 24 objective functions of the Black-Box-Optimization-
Benchmarking (BBOB) test suite in their five, ten, and 20-dimensional
versions. Additionally, their performance is investigated on six test cases
in robot learning. The results show that parallelized BO outperforms
the state-of-the-art CMA-ES on the BBOB test functions, especially for
higher dimensions. On the robot learning tasks, the differences are less
clear, but the data do support parallelized BO as the ‘best guess’, win-
ning on some cases and never losing.

Keywords: Parallelization · Bayesian Optimization · CMA-ES · BBOB
Benchmarking · Robotics.

1 Introduction

Many real-world optimization problems are expensive to evaluate and require a
considerable amount of computation time for each candidate solution evaluation.
In such cases, the total evaluation budget is usually severely limited. Bayesian
optimization (BO) [22,9] and parallel computing are two state-of-the-art meth-
ods for solving budget limited black-box optimization problems.

In Bayesian optimization, a data-driven surrogate of the expensive function is
fitted and an extensive search on the cheap surrogate is feasible. Only the points
that are considered promising on the surrogate are evaluated on the expensive
function. This makes BO very sample efficient compared to other algorithms.



2 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

Parallel computing makes use of the ever-increasing amount of available CPU
cores in modern server systems. Running multiple simulations in parallel requires
more computational resources and more energy, yet, it does not increase the real-
time spent on the computation. Population-based algorithms like evolutionary
algorithms (EAs), which can propose multiple candidate solutions per iteration,
have an inherent efficiency benefit on parallel computing systems. In this area
the covariance matrix adaptation evolution strategy (CMA-ES) [13] is the state-
of-the-art EA for real valued optimization. Other than CMA-ES, the standard
BO approach does only evaluate a single candidate solution per iteration. Yet,
several approaches have been proposed through which BO can be adapted to a
parallel environment. An overview of these methods is given in [11].

One example of expensive, yet parallelizable, objective functions can be found
in the field of evolutionary robotics (ER). ER aims to automatically design
robots that are well suited to their environment and can perform a given task
[4,7]. This can be achieved by evolving the robot morphologies (bodies) and
controllers (brains) through iterated cycles of selection and reproduction. As
outlined in the triangle of life (ToL) framework proposed by [6], this implies
that newborn robots (with a new body form that is different from the bodies of
the parents) must start their lifetime with a learning stage. In this stage, a robot
with the given morphology needs to learn to control its body and maximize its
task performance.

In this paper we investigate six robot learning test cases, specified by two
different tasks, gait learning (moving in any direction) and directed locomotion,
and three bio-inspired robot shapes, a snake, a spider, and a gecko. Testing the
behavior of these robots requires a computationally expensive simulation. In fu-
ture stages, learning will be conducted in the real world where 3D-printed robots
are automatically configured with the proposed controllers and their behavior is
tested in a robot arena. Each of these trials will require a considerable amount
of time, ranging from multiple minutes up to an hour. This makes the real world
evaluation function even more expensive than the simulator we are currently
using. Due to the expensive nature of the problem at hand, extensive tests and
algorithm comparisons are less feasible. Therefore, additional to the robots sim-
ulations, the well-known set of Black-Box-Optimization-Benchmarking (BBOB)
test functions [17] are used for extensively comparing the performance of each
algorithm on different problem classes and dimensionalities. Given the results on
the artificial functions, comparisons can be drawn about real-world applications.
Considering this approach the following research questions arise:

RQ-1 Can parallel variants of BO outperform inherently parallel algorithms
like CMA-ES if the evaluation budget is severely constrained?

RQ-2 Which parallel variants of BO show the best performance on which of
the tested problem landscapes?

RQ-3 How do BO and CMA-ES compare on the robot application?

The rest of this paper is structured as follows: We will first give an overview
of the implemented parallelization methods in Section 2. We will introduce the
robot application for the real-world scenario in Section 3. The setup of our



Parallelized Bayesian Optimization for Robot Controller Evolution 3

experiments is explained in Section 4. The obtained results are presented in
Section 5 and finally discussed in Section 6.

2 Overview of implemented optimization methods

2.1 Bayesian Optimization

Bayesian optimization (BO) is an iterative global optimization framework useful
for expensive black-box derivative free problems [22,9]. The main components
of BO are a surrogate model and an acquisition function. We use Gaussian
process(GP) [19] with radial basis function kernel [8] as the surrogate model.

