
CIplusBand 7/2018

Comparison of ParallelSurrogate-Assisted OptimizationApproaches
Frederik Rehbach, Martin Zaefferer, Joerg Stork, and Thomas Bartz-Beielstein





Comparison of Parallel Surrogate-Assisted Optimization
Approaches

Frederik Rehbach
frederik.rehbach@th-koeln.de

TH Köln
Cologne, Germany

Martin Zaefferer
martin.zaefferer@th-koeln.de

TH Köln
Cologne, Germany

Jörg Stork
joerg.stork@th-koeln.de

TH Köln
Cologne, Germany

Thomas Bartz-Beielstein
thomas.bartz-beielstein@th-koeln.de

TH Köln
Cologne, Germany

ABSTRACT
The availability of several CPU cores on current computers enables
parallelization and increases the computational power significantly.
Optimization algorithms have to be adapted to exploit these highly
parallelized systems and evaluate multiple candidate solutions in
each iteration. This issue is especially challenging for expensive
optimization problems, where surrogate models are employed to
reduce the load of objective function evaluations.

This paper compares different approaches for surrogate model-
based optimization in parallel environments. Additionally, an easy
to use method, which was developed for an industrial project, is
proposed. All described algorithms are tested with a variety of
standard benchmark functions. Furthermore, they are applied to
a real-world engineering problem, the electrostatic precipitator
problem. Expensive computational fluid dynamics simulations are
required to estimate the performance of the precipitator. The task
is to optimize a gas-distribution system so that a desired velocity
distribution is achieved for the gas flow throughout the precipita-
tor. The vast amount of possible configurations leads to a complex
discrete valued optimization problem. The experiments indicate
that a hybrid approach works best, which proposes candidate solu-
tions based on different surrogate model-based infill criteria and
evolutionary operators.

CCS CONCEPTS
•Mathematics of computing→Discrete optimization; •The-
ory of computation → Continuous optimization; Gaussian
processes; •Computingmethodologies→Modeling and sim-
ulation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205587

KEYWORDS
Optimization, Surrogates, Modeling, Parallelization, Electrostatic
Precipitator

ACM Reference Format:
Frederik Rehbach, Martin Zaefferer, Jörg Stork, and Thomas Bartz-Beielstein.
2018. Comparison of Parallel Surrogate-Assisted Optimization Approaches.
In GECCO ’18: Genetic and Evolutionary Computation Conference, July 15–19,
2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3205455.3205587

1 INTRODUCTION
Real-world optimization problemsmay require significant resources
for each evaluation of a candidate solution. Often, such problems
are based on time consuming computational fluid dynamics (CFD)
simulations, where a single simulation might take hours, days, or
even weeks. Thus, even a few hundred function evaluations may
result in run times of several weeks or months. In practice such long
time frames are infeasible and render the problems very difficult
to solve. Two well established concepts allow to deal with these
issues: surrogate model based optimization (SMBO) and parallel
computing.

SMBO tries to learn a data-driven surrogate model which re-
places the expensive objective function. Under the assumption that
the model is cheap to evaluate, an extensive search becomes feasible.
Thus, promising new solutions can be suggested, evaluated with
the objective function and used to update the surrogate model in
an iterative fashion. A more in-depth explanation of SMBO and its
applications can be found in [1] and [13].

Parallel computing attempts to exploit the availability of several
CPU cores which can operate simultaneously.

While it is straight-forward to parallelize a CFD simulation by
spreading it onto several CPU cores, there is a limit on how many
cores can be used efficiently for a single simulation. Hence, with
increasing numbers of available cores, it will become more efficient
to run several simulations in parallel. However, not all existing
optimization methods can be applied in a parallel manner. Notably,
the standard SMBO approach does not take significant advantage
out of a multi-core system. Despite its success in the domain of
expensive objective functions, it is not efficient for problems where
parallelized function evaluations are possible. Standard SMBO lacks



GECCO ’18, July 15–19, 2018, Kyoto, Japan Rehbach et al.

a straight forward approach for generating multiple new design
points in each iteration.

In the following, Section 2 will give an overview on related
research and existing methods. Section 3 presents two structures
for using SMBO in a parallelized environment. They were used in
an industrial project for optimizing an electrostatic precipitator
(ESP). Section 4 describes the ESP problem and its complexity in
detail. An experimental study compares the different methods based
on the ESP problem and artificial test functions and is described
in Section 5. Results are presented and discussed in Section 6. A
conclusion and an outlook are presented in Section 7.

2 RELATED RESEARCH
2.1 Efficient Global Optimization
One frequently used surrogate model is Kriging. In Kriging, an
objective function value can be estimated for a given new candi-
date solution by building a Gaussian process model, based on a
correlation structure derived from the observed training data[5].

Kriging is frequently used in SMBO, because it can provide an es-
timate of its uncertainty. Conditional on a given candidate solution,
Kriging specifies a normal distribution of the corresponding objec-
tive value, where the mean is the predicted value and the standard
deviation is the uncertainty. Notably, the uncertainty estimate can
be employed to calculate the Expected Improvement (EI) [11] of a
candidate solution, which is used in the Efficient Global Optimiza-
tion (EGO) algorithm [8]. The main idea in EGO is not to search the
surrogate for the point with the best predicted objective function
value. Instead, the uncertainty estimation of the model is taken into
account by maximizing the EI criterion. Intuitively, maximizing EI
balances exploration (improving the model or knowledge about the
search space) and exploitation (improving the objective function
value). EI increases when the predicted value gets better, as well as
when the uncertainty rises.

