
Expected Improvement versus Predicted Value in
Surrogate-Based Optimization

Frederik Rehbach, Martin Zae�erer, Boris Naujoks, Thomas Bartz-Beielstein
Institute for Data Science, Engineering, and Analytics

TH Köln, Gummersbach, Germany
�rstname.surname@th-koeln.de

ABSTRACT
Surrogate-based optimization relies on so-called in�ll criteria (acqui-
sition functions) to decide which point to evaluate next. When Krig-
ing is used as the surrogate model of choice (also called Bayesian
optimization), one of the most frequently chosen criteria is expected
improvement. We argue that the popularity of expected improve-
ment largely relies on its theoretical properties rather than empiri-
cally validated performance. Few results from the literature show
evidence, that under certain conditions, expected improvement may
perform worse than something as simple as the predicted value of
the surrogate model. We benchmark both in�ll criteria in an exten-
sive empirical study on the ‘BBOB’ function set. This investigation
includes a detailed study of the impact of problem dimensionality
on algorithm performance. The results support the hypothesis that
exploration loses importance with increasing problem dimensional-
ity. A statistical analysis reveals that the purely exploitative search
with the predicted value criterion performs better on most problems
of �ve or higher dimensions. Possible reasons for these results are
discussed. In addition, we give an in-depth guide for choosing the
in�ll criteria based on prior knowledge about the problem at hand,
its dimensionality, and the available budget.
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1 INTRODUCTION
Many real-world optimization problems require signi�cant resources
for each evaluation of a given candidate solution. For example, eval-
uations might require material costs for laboratory experiments or
computation time for extensive simulations. In such scenarios, the
available budget of objective function evaluations is often severely
limited to a few tens or hundreds of evaluations.

One standard method to e�ciently cope with such limited eval-
uation budgets is surrogate-based optimization (SBO). Surrogate
models of the objective function are based on data-driven models,
which are trained using only a relatively small set of observations.
Predictions from these models partially replace expensive objective
function evaluations. Since the surrogate model is much cheaper to
evaluate than the original objective function, an extensive search
becomes feasible. In each SBO iteration, one new candidate solution
is proposed by the search on the surrogate. The candidate is evalu-
ated on the expensive function and the surrogate is updated with
the new data. This process is iterated until the budget of expensive
evaluations is depleted.

A frequently used surrogate model is Kriging (also called Gauss-
ian process regression). In Kriging, a distance-based correlation
structure is determined with the observed data [12]. The search for
the next candidate solution on the Kriging model is guided by a
so-called in�ll criterion or acquisition function.

A straightforward and simple in�ll criterion is the predicted
value (PV). The PV of a Kriging model is an estimation or approxi-
mation of the objective function at a given point in the search space
[12]. If the surrogate exactly reproduces the expensive objective
function, then optimizing the PV yields the global optimum of the
expensive objective function. In practice, especially in the early
iterations of the SBO procedure, the prediction of the surrogate
will be inaccurate. Many in�ll criteria do not only consider the
raw predicted function value but also try to improve the model
quality with each new iteration. This is achieved by suggesting new
solutions in promising but unknown regions of the search space.
In essence, such criteria attempt to simultaneously improve the
local approximation quality of the optimum as well as the global
prediction quality of the surrogate.

The expected improvement (EI) criterion is considered as a stan-
dard method for this purpose [20]. EI makes use of the internal
uncertainty estimate provided by Kriging. The EI of a candidate so-
lution increases if the predicted value or the estimated uncertainty
of the model rises.

The optimization algorithm might converge to local optima, if
solely the PV is used as an in�ll criterion. In the most extreme case,
if the PV suggests a solution that is equal to an already known
solution, the algorithm might not make any progress at all, instead
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repeatedly suggesting the exact same solution [12]. Conversely, EI
can yield a guarantee for global convergence, and convergence rates
can be analyzed analytically [8, 33]. As a result, EI is frequently
used as an in�ll criterion.

We brie�y examined 24 software frameworks for SBO. We found
15 that use EI as a default in�ll criterion, three that use PV, �ve
that use criteria based on lower or upper con�dence bounds [1],
and a single one that uses a portfolio strategy (which includes
con�dence bounds and EI, but not PV). An overview of the surveyed
frameworks is included in the supplementary material. Seemingly,
EI is �rmly established.

Despite this, some criticism can be found in the literature. Wess-
ing and Preuss point out that the convergence proofs are of the-
oretical interest but have no relevance in practice [33]. The most
notable issue in this context is the limited evaluation budget that
is often imposed on SBO algorithms. Under these limited budgets,
the asymptotic behavior of the algorithm can become meaning-
less. Wessing and Preuss show results where a model-free CMA-ES
often outperforms EI-based EGO within a few hundred function
evaluations [33].

A closely related issue is that many in�ll criteria, including EI,
de�ne a static trade-o� between exploration and exploitation [13, 21,
30, 31]. This may not be optimal. Intuitively, explorative behavior
may be of more interest in the beginning, rather than close to the
end of an optimization run.

At the same time, benchmarks that compare EI and PV are far and
few between. While some benchmarks investigate the performance
of EI-based algorithms, they rarely compare to a variant based on
PV (e.g., [17, 23, 25, 27]). Other authors suggest portfolio strategies
that combine multiple criteria. Often, tests of these strategies do
not include the PV in the portfolio (e.g., [10, 18]).

