
Bridging Theory and Practice Through Modular Graphical
User Interfaces

Frederik Rehbach
TH Köln

Institute for Data Science,
Engineering and Analytics

Steinmüllerallee 1
51643 Gummersbach,

Germany
frederik.rehbach@th-koeln.de

Jörg Stork
TH Köln

Institute for Data Science,
Engineering and Analytics

Steinmüllerallee 1
51643 Gummersbach,

Germany
joerg.stork@th-koeln.de

Thomas Bartz-Beielstein
TH Köln

Institute for Data Science,
Engineering and Analytics

Steinmüllerallee 1
51643 Gummersbach,

Germany
thomas.bartz-beielstein@th-

koeln.de

ABSTRACT
State-of-the-art evolutionary algorithms and related search
heuristics are well suited to solve problems from industry.
Unfortunately, easy to use graphical user interfaces (GUI)
are not available for many algorithms. We claim that the
availability of well-designed GUIs might increase the accep-
tance of these algorithms in the real-world domain. The
spotGUI R-package, which is introduced in this paper, pro-
vides a GUI for the already well-established SPOT package.
It includes state-of-the-art algorithms and modeling tech-
niques that can be used without the requirement of opti-
mization or programming knowledge. Using the spotGUI
in industry, as well as education, delivered first promising
results.

Keywords
SPOT, Graphical User Interface, Real-World Applications

1. INTRODUCTION
Industrial problems are highly complex and challenging for
even the most advanced state-of-the-art algorithms. How-
ever, the difficulty in solving such problems is often not their
high complexity, but rather the challenge for a non-expert
user to apply a suitable algorithm. For a significant subset
of the existing optimization problems in industry, suitable
state-of-the-art algorithms already exist. Yet, they are often
still not applied because they are

a) not known to the field specialist or
b) no simple implementation is available.

This paper presents a simple to use GUI that bridges the
gap between existing algorithms and real-world problems.
The core of the new package relies on the Sequential Param-
eter Optimization Toolbox (SPOT) [1]. SPOT provides a
modular structure for combining sampling methods, mod-
eling techniques and optimizers for an all-in-one Surrogate
Model-Based Optimization (SMBO) toolbox. In SMBO, a
data-driven surrogate model is fitted to the data of an ex-
pensive to evaluate objective function, e.g., a complex sim-
ulation or a real-world experiment. Under the assumption
that the surrogate is cheap to evaluate, an extensive search
on the model becomes feasible. The predicted candidate
solution, which best fulfills some user-specified infill crite-

rion (e.g. best model function value) is evaluated on the
expensive objective function and further used to update the
model. The process is repeated in an iterative fashion. A
more in-depth explanation of SMBO and its applications can
be found in [5] and [2].

SPOT has been further improved and developed for many
years. Today the package provides a vast set of different
models, optimizers, and sampling schemes, each of which
can be configured to user specific requirements. The system
was initially targeted to parameter optimization tasks, but
is well suited to any costly to evaluate optimization prob-
lem. The availability of these methods together with their
respective documentation in the R-package is a first step
towards an easy to use modular optimization tool. How-
ever, SPOT remains a high-level toolbox, which requires
user experience and some R programming skills. Further-
more, since R is rarely used by engineers in industry, this
again leads to problems (a) and (b) as previously discussed.
The presented spotGUI tries to address these problems by
making the tools included in SPOT accessible to everyone
through an easy to use graphical interface.

The rest of this paper is structured as follows: Section 2
gives an overview of the basic functionality and some con-
ceptual ideas of the spotGUI. In Section3 two practical ex-
ample applications for the spotGUI applied in industry are
presented. One of which is the Electrostatic Precipitator
(ESP) Problem, a current, costly-to-evaluate, discrete opti-
mization problem from industry. Lastly, the software, future
opportunities, and room for improvements are discussed in
Section 4.

