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firstname.lastname@th-koeln.de

2 Department of Computer Sciences, Vrije Universiteit Amsterdam, Netherlands
a.e.eiben@vu.nl

Abstract. Depression affects an estimated 300 million people around
the globe. Early detection of depression and associated mental health
problems constitutes one of the best prevention methods when trying to
reduce the disease’s incidence. Information collected by tracking smart-
phone use behaviour and using ecological momentary assesments (EMA)
can be used together with machine learning techniques to identify pat-
terns indicative of depression and predict its appearance, contributing
in this way to its early detection. However many of these techniques fail
to identify the importance and relationships between the factors used
to reach their prediction outcome. In this paper we propose the use of
Bayesian networks (BN) as a tool to analyse and model data collected
using EMA and smartphone measured behaviours. We compare the per-
formance of BN against results obtained using support vector regression
and random forest. The comparison is done in terms of efficacy, efficiency
and insight. Results show that no significant difference in efficacy was
found between the models. However, BN presented clear advantages in
terms of efficiency and insight given its probability factorization, graph-
ical representation and ability to infer under uncertainty.

Keywords: Bayesian Networks · Modelling · Ecological momentary as-
sessments · Interpretability

1 Introduction

Depression and other associated mental health disorders can have disturbing ef-
fects on every life aspect of people suffering from it. According to the world health
organization an estimated 300 million people were suffering from depression in
2015. It is also the largest contributor to global disability. Prevention and early
recognition can reduce the incidence of depression and mitigate the negative
impacts associated with this disorder. Several studies have linked the influence
of smartphones in the development of depression and anxiety symptoms. How-
ever they can also work as a tool for early recognition of depressive indicators.
One possible approach is through the use of ecological momentary assessments
(EMA) to help evaluate the current mental state of the user. EMA methods al-
low the collection of psychological phenomena in real time and within a subject’s
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natural environment in order to avoid retrospective biases. One common data
collection method are self assessment questions through the user’s mobile phone.
Another less obstructive approach is making use of software monitoring or em-
bedded smartphone sensors to follow the user’s activities and behaviors. The
identification of certain patterns could lead to the early detection of depressive
symptoms.

Bayesian networks (BN) is a probabilistic graphical model that represents
the conditional dependencies between a set of variables. They are especially use-
ful when dealing with restricted amounts of data and in aiding human decision
making. According to a recent review [11] of BN use in healthcare, its imple-
mentation in psychological and psychiatric disorders make up the fourth largest
group of applications. However, this number still lags behind when considering
other machine learning approaches and more work still needs to be done in or-
der to bring more attention to this modelling method. Some works focusing on
the implementation of BN in the field of depression include [12], where possible
causal relationships between obsessive-compulsive disorder and depression were
disclosed. In [6] an ontology model together with BN is used in order to infer the
probability of becoming depressed. Other works have also used smartphone sens-
ing to monitor and study depression and similar mental health disorders [1, 7, 17]

In a background study [4] different machine learning techniques were tested
on EMA to predict the mood of users. Their focus was on predicting the cur-
rent mood of individual participants based on their smartphone measurements.
They reached the conclusion that machine learning techniques support vector
regression (SVR) and random forest (RF), which incorporate all data about a
participant, performed better. However, they stated that more work should fo-
cus on finding the most relevant attributes influencing the short-term mood of
the participants.

The aim of this work is to expand on the findings in [4] and implement BN
as a quick to perform and easy to interpret model to predict the current mood
of the user. Given the intrinsic properties of BN new information about the at-
tributes that most influence the mood and their conditional dependencies can be
gained. This information can be presented to users in order for them to have a
better understanding about their own patterns, be used by medical professionals
to provide better insight into personalized and general patterns and behaviors
that can influence mood, or, be used as a base to design more comprehensive ex-
periments that allow to discover possible causal relationships between variables.
In short the present study seek to answer the following questions:

RQ-1 How would BN compare to SVR and RF in terms of efficiency, efficacy,
and insight when modelling each participant individually?

RQ-2 How would BN compare to SVR and RF in terms of efficiency, efficacy,
and insight when generating a general model for all participants?

The paper is structured in the subsequent manner. Section 2 explains the
data available for the model building. In Section 3 the different methods used to
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model the data are presented. Experiments are conducted on Section 4 and their
results are discussed on Section 5. Final thoughts and future work are given in
Section 6.