Clearly, EGO and EI in their original forms are meant to gen-
erate a single, most promising design point (i.e., the solution that
maximizes EI).

2.2 Investment Portfolio Improvement
Investment Portfolio Improvement (IPI) tries to further improve the
idea of balancing between exploration and exploitation of the search
strategy. Ursem [17] suggests that one can judge each candidate
solution from the viewpoint of an investment portfolio. The candi-
date solution with the highest probability of improvement is seen
as a low risk investment. Candidate solutions which are optimized
towards the highest expected improvement yield a higher risk but
also might lead to better function value outcomes. With IPI, it is
possible to generate multiple candidate solutions per iteration on a
single surrogate model. Each of the generated solutions will aim for
a different risk level. This is achieved by either preferring solutions
with a high uncertainty (EI) or solutions with low uncertainty but
a better predicted value.

IPI generates a set of three design points per iteration: a high, a
medium, and a low risk design point. Each of these design points
is then evaluated sequentially. Thus, IPI balances risks in single-
threaded optimization. However, since IPI is theoretically able to
generate any amount of design points with a given surrogate, it

can also be employed to parallelize an SMBO algorithm. Then, the
amount of generated design points per iteration is equal to the
maximum amount of objective function evaluations in parallel.

2.3 Multi-Point Expected Improvement (q-EI)
An intuitive idea for parallel SMBO is to extend EI to point sets. The
multi point expected improvement criterion was first proposed in
[15] and later further developed in [6]. It calculates the expected im-
provement criterion for a set of candidate solutions. Ginsbourger et
al. [6] provide a comprehensible description of the q-EI calculation.
Here, q is the set-size for which EI is computed.

Since q-EI allows to calculate the EI criterion for any number of
candidate solutions, it is a very promising choice for parallelized
EGO. At each iteration, the set of candidate solutions that optimizes
the q-EI criterion is determined. The set size equals the amount of
objective function evaluations that can be performed in parallel.
Hence, the main difference between SMBO and SMBO with q-EI is
the amount of solutions generated per iteration.

One inherent property of the q-EI criterion is that it favors sets
of solutions that are spread far from each other in the search space.
If two or more candidate solutions move close to each other, their
combined expected improvement will approach the value of the
best. Effectively, only one point from some small cluster would
improve the q-EI of the whole set, the others are negligible.

2.4 Further Approaches
A recent survey of parallel SMBO is given by Haftka et al. [7]. They
describe several approaches based on Gaussian process models and
uncertainty based infill criteria: parallel EGO/EI, multi-point proba-
bility of improvement (PI) and approaches based confidence bounds.
Furthermore, the survey discusses several approaches based onmod-
els without uncertainty information, multi-model approaches (e.g.,
one model for each parallel thread), approaches that explore (local)
sub-spaces of the search space and discuss hybrids of surrogate-
assisted optimization and evolutionary computation.

In addition, there have been studies on parallel SMBO with treed
gaussian process (TGP) [16]. They use a combination of TGP mod-
els together with a local pattern search optimizer. Both of these
techniques are combined into an asynchronous parallel computing
environment. Here, a method similar to the q-EI is used to generate
multiple design points per iteration, where candidate points are
added in a sequential manner.

Another idea proposed by Bischl et al. [2] is to treat the problem
in a multi-objective manner. They suggest a number of potential
objectives, including EI, mean, probability of improvement, uncer-
tainty (variance estimate), distance to nearest neighbor and distance
to nearest better neighbor. They report that a combination of mean,
uncertainty and distance to nearest neighbor performed best in a
set of numerical experiments.

Furthermore, expensive evaluation times may vary, e.g., CFD
simulations may differ in time consumption, depending on the eval-
uated candidate solution. To that end, Richter et al. [14] propose an
asynchronous approach that attempts to produce evaluation sched-
ules that reduce the overall time consumption. They use surrogate
models to approximate the objective function results as well as to
approximate the required resources.



Comparison of Parallel Surrogate-Assisted Optimization Approaches GECCO ’18, July 15–19, 2018, Kyoto, Japan

3 SURROGATE ASSISTED OPTIMIZATION
PARALLEL TO STANDARD OPTIMIZERS

We propose to use a hybrid algorithm composed of standard SMBO
and EAs. It is able to produce new candidate solutions in two differ-
ent ways: 1) via standard infill criteria such as best-predicted and
EA, and 2) via evolutionary operators. A parallel design for SMBO
was developed, which is able to solve the ESP problem. The usage
of the best-predicted infill criterion, as well as the EI infill criterion
are well established and yield good results in single threaded ap-
plications. Thus, the hybrid approach will employ these two infill
criteria and utilize any remaining computational resources for opti-
mization with an EA. In the following, we introduce a synchronous
and asynchronous parallel design of the proposed hybrid algorithm.
Both designs arise from a optimization task in an ongoing project
and are aimed for an easy parallelization of an already existing
optimizer. The basic concept is visualized in Figure 1.