2. WORKFLOW
2.1 Availability
The spotGUI package shall give more users easy access to
SPOT. All stable versions are available on CRAN. Develop-
ment versions are published on GitHub. One of the primary
goals of the spotGUI is to allow non-R-users and even non-
programmers to use SPOTs model-based optimization tech-
niques. Additionally, it can benefit experienced SPOT users
by enabling a faster setup and even code generation which
will be covered in more detail in Section 2.5. The spotGUI
is developed in the R extension Shiny [4]. It is divided into



I: Setup

Objective Function

Variables and 
Dimensions

II: Parameters

Spot Config

Model and 
Optimizer Setup

IV: Save

Exports

R-Code
 Log

III: Experiment

Run Spot

Run, Evaluate 
and Visualize

Figure 1: Typical optimization workflow for SMBO
in the spotGUI

four separate tabs, arranged in a typical workflow order as
presented in Figure 1 and Algorithm 2.1. Each of the tabs
is explained in more detail in the following.

Algorithm 2.1: Surrogate Model-based Optimization

1 step I: setup
2 select and parametrize objective function
3 begin
4 step II: parameters
5 select and parametrize surrogate model
6 select and parametrize experimental design
7 step III: experiment
8 generate design points
9 evaluate design points with objective function

10 build initial surrogate model
11 while not termination-condition do
12 search for optimum on surrogate model
13 evaluate new point on the objective function
14 update surrogate model

15 end
16 step IV: save

17 end

2.2 Setup
The objective function is specified and parametrized on the
first setup tab. A screenshot of the configuration window is
shown in Figure 2. Additionally to having an option to insert
any function through the R-Environment and supporting
manual result input, the spotGUI provides a broad set of
preconfigured test functions.

The set of provided test functions is loaded from the ’smoof’
R-package [3], which provides an interface to many single-
and also multi-objective test functions. Of these, the spot-
GUI only includes the current set of single-objective func-
tions, totaling in 76 test functions. Each of these functions
is loaded with its respective bounds as well as dimensional-
ity. Scalable functions are loaded as 2-dimensional functions
and can then be adapted by the user to any desired dimen-
sionality. The ’smoof’ package also allows the user to filter
the functions by specific tags such as ”separable”, ”differen-
tiable” or ”weak-global-structure”. This makes it possible to
test a given optimizer on a particular type of test function
that should behave somewhat similar to a real-world prob-
lem that shall be solved. Different settings for SPOT and
its tools can quickly be tested by using the spotGUI with
the given set of test functions.

The possibility to manually input evaluation results enables
non-programmers to use the spotGUI without any require-
ments for an objective function definition in code. Thus
for example making it possible to use SPOT to optimize

Figure 2: Screenshot illustrating the objective func-
tion setup in the spotGUI. The user has to define the
function as well as it’s dimensionality and variable
types.

some real-world experiments by entering / importing the
experiment results back into the spotGUI. The only con-
figuration required in this scenario is to insert information
on the problem dimensions. Each dimension is configured
with a type (numeric/integer/factorial), as well as upper
and lower bounds. If there are multiple dimensions with the
same upper and lower bounds, the convenience option ”am-
ntDimensions” can be used to specify that the same bounds
are required multiple times.

2.3 Parameters
One of the main benefits of the spotGUI becomes evident
during the setup of SPOT itself. As previously mentioned
SPOT features a wide variety of different models and op-
timizers, each of which again provides a variety of config-
uration options. In the spotGUI, these are conveniently
selectable from drop-down menus. Showing each available
option together with simple explanations through tooltips,
tackles the requirement of any documentation reading for
the user. The settings are arranged in four categories cov-
ering a general setup, modeling setup, optimizer setup and
lastly design setup. Skipping the ’Spot Config’ tab alto-
gether results in a robust default setup for SPOT.

2.4 Experiment
The previously configured processes are executed in the ”Run
Spot” tab. The available options include creating a DOE,
fitting a model, running a model-based optimization, and
more. In the following, these methodologies will be briefly
explained. In many expensive real-world applications, an
initial screening for variable importance and interaction is
desired. The spotGUI provides the option to do so with
a configured sampling method to build a design of experi-
ments. Depending on the objective function configuration,
the generated experiments can be evaluated automatically or
manually, e.g. a real-world experiment. Such manual results
can either be imported into the spotGUI or directly entered
into the result table. A surrogate-model is fitted to the
given data making interactive 3D-visualizations available.