The kernel is defined as Σ(i) = exp(−
∑n

j=1 θj |x
(i)
j −x′j |pj ), where pj determines

the correlation function smoothness and θj the extend of a point’s xi influence.
Two variants of this kernel will be used in this work: P2, where pi = 2, and
FitP, where pi is part of the optimization loop.

Three of the most common acquisition functions are considered: expected
improvement (EI), lower confidence bound (LCB) and predicted value (PV)
[22]. PV is a heavy exploitation approach. It uses the surrogate model’s best
prediction as the next candidate solution. Under the right conditions this assures
quick convergence but might lead to getting stuck in local optima.

LCB is an optimistic acquisition function. At a point x, it underestimates
the mean using the uncertainty, αLCB(x, β), where β ≤ 0 is the exploration-
exploitation trade-off factor. Following [23] we set β = 1 for every instance of
BO using LCB as acquisition function.

EI [8] is a more explorative acquisition function. It calculates the amount
of improvement a new point can achieve based on its mean and variance. The
point with the highest expected improvement is selected as the next candidate
solution.

2.2 Parallelization Approaches

Depending on the selected acquisition function BO can balance model exploita-
tion (to quickly converge to the global optimum) and model exploration (to
increase model quality). Most parallelization techniques for BO create multiple
candidates per iteration by searching for multiple differently weighted compro-
mises of these two goals. A total of q candidate solutions is generated per itera-
tion, where q defines the number of objective function evaluations that can be run
in parallel. In the following, three of these techniques are presented: investment
portfolio improvement (IPI), multi-point expected improvement (q-EI), multi-
objective infill criteria (MOI), and our implementation, multi-kernel Bayesian
optimization (mK-BO). For more information about these methods please refer
to the presented bibliography.



4 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

Investment Portfolio Improvement [24] views the suggestion of new can-
didate solutions as handling an investment portfolio. It tries to balance high-
and low-risk investments. On the one hand, candidate solutions which have a
very high probability of improvement are safe investments. Yet, they often yield
a minimal improvement over the best-known candidate solutions. On the other
hand, candidates with a high expected improvement usually incorporate a high
uncertainty and thus high risk. [24] proposes a sequential switching criterion that
cycles between a high-, medium,- and a low-risk point. This sequential approach
can directly be adapted to a parallel application. Instead of just three candi-
dates, a different balance between exploration and exploitation can be defined
for q candidate solutions. The candidates are then evaluated in parallel.

Multi-point Expected Improvement in q-EI, the definition of EI is adapted
to a set of points with shared EI. A detailed description of an efficient implemen-
tation is given by Ginsbourger et al. [10]. For this study, the q-EI implementation
of the ’DiceOptim’ R-package [21] is used together with the model implementa-
tion of the ’DiceKriging’ package [21].

A property of q-EI that is worth mentioning is that it favors solutions that
are spread throughout the search space. As sequential EI already leans towards
exploration, this effect is fortified with each added parallel candidate. If two
points of a set are too close to each other, the expected improvement of one of
them will tend to zero.

Multi-objective Infill Criteria [2] approaches the compromise between explo-
ration and exploitation as a multi-objective optimization problem. The predicted
value of the GP model defines the first objective. The models’ uncertainty de-
fines the second. An evolutionary algorithm searches for the Pareto-front of the
bi-objective acquisition function. Each point on the front is a good compromise
between the objectives and could be considered in the parallel evaluation. To
narrow down the number of proposed points Bischl et al. consider two distance-
based techniques (nearest neighbor and nearest better neighbor) as a third ob-
jective on the Pareto-front. For our experiments, we chose the implementation
that was considered best in their benchmarks, described in [2] with ID 10. Our
implementation is directly taken from the author’s R-package ’mlrMBO’ [1].

Multi-Kernel BO additionally, we inspect a rather simple way to parallelize
BO. When faced with a black-box optimization problem, often the choice for
the right kernel parameter setting or acquisition function for BO is not clear.
While some settings might perform well on specific landscape types or prob-
lem dimensionalities, they might fail in others. In a parallel environment, this
problem can be circumvented by running different BO configurations in parallel.
Instead of choosing a single setup for BO, as many configurations are created as
objective function evaluations can be run in parallel. Since our parallelization
system is capable of running six robot simulations in parallel, we describe six



Parallelized Bayesian Optimization for Robot Controller Evolution 5

distinct BO configurations to be run in parallel: Three acquisition functions, EI,
LCB, and PV, are combined with the previously mentioned variants of kernel
configuration, P2 and FitP.