2 Data

The data set presented here was first described in [2] and used in [4]. The data
originates from a pilot study where 27 university students self-monitored their
mood for a time frame of 6 weeks. During this time each participant would be
prompted by a cellphone application to input their current mood on a scale
from 1 to 10, 10 being the best, five times a day. Additional to logging the mood
self-assessment information, the mobile application also recorded other different
EMA in the background. Information about the duration and frequency of calls,
SMS, screen on/off events, applications used, number of images taken with the
camera and activity were recorded. A total of 55 parameters make up the initial
data set. An overview of all variables is presented in Table 1.

Table 1. Mood prediction data set. The attributes names correspond to one or more
attributes collecting similar information. The number of variables in each group is given
in n Variables.

Attribute Name Explanation n Variables Range

id Participant’s identification code 1 [1-27]
mood (Target) Mood scored by the user 1 [1-10]
callc1c - callc5c Number of calls to top 5 contacts 5 [0-1]
callc1d - callc5d Duration of calls to top 5 contacts 5 [0-1]
smsc1c - sms5c Number of SMS to top 5 contacts 5 [0-1]
accelerometer.high Percentage of high activity time 1 [0-1]
screen.duration Standardized total screen-on events 1 [-3,3]
screen.n Standardized frequency screen-on event 1 [-3,3]
app.a1c - app.a5c Top 5 Apps usage frequency 5 [0-1]
app-a1d - app.a5d Top 5 Apps usage duration 5 [0-1]
appCat.n Apps use frequency 11 [0-1]
appCat.sum Apps usage duration 11 [0-1]
image.n Number of images taken 1 [0-1]
mood.l1 Standardized mood of yesterday 1 [-3-3]
mood.l2 Standardized mood of day before yesterday 1 [-3-3]

The target variable mood is a daily average. Only days with at least one
rating of mood are included on the data set. As a result participants have dif-
ferent number of effective samples going from 26 up to 40. Variables related to
calls, SMS, images taken, and Apps duration and frequency of use were summa-
rized daily and normalized within participants. The variable accelerometer.high
represents the percentage of time during the day in which the participant’s
activity surpassed a threshold of 10m/s2. Lastly, variables mood.l1, mood.l2,
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screen.duration and screen.n are transformed to the standard normal distribu-
tion. That is, 99.97% of their values fall between -3 and 3. For more in-depth
information about the different variables please refer to [2].

As an additional preprocessing step, variables with near zero variance were
removed form the data set. Variables for which the ratio between the frequency
of its most common value to its second most common value was less than 15
were removed.

At the end, the data set used to build the models presented on the following
sections contain a total of 24 predictors, excluding target and id variables, and
595 observations across all participants are available.

3 Methods

3.1 Bayesian Networks

BN [13, 9] are probabilistic models based on directed acyclic graphs (DAG). A
DAG structure is given by G = (V, A) where V is the node and A is the arc set.

Nodes represent the random variables of interest V = {X1, X2, ..., Xn}, and
arcs represent informational or causal dependencies among the variables. They
are quantified as conditional probabilities for each node given its parents nodes.
The DAG defines a factorization of the global probability distribution of V into
local probability distributions, onde for each node. The local distribution for a
random variable P (Xi) is given as the conditional distribution of Xi and its
parents ΠXi as P (Xi|ΠXi). In other words, the local distribution of a node is
independent of other nodes given its parents. Following the same method, the
global probability distribution of the network defined by G is

P (X1, ..., Xn) =

n∏
i

P (Xi|ΠXi) (1)

where n is the number of nodes. Any probability of interest can be computed
from this joint probability.

In order to learn the BN model from the data two steps are required: structure
learning and parameter learning. Structure learning entails finding the DAG
encoding the dependence structure of the nodes given the data, P (G|D), where
D is the data. This can be guided by expert knowledge if available. In parameter
learning, the parameters Θ, than define the local distributions for each node are
estimated. As already mentioned, this distributions are independent and as such
the Θ can be computed as

P (Θ|G, D) =

n∏
i=1

P (Θi|ΠXi
, D) (2)

Three main approaches for structure learning are possible: constraint-based,
score-based, and hybrid [16].
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Constraint-based approaches implement conditional independence tests, such
as Fischer’s Z test, in order to discover the dependence structure of the data.
In score-based approaches general purpose optimization techniques like hill-
climbing or Tabu search are used to generate candidate DAGs. Each candidate
receives a score reflecting its goodness-of-fit which the optimization algorithm
tries to maximize. Finally, hybrid algorithms combine both approaches sequen-
tially by first selecting a network skeleton using constrain-based algorithms and
then maximizing its score.