Algorithm 1 Synchronous SMBO+EA hybrid. Here, ninit is the
number of initial candidate solutions, design() is a function that
produces an initial set of candidate solutions, train() is a proce-
dure to train an adequate surrogate model, and optimize() is an
evolutionary algorithm implementation with variation operators
eaMutation() and eaRecombination(). The function evalParallel()
represents the potentially expensive objective function, which al-
lows for evaluating n solutions simultaneously.
1: function SMBO+EA-Sync(ninit , design(), train(), optimize(),

evalParallel(), eaMutation(), eaRecombination())
2: X = {x1,x2, ...,xninit } = design(ninit )
3: y = evalParallel(X )
4: while budget not exhausted do
5: model = train(X ,y)
6: xs1 = optimize(BP(model)) ▷ optimize best-predicted
7: xs2 = optimize(EI(model)) ▷ maximize EI
8: Xo = eaMutation() + eaRecombination()
9: Xos = {Xo ,xs1,xs2}
10: yos = evalParallel(Xos )
11: X = {X ,Xos }
12: y = {y,yos }
13: end while
14: end function

The first, synchronous design is presented in Algorithm 1. In
difference to standard (synchronous) SMBO procedures, both the
best predicted and EI criterion infill criteria are utilized to create
two candidates per iteration and a set of candidates is generated in
parallel by genetic operators (mutation, recombination). All gen-
erated candidates are passed to a task queue, which handles the
parallel evaluation of all candidates with the real objective function.
The next generation starts after all candidates are evaluated.

The second, asynchronous design is introduced to account for the
computational costs of the surrogate model fitting and optimization.
Often, surrogates are considered to have zero runtime since they
are, compared to the real objective function, very quick to evaluate.
However, they often demand considerable resources, depending
on given sample sizes, problem dimension and type of employed
model. In the synchronous version, no evaluations are started until

Figure 1: A surrogate model implemented in parallel to the
optimization algorithm. One algorithm is used to optimize
the surrogate. Another optimizer (which can be another in-
stance of the same optimizer), directly proposes candidate
solutions on the objective function. Through a scheduler,
both sets of candidate solutions are evaluated. The surrogate
is updated with new data from these evaluations.

the surrogate is fitted and utilized to propose new candidates. As
this procedure is not performed in parallel, available resources are
not used efficiently. This is where an asynchronous architecture
may be beneficial.

Algorithm 2 shows a pseudo-code implementation of the asyn-
chronous optimization structure. The main idea of this asynchro-
nous design is that training and optimization of the surrogate model
can be performed in parallel to the objective function evaluations.
In each iteration of the asynchronous algorithm, a check is per-
formed if there have been any new candidate solutions generated
by the surrogate optimization thread. If so, both EA candidates and
surrogate candidates are evaluated with the objective function. If
not, the free computation slots are filled with candidates generated
by the genetic operators.

4 THE ESP PROBLEM
The ESP is a real industrial optimization problem. The ESP is one
of the main components of gas cleaning systems. They are used in
large scale coal-fired power plants or other industries where solid
particles have to be removed from a gas stream. ESPs are large
devices with dimensions of around 30m × 30m × 50m, resulting in
multiple millions of euros just in building cost. The main task of an
ESP is to separate and extract particles from exhaust gases in order
to reduce environmental pollution. Figure 2 illustrates this system.

In the flue gas inlet hood of an ESP, a gas distribution system
(GDS) (shown in Figure 3) is required to control and guide the gas
flow through separation zones in which particles are removed from
the exhaust gases. If no GDS is used, or if the system is configured
poorly, the fast inlet gas stream will rush through the separation
zones of the ESP. This results in very low separation efficiencies. In
case of a well configured GDS, the inflowing gas is nicely distributed
across the whole surface of the separation zones, resulting in high



GECCO ’18, July 15–19, 2018, Kyoto, Japan Rehbach et al.

Algorithm 2 Asynchronous SMBO+EA hybrid. Here, ninit is the
number of initial candidate solutions, design() is a function that
produces an initial set of candidate solutions, train() is a proce-
dure to train an adequate surrogate model, and optimize() is an
evolutionary algorithm implementation with variation operators
eaMutation() and eaRecombination(). The function evalParallel()
represents the potentially expensive objective function, which al-
lows for evaluating n solutions simultaneously.
1: function SMBO+EA-Async(ninit , design(), train(), optimize(),

evalParallel(), eaMutation(), eaRecombination())
2: Xs ={}
3: X = {x1,x2, ...,xninit } = design(ninit )
4: y = evalParallel(X )
5: function generateSurrogateCandidates
6: model = train(X ,y)
7: xs1 = optimize(BP(model)) ▷ optimize best-predicted
8: xs2 = optimize(EI(model)) ▷ maximize EI
9: Xs = {xs1,xs2}
10: end function
11: while budget not exhausted do
12: Xo = eaMutation() + eaRecombination()
13: Xos = {Xo ,Xs }
14: yos = evalParallel(Xos )
15: do parallel: generateSurrogateCandidates()
16: X = {X ,Xos }
17: y = {y,yos }
18: end while
19: end function

Figure 2: ESPwith 3 separation zones. This figurewas kindly
provided by Steinmüller Babcock Environment GmbH.

efficiency. Hence, the efficient operation of an ESP requires an
optimal configuration of the GDS. The GDS in our example consists
of 49 configurable slots. Each of these slots can be configured with
baffles, as well as blocking and perforated plates. Baffles are metal
plates which are mounted at an angle to the general gas flow. They
are used to redirect a gas stream into a new direction. Blocking

plates completely block a gas stream. Perforated plates are used to
slow down and only partially block gas streams. They are created
by punching a grid of holes into metal plates. Smaller holes lead to
higher pressure drops and thus a slower gas stream. Larger holes
allow for a nearly free gas flow. These plates can be mounted into
each of the 49 configurable slots. Optionally, some slots can also be
left empty.