After sampling an initial design, the algorithm will build the six distinctly
configured GP models in parallel, one on each available core. Their respective
acquisition functions are optimized, and the candidate solutions are evaluated.
The algorithm waits for all instances to complete their evaluations in a synchro-
nization step. After that, the next iteration starts with a new set of models built
on all so far evaluated candidate solutions. Thus, the models share knowledge
and synchronize after each iteration.

2.3 CMA-ES

CMA-ES is a state-of-the-art EA for optimizing non-linear non-convex black-box
functions. In short, CMA-ES samples in each iteration a population , λ, from a
multivariate normal distribution N ∼ (m,σ2C), where m is the weighted mean
value of selected candidates, σ is the step size and C is the covariance matrix.
The population is evaluated on the objective function and ranked. According to
the ranking results parameters m, σ and C are updated to give more probability
to good samples on the next iteration. A small λ accelerates the convergence,
while larger values are helpful for noisy functions [13]. The python ’cma’ imple-
mentation by Hansen et al. [14], was used in our experiments. To fit the general
R framework that was used for experimenting, the python code is called via the
R to python interface ”reticulate” [25].

3 Robotic Application

Following the triangle of life framework proposed by [6], we focus on the infancy
phase of a robot’s life cycle. After a new robot is generated with a specific
morphology and controller, it needs to go through a learning stage in order to
adapt the configuration of its controller to complete a given task as efficient as
possible. Usually this stage is only part of a longer process in which the goal
is to find the best morphology-controller combination through evolution. In a
real-time real-space scenario this process can be extremely long and costly.

The robot’s dynamics, the controller’s structure, and, the task a robot needs
to complete are variable or unknown factors and can be seen as a black-box func-
tion. Given the time every simulation carries it can also be considered expensive.
The aim of our optimization task is to find controller configurations that make
it possible for the robots to move faster on a restricted number of simulation
tests.

The robots are simulated using the Robot Evolve (Revolve) [16] toolkit.
Revolve works on top of Gazebo 3 and incorporates a set of tools to allow an easy
definition of the robots, environments to execute the simulations and objective
functions to evaluate a robot’s performance.

3 https://gazebosim.org/

https://gazebosim.org/


6 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

The robots used in this work are based on the framework RoboGen4. The
robot’s bodies contain three components: A core component housing the robot’s
microcontroller and battery unit, fixed bricks which allow to attach other com-
ponents to any of its faces, and lastly, active hinges which are powered by servo
motors. Each hinge adds an extra degree of freedom to the robot, thus increasing
the input dimensionality in our controller design.

(a) Snake (b) Spider (c) Gecko

Fig. 1: Tested robot morphologies, each simulating an animal structure. The
three different body components can be easily distinguished by shape and color.
The biggest brick corresponds to the core component, each robot can only have
one. Fixed bricks look similar but are smaller in size. Active hinges are illustrated
in white.

Three different robot morphologies are tested, each is built to simulate the
structure of a snake, spider and gecko respectively. In figure 1 the different robot
morphologies and their components are presented. All the servo motors on the
robot’s body are controlled by an output oscillator. This oscillator depends only
on a sinusoid signal determined by three parameters: amplitude, period and
phase offset. To reduce the controller’s dimensionality the amplitude parameter
is fixed to an unit value. Since the tested tasks require the robot to be in constant
motion, we assume a fixed amplitude value will not affect the robot’s speed as
it would in start/stop scenarios.

4 Experiments

The source code of all algorithm configurations, software, and all experiments
results presented in this work are freely available for reproducibility at: https:
//github.com/frehbach/rebo19a/.

Two test scenarios are considered to test the viability and performance of
the different optimization algorithms. Firstly, the algorithms are extensively
benchmarked on the BBOB test suite to assess their performance on varying
landscapes and dimensionalities. We simulate the environment of an expensive
function by limiting the algorithm’s budget to match the amount of permitted

4 http://robogen.org

https://github.com/frehbach/rebo19a/
https://github.com/frehbach/rebo19a/
http://robogen.org


Parallelized Bayesian Optimization for Robot Controller Evolution 7

iterations on the robot application. Secondly, the algorithms are applied to the
robot controller problem.