Finally, assumptions need to be done about the distribution followed by X.
In general if the data set contains continuous parameters it is assumed that Xi

follows an multivariate normal distribution and that the relationship with its
parents are linear. These networks are known as Gaussian BNs and are the type
used in this work.

For the implementation of BN we used the bnlearn R package [15]. The net-
work structure is learned via the score-based hill-climbing search by maximizing
the Bayesian information criterion (BIC).

3.2 Support Vector Regression

Support vector regression (SVR) [3] is a generalization of the well known sup-
port vector machines (SVM) for classification. In the classification case SVM
find the optimal hyperplane separating different categories. In the general case
SVR introduces an ε-insensitive region, called ε-tube. The regression is then for-
mulated as an optimization problem where a convex ε-insensitive loss function
needs to be minimized in order to find the flattest tube that contains most of
the training data samples. The optimization problem is solved using numerical
optimization algorithms. For non-linear functions the data can be mapped into
a higher dimensional space using a kernel function.

To follow the implementation in [4], we implemented SVR on the kernlab R
package [8]. The SVR was defined as an epsilon regression with epsilon and the
cost of constraint violation set to 0.5. The radial kernel was used with hyperpa-
rameters values calculated internally by the included heuristic sigest.

3.3 Random Forest

Random Forest (RF) [5] is a well-known type of non-linear multiple regression.
It is an ensemble method that groups a number of weak learners (decision trees)
and combines them to generate a strong learner (a forest). For each decision tree
an input is split into smaller subsets until it no longer brings an improvement
to the model response. Another quality of RF is their computation of relative
variable importance by measuring the mean decrease in mean square error (MSE)
that each parameter generates.

Following the implementation in [4], the number of trees for our models is
set to 500 and the number of variables sampled at the splits is set internally
by the model. The random forest model is implemented using the R package
randomForest [10].
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4 Experiments

Two types of experiments are carried out: in the first experimental case each
user’s data is modeled separately and results will apply only to the specific user.
For the second experiment type, the data of all users is combined to build a
general model. This will allow to examine wheter for this data set it is possible
to use knowledge of other individuals in order to improve the prediction of mood.

The results of the different models on both experiments are compared in
terms of efficiency, efficacy and insight.

The efficacy of the models is evaluated in terms of MSE and stability. The av-
erage MSE after 10-cross validations runs is taken as the final MSE of the model.
To determine whether a significant difference between the different model’s MSE
is present the Kruskal-Wallis rank sum test is used. If the test is positive, a post-
hoc test according to Conover [14], for pairwise multiple comparisons, checks for
differences in each algorithm pair. The comparisons are further used to rank the
algorithms from 1 (best) to 3. The second efficacy measure corresponds to the
stability of the model. To control no large changes occur in the prediction given
slightly changes in the input data we define stability as the difference between
minimum and maximum result in the model across the 10 cross validation runs.

The efficiency of the models is given as the wall clock time in seconds required
to build the models on one machine.

Lastly, the insight is understood as the model interpretability. We define
interpretability as the informativeness and intelligibility of the model. A model is
informative when it allows to explore the data and provide assistance to a human
decision maker. Intellegibility is defined as how intuitive the understanding of
the model is.

4.1 Individual Models

The first round of experiments is focused on predicting the current mood using
only the data available for each of the participants. On the one hand, this ensures
a completely personalized analysis and acknowledges the differences between
each user, but on the other hand this suffers from a lack of sufficient data samples
that some participant presented.

The model validation was done through 10-fold cross validation. Each par-
ticipant’s data was partitioned into training and testing sets with ratio 85/15.
The wall clock time in seconds required by each algorithm to finish all 10 cross
validation runs across all 27 participants is taken. Tabel 2 presents the results
obtained for MSE, time, stability and rank for the case of individual models. It
can be seen that all models present the same level of performance and their only
significant difference is the time required to build the model.