Figure 3: Auto generated plot showing the fitted
surrogate model. Red dots indicate evaluated can-
didate solutions. Hovering the mouse over the plot
results in the black info box showing more detailed
information for the given plot location. The tool-
bar above the plots provides features for easy plot
exports.

The graphics are generated through plotly, an R-library for
creating web-based graphs [7]. The availability of interactive
3D plots enables the user to learn more about the landscape
of their objective function intuitively and gives a deeper in-
sight into variable behavior. After a model fit, it is easily
possible to run an optimizer on the model to propose a sin-
gle next candidate solution, thus enabling SMBO even to a
manual user / non-programmer.

Further options are again aimed at enhancing the automatic
evaluation and optimization of a configured objective func-
tion. As sometimes even just a few objective function evalu-
ations might take a long time, the spotGUI execution can be
interrupted and restarted from the last completed function
evaluation. For users who only want to use the spotGUI as
a quick setup tool for their code, another option exists. By
entering the ’Log Only’ mode, all computations that would
usually be applied to the objective function are skipped. In-
stead, the actions are only written to the code log. From
there they can be exported and used in any R-Script, en-
abling an extra fast setup for new SPOT projects.

2.5 Save
Each action that is executed in the spotGUI is written into
an exportable R-Code log. The log is accessible on the ’Ex-
port’ tab of the GUI, it can easily be exported or copied to
the clipboard through the provided button. The resulting
R-Code can be run standalone (given the spotGUI library
is installed) and generates the same results as previously
shown in the experimentation tab. This also ensures re-
producibility of any work that was done with the help of
spotGUI.

3. EXAMPLE APPLICATIONS
3.1 Applying the Manual Mode
The spotGUI offers a couple of functionalities to be easily
usable and applicable to problems where real-world experi-
ments are required. We can imagine the following example
where the user is not too affine with software programming:
A machine engineer who needs to set up a new metal hard-
ening machine to deliver good performance.

Through the machine’s interface, he is allowed to control two
temperature parameters which define a temperature curve
that the machine runs through in the hardening process.
Additionally, he can change two time parameters which de-
fine the duration of the heating as well as the cooling phase
in the hardening process. He is looking for the set of opti-
mized parameters which result in the hardest end product.
However, each test requires to run the hardening machine
for a few hours and involves material costs. In this scenario,
the manual mode of the spotGUI could help the engineer in
this parameter optimization problem. First of all, by using
the spotGUI in the manual mode, no coded fitness function
is used. Instead, parameter settings are proposed by SPOT,
manually evaluated on the hardening machine and inserted
into the results table by the engineer.

The detailed workflow is as follows: After an initial setup
in the spotGUI, defining the bounds and types of the in-
put parameters, a DOE (Design of Experiments) is built.
This is quickly done via the ’createDOE’ button in the ’run-
Mode’ tab. A model can be fitted, and a visualization of it
is available. With the now to him available information, the
engineer could continue in a few different ways. He could
straightforward accept the best solution found in the DOE.
However, this should not be done if resources for more ma-
chine tests exist. Continuing with a more in-depth DOE,
he could increase the DOE budget and optionally shrink the
parameter bounds to an area that is considered as promis-
ing by the fitted model. The second option to spend the
remaining test budget is to run an optimizer on the fitted
model via the ’propose new point’ functionality. This ad-
ditional point is the model optimum for some configured
infill-criterion. This criterion might be the best-predicted
point, but depending on the model, it could for example
also be the point with the highest expected improvement as
utilized in EGO [6]. After evaluating the proposed point on
the machine, the model can be refitted to include the new
data point. After that, the ’propose new point’ functionality
is usable again. Therefore, by using this feature, surrogate
model-based optimization is available in a manual use case,
making a well-known and powerful optimization technique
available to a broader audience. Lastly, the configuration
of the spotGUI can easily be changed during the optimiza-
tion process, allowing for a more interactive optimization
approach.