Since the problem can be evaluated in parallel, we do not count the indi-
vidual objective function evaluations, but rather the sets of parallel evaluations
(iterations) done by each algorithm. The machine used for the experiments al-
lows to run six robot simulations efficiently in parallel. Thus, each algorithm can
evaluate up to six candidate solutions per iteration.

The different algorithms are started with an initial Latin hypercube design of
ten points. q-EI and MOI implementations require the amount of initial samples
to be larger than the input dimensionality. Therefore, their amount of initial
samples was set to the next multiplier of six which is greater than the respec-
tive problem dimensionality. To match the number of available processors the
population size for CMA-ES is set to 6 and the initial step size is left at the
default value 0.5. After the initial design, each algorithm is given a total of 15
parallel iterations, resulting in a maximum budget of 100 function evaluations.
Each experiment is repeated 30 times for statistical analysis.

4.1 First Scenario: BBOB Functions

The Black-Box-Optimization-Benchmarking (BBOB) test suite [12] is one of the
most well-known benchmark suites in the evolutionary computation community.
The 24 BBOB functions are selected to test the performance of algorithms on
landscapes with known difficulty. Every function is scalable to varying input di-
mensionalities. A detailed description of each function, its optima and properties
is available in [17].

In the BBOB suite, each function is available in multiple instances. An in-
stance is a rotated or shifted version of the original objective function. In our
experiments the algorithms are run on all 15 standard instances in their five, ten
and 20 dimensional version. This will account for possible performance variations
in the algorithms caused by problem dimensionality. This is an important point
given that the robots can change their morphology and thus reduce or increase
the controller dimensionality. All described experiments were run with a recent
GitHub version of BBOB, v2.3.1 [15].

4.2 Second Scenerio: Robot controller

Performance on the application case is measured as the maximum speed (m/s)
a robot can achieve in a fixed number of function evaluations (simulations). All
robots are simulated in a flat world without obstacles. The robot is able to move
along the x- and y-axis (ground). A fixed simulation time of 60 seconds is set
for each robot.

Two tasks with different degree of difficulty are used, gait learning and di-
rected locomotion. In gait learning the Euclidian distance between the robots
starting and end point is measured and divided by the simulation time. The
resulting speed is considered to be the robot’s fitness.



8 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

For directed locomotion, the fitness function takes into account the direction
in which the robot moves. Only distance traveled on the y-axis will be measured
and then divided by the simulation time.

The input dimensionality of the robots application varies across robots as a
results of the different number of active hinge elements. The snake, gecko and
spider have 8, 12 and 16 parameters respectively.

Test Problem Publication The software required to run the robot controller
application does not run on all platforms. To overcome this issue and to create an
open and easy process for everyone to access the robot application, a dockerized
version was developed as part of this work. Docker is an open source tool [3]
and works on any major operating system. The docker container for running
the robot application with a brief usage manual is also available at https:

//github.com/frehbach/rebo19a/.

5 Results and Discussion

All convergence and significance plots for all functions can be found in https:

//github.com/frehbach/rebo19a/.
We do not assume that the collected results are normally distributed. There-

fore, we apply non-parametric tests that make less assumptions about the under-
lying data, as suggested by Derrac et al. [5]. We accept results to be statistically
significant if the corresponding p-values are smaller than α = 0.05. The Kruskal-
Wallis rank-sum test (base-R package ’stats’) is used to determine, whether a
significant difference is present in the set of applied algorithms or not. If this test
is positive, a posthoc test according to Conover (PMCMR R package [18]) for
pairwise multiple comparisons is used to check for differences in each algorithm
pair. The pairwise comparisons are further used to rank the algorithms on each
problem class as follows: The set of algorithms that is never outperformed with
statistical significance is considered rank one and removed from the list. This
process is repeated until all algorithms are ranked from 1 to 6.

To answer our first research question the initial focus lies on the BBOB test
function experiments. First we compare single-core Bayesian optimization (BO)
and CMA-ES. The combination of different kernel configurations and acquisition
functions explained in Section 2 make up the six tested variants of single-core
BO.