To give a qualitative measure of interpretability the models should be ex-
amined individually. As an illustration example we will use the model for the
participant with id “AS14.0”.

Neither SVR or RF offer an understandable visual depiction of their model
structure. The higher dimensionality kernel representation is prohibiting for the
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Table 2. Individual model results. MSE corresponds to the average across the 10 cross
validation runs and 27 participants. The time in seconds is measured as the total time
taken for the 10 repetitions of the 27 models. The rank is assigned after following a
post-hoc test according to Conover [14].

SVM BN RF

MSE 0.41 0.47 0.39
Stability 1.00 0.87 0.81
Time 30 9 13
Rank 1 1 1

case of SVR and the high number of trees in RF is restrictive for the complete
representation of the model. In the case of BN the visual representation of the
model is more straightforward thanks to its DAG structure.

Figure 1 shows the network learned from user “AS14.01”. The arrow’s di-
rection indicate the conditional dependencies of the data, for this specific model
mood is conditionally dependent of it parents app.a5c and screen.n such that
P (mood) = P (mood|app.a5c, screen.n). The gray shaded nodes illustrate the
Markov blanket of mood, or in other words, the subset of variables that have all
the information required to compute the probability of the variable of interest
according to the joint probability factorization explained in the section above.
Also of interest is the arc strength which gives a measure of confidence for each
arc. The arc’s thickness in Figure 1 represent arcs with the most strength. This is
measured as the decrease in the network score which would be caused by the arcs
removals. If it is of interest the network could be reduced using this information.

A similar functionality to the arcs strenght is given by RF measure of impor-
tance. Here the decrease of accuracy, as measured by the MSE, when a variable
is removed from the model is taken as the importance of the variable.

As a final characteristic of BN that largely impact their interpretability is
their ability of inference under uncertainty. It is possible to investigate the effects
of new evidence using the information encoded in the BN and compute the
maximum posterior density, or simply put the probability, of a given combination
of events on a node. If we are interested in finding the probability that for user
“AS14.01” a mood higher than 6 happens if the screen.duration value is higher
than 2 (higher than the mean) and the app.a5c is lower than 0.03 (lower than the
mean) then the probability of the mood will be P (mood > 6|screen.duration >
2 ∪ app.a5c < 0.03) = 0.96. This probability decreases if we consider a lower
value of screen.duration P (mood > 6|screen.duration < 2 ∪ app.a5c < 0.03) =
0.9. This ability of ’what if’ queries greatly increase the amount of information
that can be obtained from the model

4.2 General Model

In the case that behaviors between participants do not differ considerably it
should be possible to combine all the information the data can give and use it
to predict mood.
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Fig. 1. Learned Bayesian network for user id “AS14.01”. Arrows represent the condi-
tional probability dependencies of each node. The arcs thickness corresponds to the
arc’s importance in the network according to their BIC score. The target node mood
and the nodes conforming its Markov blanket are gray shaded. In this model it can be
seen that screen.n influences the value of mood while sms.c2c has no relationship with
it.
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Fig. 2. Random forest importance measure for user id “AS14.01”. The importance is
measured as the decrease of accuracy (MSE) in out of bag samples when the variable
is excluded from the model.
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The same procedure as for the individual models was follow to build the
general model. The data is partitioned into test and trainig sets, and the model
was validated using 10 cross validation runs.

Results for the general model can be seen in Table 3. Also in this case the
models do not present a significant difference in performance. However, the time
saving achieved by BN is notable.

Table 3. Results for the general model. MSE corresponds to the average across the
10 cross validation runs. The time in seconds is measured as the total time taken for
the 10 repetitions. The rank is assigned after following a post-hoc test according to
Conover [14].

SVM BN RF

MSE 0.45 0.44 0.41
Stability 0.41 0.34 0.38
Time 22 2 25
Rank 1 1 1

Similar to the case of the individual models, the structure of the general
model can be observed in Figure 3. As in the previous case the thicker arcs
represent the ten connections with the higher confidence level. As it can be seen
in the figure most of them are related to the id.