3.2 The Electrostatic Precipitator Problem
Electrostatic precipitators (ESP)s are large scale electrical
filtering/separation devices. They are used to remove solid
particles from gas streams, such as from the exhaust gases
of coal-burning power plants. An overview of the struc-
ture of an ESP can be seen in Figure 4. The illustrated
separator has three central separation zones in which the



Figure 4: Electrostatic precipitator with 3 separa-
tion zones. This figure was kindly provided by Stein-
müller Babcock Environment GmbH.

particles are separated from the gas flow by the precipita-
tor. Gas streams in from piping through the inlet hood and
exits through an outlet hood. The entrance and exit pip-
ing of the separator has a much smaller cross-section and
therefore a higher gas velocity than desired in the separa-
tor. Without additional measures the fast gas stream would
rush through the center of the precipitator, resulting in very
low separation efficiency. The primary optimization target
is the so-called gas distribution system (GDS). The GDS is
mounted directly behind the flue gas inlet of the precipita-
tor. It is used to distribute the gas flow from the small inlet
cross-section to the much larger cross-section of the precip-
itation zones. The GDS in the given application consists of
49 configurable slots. Each of these slots can be filled with
different types of metal plates, porous plates, angled plates,
or be left completely empty. Increasing the separators effi-
ciency by achieving a more evenly distributed gas flow al-
lows a smaller overall separator. A reduced separator size,
together with lowered operating costs would accumulate to
multiple millions of euro in cost reduction.

Two central factors reveal a complex to solve optimization
problem:

a) The amount of configurable slots together with the
amount of available configurations per slot leads to
≈ 1041 possible configurations for the overall system

b) Each objective function evaluation requires a costly
CFD-simulation in order to judge the gas flow through
the system

The ESP optimization was approached with a combination
of a parallelized model-based evolutionary algorithm that
was equipped with newly created task-specific mutation and
recombination operators. Tuning these operators was re-
quired in order to be able to reduce the overall runtime of
each optimization to fit into standard project run times. In
this industry project, the spotGUI was successfully applied
to set up parameter tuning for the evolutionary algorithm
and its operators.

4. SUMMARY
The SPOT package has been available for many years. It
has been continuously updated and grew to a very large and
useful platform. However, through the growing amount of
possible configurations and use cases it simultaneously be-
came more complex to dig through all settings and find the
best ones for each problem. The here introduced spotGUI
package reduces the configuration complexity back down to
a level where any beginner can use the package. It was suc-
cessfully applied to industry use cases as well as in student
courses. Thus, demonstrating its ease of use and capability
to provide easy to access visual information. The playful
style with which different optimization methods can be ap-
plied makes the software a useful tool in education.

One of the most significant drawbacks of the current ver-
sion of the spotGUI is its dependency on R. Till now, the
spotGUI can only be published as a web application avail-
able through a browser or started directly in R. Future work
on the spotGUI will, therefore, concentrate on making the
software available as a standalone executable without the
requirement of starting it through R. Additionally, more fea-
tures are planned or even already are under construction, in-
cluding: Parallelization support for SPOT, more DOE and
analysis functionality, additional exports, and report gener-
ation.

5. ACKNOWLEDGEMENT
Parts of this work were supported by the ”Ministerium für
Kultur und Wissenschaft des Landes Nordrhein-Westfalen”
(FKZ: 005-1703-0011).

6. REFERENCES
[1] T. Bartz-Beielstein and M. Zaefferer. A Gentle

Introduction to Sequential Parameter Optimization.
CIplus 1/2012, Fakultät 10 / Institut für Informatik,
2012.

[2] T. Bartz-Beielstein and M. Zaefferer. Model-based
methods for continuous and discrete global
optimization. Applied Soft Computing, 55:154 – 167,
2017.

[3] J. Bossek. smoof: Single- and Multi-Objective
Optimization Test Functions. The R Journal,
9(1):103–113, 2017.

[4] W. Chang, J. Cheng, J. Allaire, Y. Xie, and
J. McPherson. shiny: Web Application Framework for
R, 2018. R package version 1.1.0.

[5] A. Forrester, A. Keane, et al. Engineering design via
surrogate modelling: a practical guide. John Wiley &
Sons, 2008.

[6] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455–492, 1998.

[7] C. Sievert, C. Parmer, T. Hocking, S. Chamberlain,
K. Ram, M. Corvellec, and P. Despouy. plotly: Create
Interactive Web Graphics via ’plotly.js’, 2017. R
package version 4.7.1.