BO outperforms CMA-ES on most problems and dimensionalities in the
single-core scenario. Figure 2 illustrates this behavior on the ten-dimensional
version of the Büche-Rastrigin function, where all BO approaches ranked better
than CMA-ES and random search. The different kernel configurations and acqui-
sition functions were observed to have statistically significant difference between
each other. Interestingly, greedy acquisition functions, like PV, show better per-
formance than the more popular EI in 16 out of the 24 tested functions. This
agrees with results presented in [20]. In the multi-core tests, parallel-BO seems
to converge faster and have better performance than CMA-ES on most test

https://github.com/frehbach/rebo19a/
https://github.com/frehbach/rebo19a/
https://github.com/frehbach/rebo19a/
https://github.com/frehbach/rebo19a/


Parallelized Bayesian Optimization for Robot Controller Evolution 9

Fig. 2: Single-core BO vs. CMA-ES on the Büche-Rastrigin function. The nota-
tion refers to the different combination of acquisition function and kernel config-
uration. An experiment denoted as BO-PV-P2 then refers to BO using predicted
value kernel with parameter p = 2. The red number refers to the algorithm rank
as determined by the pairwise multiple comparisons test.

problems. This specially holds true in higher dimensions. Convergence plots for
functions Rastrigin, Sharp Ridge and Schwefel in Figure 3 illustrate the per-
formance difference on all tested dimensions. A clear advantage was not always
the case for functions with high conditioning or weak global structure. However,
only in functions Weierstrass and Katsura did BO not achieved equal or better
performance than CMA-ES or random search. Both functions are highly rugged
and repetitive.

Our second research question can also be answered by looking at the BBOB
results. As shown on Figure 3, q-EI and IPI frequently perform worse than MOI
or mK-BO. Based on the single-core BO results it is not surprising that the
multi-point adaptation of EI did not perform well. The focus on exploration is
disadvantageous on problems with limited function evaluations. This can also be
seen for IPI were exploration may win over exploitation.

MOI authors remark the algorithm favors exploitative behaviors. If the sug-
gested points tend to exploitation, the performance of MOI is in accordance
to the results from single-core experiments, where greedy approaches achieved
better values.

For our last research question all algorithms are tested on the expensive
black-box robot application. In contrast to the last experiments our aim here is
to maximize the objective function. This represents the need to have robots that
can move faster.

Interestingly there are no clear visible performance differences on some of the
robot problems. Random search often performs similarly to all parallel methods.
Figure 4 Illustrates the multi-comparison test results for the last iteration in
both robot experiments. BO methods rank better than CMA-ES but not always
better than random search. If we refer to the benchmark results, a similar be-



10 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

5 10 20

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

300

1000

3000

100

300

1000

3000

30

100

300

1000

iteration

R
as

tr
ig

in
y

algName
CMAES
IPI
MK
MOI
Q−EI
RS

(a) Example of a separable multi-modal function

5 10 20

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

500

1000

3000

300

1000

3000

30

100

300

1000

iteration

S
ha

rp
 R

id
ge

y

algName
CMAES
IPI
MK
MOI
Q−EI
RS

(b) Example of a unimodal function with high conditioning

5 10 20

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

iteration

S
ch

w
ef

el
y

algName
CMAES
IPI
MK
MOI
Q−EI
RS

(c) Example of a multi-modal function with weak global structure

Fig. 3: Parallel algorithms performance on three different BBOB subgroups with
different dimensionalities. The convergence plots show the median, upper and
lower quartiles. MOI parallel implementation shows a clear advantage in per-
formance for most cases, especially on higher dimensions. Parallel-BO using IPI
and q-EI are in many cases outperformed by the simple mK-BO approach.



Parallelized Bayesian Optimization for Robot Controller Evolution 11

havior was found for highly multi-modal functions with weak global structures.
This is a good indication of the complex controller’s landscape and the complex
interactions between its parameters.

During the simulations it was possible to visualize the locomotive behaviors
of the robots. For the snake it was noticed that it tended to roll in order to
achieve greater speeds. This brought an advantage in gait learning but not in
directed locomotion. This specific case can be the reason for the performance
divergence present for the snake. However, why IPI and mK-BO in particular
seem to perform better on this scenario is still open to investigation.