Here, 40 out of 49 of the slots can be configured with eight differ-
ent types of plates (including empty). The remaining nine slots can
only be configured as “true” or “false”, which indicates a blocking
plate or an empty slot. The vast amount of possible combinations
of the GDS reveals a complex discrete optimization problem. For
a single evaluation of a given configuration, a computationally
expensive CFD simulation is necessary, which results in hours of
computation time. Unfortunately, such large computation times
make the ESP problem unsuitable for a large number of tests runs
which are necessary to derive reasonable conclusions about the
performance of several competing algorithms. Therefore, a second
model with a largely reduced amount of cells in the simulationmesh
was created. By doing so, the runtime of the model was reduced to
only a few seconds per evaluation. This speed up comes at the cost
of reduced simulation accuracy. However, the reduced model still
captures some of the difficulties and complex features of the actual
problem, while enabling a detailed experimental study. Reproduc-
ing the rugged problem landscape is much more important than
the actual accuracy of each sample point.

The open source CFD framework OpenFOAM [18] was used to
implement our simulations. The original landscape of a real indus-
trial problem is transferred into a function which can be evaluated
in reasonable computation time. The ESP problem was therefore
considered as a good industrial benchmark for this paper. Currently,
the accelerated simulation model is used to tune and advance the
research in algorithms for the optimization of the full long-running
simulation.

5 DESCRIPTION OF EXPERIMENTS
5.1 Performance Measure
One simple way of measuring optimization performance is to record
the best objective function value attained after a fixed number of
function evaluations. For parallel optimization, this is not suitable.
Some algorithms are capable of invoking multiple objective func-
tion evaluations at once. Other algorithms are only able to do these
sequentially. Thus, algorithms which can not parallelize, use less
function evaluations in the same computation time, resulting in an
unfair comparison if only the amount of evaluations is considered.
Measuring the total execution time of algorithms is also not always
feasible. Algorithm run times largely rely on factors like their im-
plementation, programming language or the machine they are run
on. Therefore, a different approach for performance measurements
was chosen. Each algorithm is given a fixed amount of iterations
instead of function evaluations. For each iteration, the amount of
possible evaluations in parallel is fixed. We record the best objective
function value attained after a fixed number of iterations. Thus, an
algorithm which uses all available cores should be more efficient as
it can do more function evaluations.



Comparison of Parallel Surrogate-Assisted Optimization Approaches GECCO ’18, July 15–19, 2018, Kyoto, Japan

Figure 3: Visualization of a gas distribution system (GDS)
mounted in the inlet hood of of an ESP. This figure
was kindly provided by Steinmüller Babcock Environment
GmbH.

5.2 Methods and Configurations
Each optimization algorithm starts of with an initial design of the
size of n, where n is the amount of objective function evaluations
which are possible in parallel. After the initialization, each algo-
rithm performs 50 iterations. Depending on the value of n, which is
varied between 3 and 15, the algorithms were able to do a maximum
of 150-750 function evaluations.

With this algorithm setup, 14 different methods were compared,
including a set of base line comparisons, variations of SMBO+EA,
IPI, and two versions of q-EI. An overview of all methods and their
composition is given in Table 1. All algorithms were implemented
in R. Each time an EA was applied, the optimEA method of the
CEGO [19] package was used. The population size and mutation
rate were set to 20 and 0.05 respectively. They were determined to
work best in preliminary runs. The other parameters were kept at
the package defaults.

In the following the implementation of each of the 14 methods is
described shortly. Two variants of single threaded standard SMBO
were implemented as a base line for the comparison. Here, single
threaded indicates that no parallel evaluations will be performed.
Each variant is based on a different infill criterion (BP and EI),
and both use Kriging. Hence, they will be denoted as Krig-BP and
Krig-EI. The optimum of the infill criteria was determined with
a simple EA from the same package. To judge the performance
of both of these single threaded SMBO implementations, a single-
threaded and model-free EA is used (denoted as EA singleCore).

Table 1: Optimization methods. Some of the methods are
hybrids, the table shows their composition by detailing the
amount of objective function evaluations allowed to each
method. Here, n is the total amount of evaluations possible
in parallel. m = n − 3 for all cases where n > 3 otherwise
m = n − 2, p = 1 for n > 3 and p = 0 for n = 3.

Index EA BP EI Rnd.
Samp.

Space
Filling IPI q-EI

EA singleCore 1
Krig-BP 1
Krig-EI 1
K.BP+K.EI 1 1
EA-nCores n
K.BP+K.EI +Rnd.Samp. 1 1 n − 2
K.BP+K.EI+LHS 1 1 n − 2
SMBO+EA-async n − 2 1 1
SMBO+EA-async+SF m 1 1 p
SMBO+EA-sync n − 2 1 1
SMBO+EA-sync+SF m 1 1 p
IPI-n-cores n
q-EI n
q-EI-Bounded n

As another base line, we test a model-free EA that generates as
many individuals per iteration as there are slots for parallel function
evaluation (EA-nCores). The proposed SMBO+EA algorithm uses
both BP and EI together. Thus, to judge the EAs impact on the
hybrid algorithm, another experiment was added where both EI
and BP are implemented without further algorithms.