A look into RF measure of importance also show that id is by far the most
important parameter influencing the MSE. Taking into account that the model
efficacy did not improve with the addition of more data and that the identifi-
cation parameter seems to be the one with more weight on the model, it can
be assumed that the prediction of mood using all the participants is not a good
idea for this data set.

5 Discussion

In order to test the efficacy, efficiency and insight of BN against RF and SVR
when predicting the current mood two types of experiments were carried out.

In the case of individual models it could be proven that the performance
achieved by BN is at the same level of RF and SVR. We also argued that the
interpretability of the network, in terms of informativeness and intelligibility, is
higher than for the other models. The results also showed that the difference in
time required by the algorithms is noticiable.

It is important to consider that students presenting symptoms of clinical
depression were excluded from the data collection process generating a bias in the
mood data. More test are needed with new data where the presence of depression
is given in order to explore the changes in relationships between parameters.
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Fig. 3. Bayesian network of the general model. Arrows represent the conditional prob-
ability dependencies of each node. The arcs thickness corresponds to the arc’s impor-
tance in the network according to their BIC score. The target node mood and the nodes
conforming its Markov blanket are gray shaded. It can be seen that many of the most
important dependencies relate to id, and mood is also conditinally dependent of it. On
the other side, there is total indepence from sms.c5c.
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BN are probabilistic models which can portray relationships of causality be-
tween its parameters. However, causality cannot be confirmed and only a con-
jectural case for causality can be started when referring to the models presented
in this work. More data needs to be obtained preferably from controlled experi-
ments that account for confounding or latent variables.

For the general model case it was observed that even though the amount of
data samples increased, no improvement in the model accuracy was observed. RF
importance measure gave id as the most important variable. A similar behavior
was observed by the ten most significant arcs in the BN where most included
id. The lack of increase in performance given the increase in the number of data
points led us to conclude that the model was not able to obtain more information
about the participants and thus for the given data set it is not appropriate to
generate a general model that can combine information about all patients.

Similarity in the performance of the tested models make criteria such as in-
terpretability an important concept to define according to the end purpose of
the model. In an scenario of medical studies where analysis should be person-
alized for each patient, it is beneficial to have a model that allows the medical
professional to understand the flow of data and its conditional dependencies in
order to plan experiments and better analyze results.

6 Conclusion

The use of unobtrusively collected EMA via smartphone as a way to predict the
current mood of the user through BN is studied in this work. To answer our
research questions we compared the efficacy, efficiency and insight of BN against
the already tested models SVR and RF. The efficacy is measured in terms of
MSE and stability. The wall-clock time measures the efficiency and the level of
insight is measured in terms of interpretability. Two types of experiments were
carried out on the data in order to answer our research questions.

RQ-1 How would BN compare to SVR and RF in terms of efficiency, ef-
ficacy, and insight when modelling each participant individually? In our first
experiment one model per participant was build and the performance of the
models was evaluated using cross validation. The results showed that no signifi-
cant difference in performance was found between the models. In terms of speed
and interpretability BN presented clear advantages. Interpretability is defined
as the informativeness and intelligibility of a model. In Figure 1, it was easy to
identify which of the parameters had a influence on the outcome of mood based
on the arc connections present between the nodes and the visual representation
of its Markov blanket. At the same time it was easy to represent the conditional
probabilities with most importance in the model.

RQ-2 How would BN compare to SVR and RF in terms of efficiency, effi-
cacy, and insight when generating a general model for all participants? For the
second type of experiments one general model was implemented. Results were
consistent in terms of performance between the three models. Also here the gains
in interpretability and speed were noticeable for BN. However, it was clear given
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the lack of performance improvement that the amount and quality of data may
be insufficient to build such a general model and either of the tested methods
presented a considerable improvement.

BN as a tool to model graphically model the conditional dependencies be-
tween variables do not present any loss in performance against SVR or RF. On
the other hand it was shown that BN bring benefits in terms of efficiency and
insight given its probability factorization, graphical representation and ability
to infer under uncertainty. These advantages would made its implementation as
informative models in mobile devices realizable.

In future work we would like to make use of another important feature of
BN that allows the inclusion of expert knowledge into the model. In this way,
relationships between already studied parameters can be included and inference
and reasoning capabilities of the model can be improved. More work is also
needed using a more comprehensive data set in order to set achieve a more
robust understanding about the influence certain behaviors have on the mood.
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