●

●

●

●

●

●

●

●

2

1
1 1

1 1

●

●●

●

●

●

3

1
1

2 2 2

●

●

●

2 1 1
1 1

1

Gecko Snake Spider

C
M

A
E

S

IP
I

M
K

M
O

I

Q
−

E
I

R
S

C
M

A
E

S

IP
I

M
K

M
O

I

Q
−

E
I

R
S

C
M

A
E

S

IP
I

M
K

M
O

I

Q
−

E
I

R
S

0.005

0.007

0.010

0.003

0.005

0.010

0.003

0.005

0.010

Algorithm

R
ob

ot
−

G
ai

t L
ea

rn
in

g
E

va
lu

at
io

n:
 1

00
y

(a) Gait learning

●

●

●

●
●

3

1 1 1 1
2

●

●

●
● ●●

●

●

3

1
1 1

2

2

●

●

●

3

1 1

1
1 2

Gecko Snake Spider

C
M

A
E

S

IP
I

M
K

M
O

I

Q
−

E
I

R
S

C
M

A
E

S

IP
I

M
K

M
O

I

Q
−

E
I

R
S

C
M

A
E

S

IP
I

M
K

M
O

I

Q
−

E
I

R
S

0.003

0.005

0.010

0.001

0.003

0.010

0.001

0.003

0.010

Algorithm

R
ob

ot
−

D
ire

ct
ed

 L
oc

om
ot

io
n

E
va

lu
at

io
n:

 1
00

y

(b) Directed locomotion

Fig. 4: Last iteration ranked multi-comparision test results for the robot appli-
cation. The red number indicates the algorithm’s achieved rank. BO methods
maintain a better performance. However similar results by random search sug-
gest BO is not able to efficiently exploit the optimization landscape.



12 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

6 Conclusions

To answer our research questions, we compared the performance of sample effi-
cient parallel-BO with the state-of-the-art EA, CMA-ES and random search on
expensive black-box problems with a maximum of 100 function evaluations. A
first experimental stage was conducted using the BBOB test-functions with the
assumption they are expensive to evaluate. As a second stage the algorithms were
tested in a real world robot application. To enable easy replicability, a docker
container was created including the configuration of all the tested algorithms,
experiments and the simulator environment for the robot simulations.

RQ-1 Can parallel variants of BO outperform inherently parallel algorithms
like CMA-ES if the evaluation budget is severely constrained? We demonstrated
on a varied range of function landscapes that parallel-BO can outperform inher-
ently parallel CMA-ES in problems with very limited number of function evalua-
tions. These results were more clearly seen on higher dimensions. Interestingly we
observe that the best performance, is in most cases, achieved by more exploita-
tive acquisition functions (see [20]). As a result of this, Parallel-BO approaches
with greedier acquisition function performed better on most experiments.

RQ-2 Which parallel variants of BO show the best performance on which
of the tested problem landscapes? Based on the observed behaviour and taking
into account that we are dealing with a problem with limited number of function
evaluations, our preferred approach is to select parallel-BO with an acquisition
function that tends to exploitation. This is the case for MOI and our tested
configuration of mK-BO. Of both approaches MOI is our preferred approach for
similar applications given the possibility to control its exploration-exploitation
trade-off. However, it is necessary to explore possible configuration improvements
for both algorithms.

RQ-3 How do BO and CMA-ES compare on the robot application? On the
robotic test cases there is no prominent difference in performance. However, the
statistical tests support a better or equal performance of the parallel-BO im-
plementations over random search and CMA-ES for all cases. The performance
similarity of random search suggests that neither BO nor CMA-ES could take
advantage of the objective function landscape. This is an indication that the
problem of robot learning implies a highly multi-modal complex objective func-
tion.

In summary, the main contributions of this work are: an efficient BO par-
allelization method, a detailed performance comparison of BO parallelization
methods, and a freely available robotics test suite via a docker image for (com-
parative) challenging problems for optimization methods.

It remains open to further investigate the contribution that each of the dif-
ferent BO configurations had on the final response of mK-BO. Non-stationary
kernels for GP can be studied in order to find better configurations for the com-
plex robot task. Furthermore, we are working on developing and testing robot
controllers of different structure and re-evaluate the efficiency and efficacy of the
optimizers discussed in this paper.



Parallelized Bayesian Optimization for Robot Controller Evolution 13

References

1. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A
Modular Framework for Model-Based Optimization of Expensive Black-Box Func-
tions (2017)

2. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: Moi-mbo: Multiob-
jective infill for parallel model-based optimization. In: Learning and Intelligent
Optimization (2014)

3. Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS
Operating Systems Review 49(1), 71–79 (2015)

4. Bongard, J.: Evolutionary Robotics. Communications of the ACM 56(8), 74–85
(2013)

5. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3–18
(Mar 2011). https://doi.org/10.1016/j.swevo.2011.02.002