Methods like latin hypercube sampling (LHS) are often argued
to increase the model quality of surrogates by generating space-
filling (SD) designs in the search space. This methodology for model
quality improvements was also implemented in a CFD airfoil opti-
mization by Marsden et al. [10]. To test this hypothesis two further
methods were tested: K.BP+K.EI+Rnd.Samp and K.BP+K.EI+LHS.
Both generate two candidate solution per iteration, one via BP
and one via EI. In K.BP+K.EI+LHS, the remaining n − 2 available
evaluation slots are populated with LHS. In addition to the Latin
hypercube property, the points are determined to maximize the
distance to their nearest neighbor. In K.BP+K.EI+Rnd.Samp, the
slots are populated with random samples.

Furthermore, four distinct versions of a hybrid SMBO+EA were
tested. Both the synchronous and asynchronous versions of SMBO
+EA were implemented (SMBO+EA-sync, SMBO+EA-async). In
addition, the benefits of a space-filling (SF) infill point were investi-
gated in the SMBO+EA structure. To that end, the synchronous and
the asynchronous version of SMBO+EA were extended as follows.
Firstly, one less solution is generated by the EA’s variation opera-
tors. This slot is filled with a candidate solution that maximizes the
minimal distance to the other candidate points. This approach is
similar to the distance to nearest neighbor objective in the study
by Bischl et al. [2]. The respective algorithms are denoted with
SMBO+EA-sync+SF and SMBO+EA-async+SF.

The IPI method and q-EI were implemented as described in the
Related Research Section 2. Since IPI was originally implemented
to generate multiple candidate solutions that are sequentially evalu-
ated, the methodology was slightly altered. In our implementation,



GECCO ’18, July 15–19, 2018, Kyoto, Japan Rehbach et al.

the CEGO buildKriging function is used to build a Kriging model.
Then, an EA is used to optimize each of IPIs infill criteria, so that n
candidate solutions are generated in each iteration. They are eval-
uated in parallel and the model is trained with the updated data
set.

For q-EI, we employ the suggested implementation from Gins-
bourger et al. [6], which is available in the DiceKriging R-Package.
Their implementation of the q-EI infill criterion was optimized by
CEGOs optimEA. However, the task of the optimization was not
to search a single point, but the best set of points that optimizes
the q-EI criterion. Due to the behavior of the q-EI optimization in
first tests, a second variant of q-EI based SMBO was implemented,
where bound constraints are respected. Note, that otherwise all
methods only respect bound constraints where applicable, and only
during design creation. This issue will be discussed in more detail
in Section 6.

5.3 Test Functions
In addition to the real world ESP problem, the described methods
were applied to the following test functions: Rosenbrock 2D, Rast-
rigin 5D, Rastrigin 10D, Branin 2D, Hartmann 6D, and Colville 4D.
As these additional functions are cheap to evaluate, using surro-
gate models to optimize them is not efficient. Yet, we argue that
the results are transferable to other more costly functions. Due
to the various landscapes and features provided by the test func-
tions, the experiments yield useful information on the surrogates
performance. Making numerous experiments on more expensive
functions would lead to an infeasible computational cost. For each
test function and method, 60 repeated optimization experiments
were performed to account for the stochastic behavior of the al-
gorithms. Only 30 repeats were done for the ESP problem, due to
its larger computation times. The q-EI variants were not tested on
the ESP problem. As noted above, the q-EI implementation from
the DiceKriging package is used. The Kriging model in this pack-
age requires that the number of observations are greater than or
equal to the number of variables. Given the high dimensionality
and computation cost of the ESP problem as well as its discrete
nature, this condition can not be reasonably satisfied. Especially in
the early stages of the experiments, data set sizes will be smaller
than required.

6 RESULTS AND DISCUSSION
Our presentation of the results is based on a statistical analysis. For
each test-problem, we performed a statistical multiple-comparisons
test. Differences are judged significant if the corresponding p-values
are smaller than α = 0.05. We computed a ranking based on the
derived pair-wise comparisons. Here, the ranking is performed as
follows. Any algorithm that is never significantly worse than any
other algorithm receives rank one, and is removed from the list.
Of the remaining algorithms, the ones that are not worse than
any other receive rank two and are also removed. This procedure
repeats until all algorithms are ranked.

We chose to use the Kruskal-Wallis test [9] (to check whether
any significant differences are present) and a corresponding post-
hoc test based on Conover (to determine which algorithm pairs
are actually different) [3, 4]. We use the implementations from

the PMCMR R package [12]. These tests were chosen as the data
is not normal distributed, and is also heteroscedastic (i.e., group
variances are not equal). Hence, parametric test procedures that
assume homoscedastic (equal variance), normal distributed data
are unsuited. Note, that non-parametric tests are not free of as-
sumptions. In fact, the Kruskal-Wallis test assumes that the data are
random samples, statistically independent within each group and
between groups, and have an ordinal measurement scale [3, p. 289].
These assumptions should hold for the optimization performance
results we consider. An overview of the analysis results can be
found in Table 2.

It is clearly visible that, as expected, all single threaded base-
line implementations perform worst on each test functions. This
confirms that parallelization is necessary to efficiently optimize
in an environment where more than one function evaluation is
possible at the same time. In the first set of results with n = 3
parallel evaluations, the ESP problem is best solved by methods
which apply both EI and BP plus an additional method to specify
the third point to be evaluated. Interestingly, there seem to be no
significant differences between methods for determining the third
point (EA, SF, or random sampling). On the standard test functions
the bounded version of q-EI scored best.

Yet, the fairness of a comparison to this bounded approach is
arguable. As first tests showed that the original implementation of
the EA-optimized q-EI criterion yielded unsatisfactory results, the
problem was further investigated. In many of the experiments, it
was observed, that q-EI only positioned one or two design points
in a reasonable search area. The other design points were rather
far spread out into regions where the kriging model is estimating
maximum uncertainty. Thus, q-EI often yields points that lie far
outside the previously sampled regions. This was the main reason
for introducing bound constraints to the q-EI implementation. In
this algorithm variant, the EA which is used to optimize the q-
EI criterion is limited to a search in a bounded area. This solved
the basic issues q-EI was facing and yielded much better results.
However, it has to be considered that problem bounds are not
always known a priori, and that the other SMBO implementations
were not subject to bounds (with the exception of the initial design
generation that is shared by all methods). The striking performance
of q-EI with bounds and n = 3 should therefore be considered with
care.

Given five or more evaluations in parallel, scaling seems to be-
come an issue in IPI and q-EI as their mean rank drops. Here, SMBO
seems to deliver the best results for the ESP-problem, Rastrigin,
Branin and Hartmann. On the Rosenbrock and Colville functions,
q-EI consistently delivers the best results.

Figures 4 and 5 are taken as examples to present results for a
given test function and specific value of n parallel evaluations in the
form of box plots. It can be observed, that for larger n, the synchro-
nous and asynchronous version of SMBO+EA are not significantly
distinguishable from one another. Thus, since the asynchronous
version yields less overall computation time, it should be preferred.
In cases where n < 10, the synchronous model outperformed the
asynchronous one. Therefore, a closer analysis of the computation
time reduction through the asynchronous model is required in or-
der to choose the best approach. Lastly, Figure 5 reveals that on the



Comparison of Parallel Surrogate-Assisted Optimization Approaches GECCO ’18, July 15–19, 2018, Kyoto, Japan
E

A
 s

in
g

le
C

o
re

K
ri

g
−

B
P

K
ri

g
−

E
I

K
.B

P
+

K
.E

I

E
A

−
n

C
o
re

s

K
.B

P
+

K
.E

I+
R

n
d
.S

m
p

l.

K
.B

P
+

K
.E

I+
L
H

S

S
M

B
O

+
E

A
−

a
s
y
n

c

S
M

B
O

+
E

A
+

S
F

−
a
s
y
n

c

S
M

B
O

+
E

A
−

s
y
n

c

S
M

B
O

+
E

A
+

S
F

−
s
y
n
c

IP
I−

n
−

c
o

re
s

q
−

E
I

q
−

E
I−

B
o

u
n
d

e
d

5

10

20

50

100

o
b

je
c
ti
ve

 f
u
n

c
ti
o
n

 v
a
lu

e

Parallel evals: 15 Testfunction: Rastr.10D

8 5 7 4 3 2 2 1 1 1 1 4 6 6

Figure 4: Boxplot showing the optimization results on the
10 dimensional rastrigin function. In these experiments 15
function evaluations were possible in parallel. Red numbers
at the bottom indicate the given rank based on pairwise
multiple-comparison tests. NAs due to q-EI implementation
on ESP problem, described in Section 5.3.

ESP problem with n = 15, SMBO+EA does not outperform a simple
model-free parallelized EA.

The same is true for n = 10, but not for smaller n. This behav-
ior may be explained by the nature of the SMBO+EA hybrid. The
number of solutions suggested by the model is constant (here: two),
whereas the number of solutions suggested by the EA operators
increase with n. Hence, the hybrid will tend to behave more sim-
ilar to a model-free EA for larger n. This indicates that it may be
necessary for the model-based part to scale with n, too, to provide
better performance. Hence, it may be profitable to combine it with
the q-EI or IPI approaches.

7 SUMMARY AND OUTLOOK
In conclusion, the given results show that SMBO is very well ap-
plicable to parallelized server environments. However, the given
results indicate that scaling to a high level of parallelization is still
an issue in current state of the art SMBO algorithms. More future
research in the field of parallelization of expensive to evaluate
objective functions is required.

For the SMBO+EA algorithm design, many possibilities for future
improvements exist. Firstly, selection criteria for choosingwhich EA
generated individuals shall be evaluated on the objective function
should be compared and implemented. That is, the surrogate model
may be employed to select the more promising of the candidate
solutions proposed by the EA operators.

E
A

 s
in

g
le

C
o

re

K
ri

g
−

B
P

K
ri

g
−

E
I

K
.B

P
+

K
.E

I

E
A

−
n

C
o
re

s

K
.B

P
+

K
.E

I+
R

n
d
.S

m
p

l.

K
.B

P
+

K
.E

I+
L
H

S

S
M

B
O

+
E

A
−

a
s
y
n

c

S
M

B
O

+
E

A
+

S
F

−
a
s
y
n

c

S
M

B
O

+
E

A
−

s
y
n

c

S
M

B
O

+
E

A
+

S
F

−
s
y
n
c

IP
I−

n
−

c
o

re
s

q
−

E
I

q
−

E
I−

B
o

u
n
d

e
d

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8

o
b

je
c
ti
ve

 f
u
n

c
ti
o
n

 v
a
lu

e

Parallel evals: 15 Testfunction: ESP

5 4 4 3 1 3 3 1 1 1 1 2

NA NA

Figure 5: Optimization results on the high dimensional ESP-
problem. In the experiments 15 function evaluations were
possible in parallel. Red numbers at the bottom indicate the
given rank based on pairwise multiple-comparison tests.