6. Eiben, A., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell, A.,
Winfield, A.: The triangle of life: Evolving robots in real-time and real-space (09
2013). https://doi.org/10.7551/978-0-262-31709-2-ch157

7. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary Robotics. In: Siciliano, B. and
Khatib, O. (ed.) Handbook of Robotics, pp. 1423–1451. Springer, 1st edn. (2008)

8. Forrester, A., Sobester, A., Keane, A.: Engineering design via surrogate modelling:
a practical guide. John Wiley & Sons (2008)

9. Frazier, P.I.: A tutorial on bayesian optimization (2018)
10. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging Is Well-Suited to Paral-

lelize Optimization, pp. 131–162. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-10701-6 6, https://doi.org/10.1007/
978-3-642-10701-6_6

11. Haftka, R.T., Villanueva, D., Chaudhuri, A.: Parallel surrogate-assisted global op-
timization with expensive functions–a survey. Structural and Multidisciplinary Op-
timization 54(1), 3–13 (2016)

12. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: A platform
for comparing continuous optimizers in a black-box setting. ArXiv e-prints (Aug
2016)

13. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

14. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634 (Feb 2019).
https://doi.org/10.5281/zenodo.2559634, https://doi.org/10.5281/zenodo.

2559634
15. Hansen, N., Brockhoff, D., Mersmann, O., Tusar, T., Tusar, D., ElHara, O.A.,

Sampaio, P.R., Atamna, A., Varelas, K., Batu, U., Nguyen, D.M., Matzner,
F., Auger, A.: COmparing Continuous Optimizers: numbbo/COCO on Github
(Mar 2019). https://doi.org/10.5281/zenodo.2594848, https://doi.org/10.5281/
zenodo.2594848

16. Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: A versatile simulator for online
robot evolution. In: Sim, K., Kaufmann, P. (eds.) Applications of Evolutionary
Computation. pp. 687–702. Springer International Publishing, Cham (2018)

17. Nikolaus, H., Steffen, F., Raymond, R., Auger, A.: Real-parameter black-box op-
timization benchmarking 2009: Noiseless functions definitions. Research Report
inria- 00362633v2, INRIA (2009)

https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.7551/978-0-262-31709-2-ch157
https://doi.org/10.1007/978-3-642-10701-6_6
https://doi.org/10.1007/978-3-642-10701-6_6
https://doi.org/10.1007/978-3-642-10701-6_6
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2594848
https://doi.org/10.5281/zenodo.2594848
https://doi.org/10.5281/zenodo.2594848


14 M. Rebolledo, F. Rehbach, A.E. Eiben, T. Bartz-Beielstein

18. Pohlert, T.: The pairwise multiple comparison of mean ranks package (pmcmr)
(2014), http://CRAN.R-project.org/package=PMCMR, accessed on Jan. 12, 2016

19. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning, MIT Press, Cambridge, MA, USA (Jan 2006)

20. Rehbach, F., Zaefferer, M., Naujoks, B., Bartz-Beielstein, T.: Expected improve-
ment versus predicted value in surrogate-based optimization (2020)

21. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: Two R pack-
ages for the analysis of computer experiments by kriging-based metamodeling and
optimization. Journal of Statistical Software 51(1), 1–55 (2012)

22. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE 104(1), 148–175 (Jan 2016). https://doi.org/10.1109/JPROC.2015.2494218

23. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic
regret bounds for gaussian process optimization in the bandit setting.
IEEE Transactions on Information Theory 58(5), 3250–3265 (May 2012).
https://doi.org/10.1109/tit.2011.2182033, http://dx.doi.org/10.1109/TIT.

2011.2182033

24. Ursem, R.K.: From expected improvement to investment portfolio improvement:
Spreading the risk in kriging-based optimization. In: Bartz-Beielstein, T., Branke,
J., Filipič, B., Smith, J. (eds.) Parallel Problem Solving from Nature – PPSN XIII.
pp. 362–372. Springer International Publishing, Cham (2014)

25. Ushey, K., Allaire, J., Tang, Y.: reticulate: Interface to ’Python’ (2019), https:
//CRAN.R-project.org/package=reticulate, r package version 1.13

http://CRAN.R-project.org/package=PMCMR
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/tit.2011.2182033
http://dx.doi.org/10.1109/TIT.2011.2182033
http://dx.doi.org/10.1109/TIT.2011.2182033
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate

	Parallelized Bayesian Optimization for Expensive Robot Controller Evolution