Also, a switching criterion between the synchronous and asyn-
chronous SMBO+EA architecture should lead to better performance.
In the beginning of any optimization run, few data points are avail-
able to fit a surrogate model. Thus, each data point is essential for
model quality. Due to the low amount of data at this point, model
training and optimization requires less time. However, with the
growing amount of evaluated candidate solutions, the impact of
each new candidate solution on the model quality diminishes and
computational cost of the model increases. Thus starting with the
synchronous implementation and switching to the asynchronous
one in the later optimization progress should yield better perfor-
mance.

REFERENCES
[1] Thomas Bartz-Beielstein and Martin Zaefferer. 2017. Model-based methods for

continuous and discrete global optimization. Applied Soft Computing 55 (2017),
154 – 167. https://doi.org/10.1016/j.asoc.2017.01.039

[2] Bernd Bischl, Simon Wessing, Nadja Bauer, Klaus Friedrichs, and Claus Weihs.
2014. MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization. In
Learning and Intelligent Optimization, Panos M. Pardalos, Mauricio G.C. Resende,
Chrysafis Vogiatzis, and Jose L. Walteros (Eds.). Springer International Publishing,
Cham, 173–186.

[3] William Jay Conover. 1999. Practical Nonparametric Statistics, 3rd Edition. Wiley.
[4] William Jay Conover and Ronald L. Iman. 1979. On multiple-comparisons proce-

dures. Technical Report Tech. Rep. LA-7677-MS. Los Alamos Sci. Lab.
[5] Alexander Forrester, Andy Keane, et al. 2008. Engineering design via surrogate

modelling: a practical guide. John Wiley & Sons.
[6] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. 2010. Kriging is

well-suited to parallelize optimization. In Computational Intelligence in Expensive
Optimization Problems. Springer, 131–162.

[7] Raphael T. Haftka, Diane Villanueva, and Anirban Chaudhuri. 2016. Paral-
lel surrogate-assisted global optimization with expensive functions – a sur-
vey. Structural and Multidisciplinary Optimization 54, 1 (01 Jul 2016), 3–13.



GECCO ’18, July 15–19, 2018, Kyoto, Japan Rehbach et al.

Table 2: Overview of optimization performances on all problems. Results are ranked based on pairwise multiple-comparison
tests. For each problem, the best method is marked in bold font. The last column gives the mean rank. Best mean rank is
underlined and printed in bold font.

n method ES
P

Ro
se
.2D

Ra
st
.5D

Ra
st
.10

D

Br
an
.2D

H
ar
t.6

D

Co
lv
.4D

m
ea
n

3

EA singleCore 4 5 5 6 4 6 4 4.857
Krig-BP 3 5 1 1 6 6 2 3.429
Krig-EI 3 6 6 7 5 5 5 5.286
K.BP+K.EI 2 4 3 5 4 4 3 3.571
EA-nCores 2 4 3 3 2 3 1 2.571
K.BP+K.EI +RandomSamples 1 3 3 4 3 4 3 3.000
K.BP+K.EI+LHS 1 3 4 4 3 4 3 3.143
SMBO+EA-async 1 3 2 1 2 3 1 1.857
SMBO+EA+SF-async 1 3 2 2 2 3 1 2.000
SMBO+EA-sync 1 3 2 1 2 2 1 1.714
SMBO+EA+SF-sync 1 3 2 1 2 3 1 1.857
IPI-n-cores 2 2 2 4 5 2 2 2.714
q-EI NA 2 4 4 2 2 3 2.833
q-EI-Bounded NA 1 2 3 1 1 1 1.500

5

EA singleCore 5 5 5 6 4 7 5 5.286
Krig-BP 4 6 1 2 5 7 4 4.143
Krig-EI 4 6 6 6 4 6 6 5.429
K.BP+K.EI 3 5 4 5 4 5 5 4.429
EA-nCores 2 5 3 3 3 4 2 3.143
K.BP+K.EI +RandomSamples 2 4 3 4 3 5 4 3.571
K.BP+K.EI+LHS 3 4 3 3 3 5 4 3.571
SMBO+EA-async 1 4 1 1 2 2 2 1.857
SMBO+EA+SF-async 2 4 2 2 3 3 3 2.714
SMBO+EA-sync 1 4 1 1 2 1 2 1.714
SMBO+EA+SF-sync 1 3 1 2 3 3 3 2.286
IPI-n-cores 2 3 2 4 4 1 2 2.571
q-EI NA 2 5 5 2 4 1 3.167
q-EI-Bounded NA 1 3 4 1 2 1 2.000

n method ES
P

Ro
se
.2D

Ra
st
.5D

Ra
st
.10

D

Br
an
.2D

H
ar
t.6

D

Co
lv
.4D

m
ea
n

10

EA singleCore 5 7 6 8 6 6 6 6.286
Krig-BP 4 7 3 4 6 5 4 4.714
Krig-EI 4 7 6 8 5 5 6 5.857
K.BP+K.EI 3 6 4 5 3 4 5 4.286
EA-nCores 1 5 4 3 4 3 3 3.286
K.BP+K.EI +RandomSamples 3 4 2 2 2 3 4 2.857
K.BP+K.EI+LHS 3 4 2 2 2 3 4 2.857
SMBO+EA-async 1 3 1 1 1 1 2 1.429
SMBO+EA+SF-async 1 3 1 1 1 1 2 1.429
SMBO+EA-sync 1 3 1 1 1 1 2 1.429
SMBO+EA+SF-sync 1 3 1 1 1 1 2 1.429
IPI-n-cores 2 2 2 4 3 2 3 2.571
q-EI NA 2 5 7 2 3 1 3.333
q-EI-Bounded NA 1 5 6 1 2 1 2.667

15

EA singleCore 5 6 5 8 6 5 7 6.000
Krig-BP 4 6 3 5 6 4 6 4.857
Krig-EI 4 5 4 7 5 4 7 5.143
K.BP+K.EI 3 5 3 4 4 3 6 4.000
EA-nCores 1 4 3 3 4 3 3 3.000
K.BP+K.EI +RandomSamples 3 4 2 2 3 3 5 3.143
K.BP+K.EI+LHS 3 4 2 2 3 2 5 3.000
SMBO+EA-async 1 3 1 1 1 1 2 1.429
SMBO+EA+SF-async 1 3 1 1 1 1 2 1.429
SMBO+EA-sync 1 3 1 1 1 1 2 1.429
SMBO+EA+SF-sync 1 3 1 1 1 1 2 1.429
IPI-n-cores 2 2 2 4 3 1 4 2.571
q-EI NA 2 4 6 3 2 1 3.000
q-EI-Bounded NA 1 4 6 2 2 1 2.667

https://doi.org/10.1007/s00158-016-1432-3
[8] Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient Global

Optimization of Expensive Black-Box Functions. Journal of Global Optimization
13, 4 (01 Dec 1998), 455–492. https://doi.org/10.1023/A:1008306431147

[9] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.

[10] Alison L. Marsden, Meng Wang, John E. Dennis, and Parviz Moin. 2004. Optimal
Aeroacoustic Shape Design Using the Surrogate Management Framework. Opti-
mization and Engineering 5, 2 (01 Jun 2004), 235–262. https://doi.org/10.1023/B:
OPTE.0000033376.89159.65

[11] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. 1978. Towards Global
Optimization 2. North-Holland, Chapter The application of Bayesian methods
for seeking the extremum, 117–129.

[12] Thorsten Pohlert. 2014. The Pairwise Multiple Comparison of Mean Ranks
Package (PMCMR). (2014). http://CRAN.R-project.org/package=PMCMR R
package.

[13] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker.
2005. Surrogate-based analysis and optimization. Progress in aerospace sciences
(2005).

[14] Jakob Richter, Helena Kotthaus, Bernd Bischl, Peter Marwedel, Jörg Rahnenführer,
and Michel Lang. 2016. Faster Model-Based Optimization Through Resource-
Aware Scheduling Strategies. In Learning and Intelligent Optimization, Paola
Festa, Meinolf Sellmann, and Joaquin Vanschoren (Eds.). Springer International
Publishing, Cham, 267–273.

[15] Matthias Schonlau. 1997. Computer experiments and global optimization. (1997).
[16] Matthew A. Taddy, Herbert K. H. Lee, Genetha A. Gray, and Joshua D. Grif-

fin. 2009. Bayesian Guided Pattern Search for Robust Local Optimization.
Technometrics 51, 4 (2009), 389–401. https://doi.org/10.1198/TECH.2009.08007
arXiv:http://dx.doi.org/10.1198/TECH.2009.08007

[17] Rasmus K. Ursem. 2014. From Expected Improvement to Investment Portfolio
Improvement: Spreading the Risk in Kriging-Based Optimization. Springer Interna-
tional Publishing, Cham, 362–372. https://doi.org/10.1007/978-3-319-10762-2_36

[18] Henry G Weller, G Tabor, Hrvoje Jasak, and C Fureby. 1998. A tensorial ap-
proach to computational continuum mechanics using object-oriented techniques.

Computers in physics 12, 6 (1998), 620–631.
[19] Martin Zaefferer, Joerg Stork, Martina Friese, Andreas Fischbach, Boris Nau-

joks, and Thomas Bartz-Beielstein. 2014. Efficient Global Optimization for
Combinatorial Problems. In Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation (GECCO’14). ACM, New York, NY, USA, 871–878.
http://doi.acm.org/10.1145/2576768.2598282



Kontakt/Impressum
Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe "CIplus". Alle Veröf-
fentlichungen dieser Reihe können unter
https://cos.bibl.th-koeln.de/home

abgerufen werden.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.
Datum der Veröffentlichung: 14.11.2018

Herausgeber / Editorship
Prof. Dr. Thomas Bartz-Beielstein,
Prof. Dr. Wolfgang Konen,
Prof. Dr. Boris Naujoks,
Prof. Dr. Horst Stenzel
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
TH Köln,
Steinmüllerallee 1,
51643 Gummersbach
url: www.ciplus-research.de

Schriftleitung und Ansprechpartner/ Contact editor’s office
Prof. Dr. Thomas Bartz-Beielstein,
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
TH Köln,
Steinmüllerallee 1, 51643 Gummersbach
phone: +49 2261 8196 6391
url: http://www.spotseven.de
eMail: thomas.bartz-beielstein@th-koeln.de

ISSN (online) 2194-2870

https://cos.bibl.th-koeln.de/home
www.ciplus-research.de
http://www.spotseven.de