We would like to discuss two exceptions. Firstly, Noe and Hus-
meier [24] do not only suggest a new in�ll criterion and compare it
to EI, but they also compare it to a broad set of other criteria, impor-
tantly including PV. In several of their experiments, PV seems to
perform better than EI, depending on the test function and the num-
ber of evaluations spent. Secondly, a more recent work by De Ath et
al. [9] reports similar observations. They observe that“Interestingly,
Exploit, which always samples from the best mean surrogate predic-
tion is competitive for most of the high dimensional problems” [9].
Conversely, they observe better performances of explorative ap-
proaches on a few, low-dimensional problems.

In both studies, the experiments cover a restricted set of problems
where the dimensionality of each speci�c test function is usually
�xed. The in�uence of test scenarios, especially in terms of the
search space dimension, remains to be clari�ed. It would be of
interest, to see how increasing or decreasing the dimension a�ects
results for each problem.

Hence, we raise two tightly connected research questions:

RQ-1 Can distinct scenarios be identi�ed where PV outperforms
EI or vice versa?

RQ-2 Is EI a reasonable choice as a default in�ll criterion?

Here, scenarios comprehend the whole search framework, such
as features of the problem landscape, dimension of the optimiza-
tion problem, or the allowed evaluation budget. In the following,
we describe experiments that investigate these research questions.

We discuss the results based on our observations and a statistical
analysis.

2 EXPERIMENTS
2.1 Performance Measurement
Judging the behavior of an algorithm requires an appropriate perfor-
mance measure. The choice of this measure depends on the context
of our investigation. A necessary pretext for our experiments is the
limited budget of objective evaluations we allow for focusing on
algorithms for expensive optimization problems. Since the objec-
tive function causes the majority of the optimization cost in such a
scenario, a typical goal is to �nd the best possible candidate solution
within a given amount of evaluations.

For practical reasons, we have to specify an upper limit of func-
tion evaluations for our experiments. However, for our analysis, we
evaluate the performance measurements for each iteration. Readers
who are only interested in a scenario with a speci�c �xed budget
can, therefore, just consider the results of the respective iteration.

2.2 Algorithm Setup
One critical contribution to an algorithm’s performance is its con-
�guration and setup. This includes parameters as well as the chosen
implementation.

All con�gurations and codes that are discussed in the following
are available on GitHub1. We chose the R-package ‘SPOT’ [2, 3] as
an implementation for SBO. It provides various types of surrogate
models, in�ll criteria, and optimizers. To keep the comparison be-
tween the EI and PV in�ll criteria as fair as possible, they will be
used with the same con�guration in ‘SPOT’. This mentioned con-
�guration regards the optimizer for the model, the corresponding
budgets, and lastly the kernel parameters for the Kriging surrogate.
The con�guration is explained in more detail in the following.

We allow each ‘SPOT’ run to expend 300 evaluations of the
objective function. This accounts for the assumption that SBO is
usually applied in scenarios with severely limited evaluation bud-
gets. This speci�cation is also made due to practical reasons: the
runtime of training Kriging models increases exponentially with
the number of data points. Hence, a signi�cantly larger budget
would limit the number of tests we could perform due to excessive
algorithm runtimes. Larger budgets, for instance, 500 or 1 000 eval-
uations, may easily lead to infeasible high runtimes (depending on
software implementation, hardware, and the number of variables).
If necessary, this can be partially alleviated with strategies that
reduce runtime complexity, such as clustered Kriging [29, 32]. How-
ever, these strategies have their own speci�c impact on algorithm
performance, which we do not want to cover in this work.

The �rst ten of the 300 function evaluations are spent on an
initial set of candidate solutions. This set is created with Latin
Hypercube sampling [22]. In the next 290 evaluations, a Kriging
surrogate model is trained at each iteration. The model is trained
with the ‘buildKriging’ method from the ‘SPOT’ package. This
Kriging implementation is based on work by Forrester et. al. [12],

1https://github.com/frehbach/rehb20a
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Table 1: Overview of the 24 BBOB test functions including some of their landscape features.

ID Name Speci�c Features
1 Sphere unimodal, separable, symmetric
2 Ellipsoidal unimodal, separable, high conditioning
3 Rastrigin multimodal, separable, regular/symmetric structure
4 Büche-Rastrigin multimodal, separable, asymmetric structure
5 Linear Slope unimodal, separable
6 Attractive Sector unimodal, low/moderate conditioning , asymmetric structure
7 Step Ellipsoidal unimodal, low/moderate conditioning, many plateaus
8 Rosenbrock unimodal/bimodal depending on dimension, low/moderate conditioning
9 Rosenbrock, rotated unimodal/bimodal depending on dimension, low/moderate conditioning
10 Ellipsoidal unimodal, high conditioning
11 Discus unimodal, high conditioning
12 Bent Cigar unimodal, high conditioning
13 Sharp Ridge unimodal, high conditioning
14 Di�erent Powers unimodal, high conditioning
15 Rastrigin multimodal, non-separable, low conditioning, adequate global structure
16 Weierstrass multimodal (with several global otpima), repetitive, adequate global structure
17 Scha�ers F7 multimodal, low conditioning, adequate global structure
18 Scha�ers F7 multimodal, moderate conditioning, adequate global structure
19 Griwank-Rosenbrock multimodal, adequate global structure
20 Schwefel multimodal, weak global structure (in the optimal, unpenalized region)
21 Gallagher G.101-me Peaks multimodal, low conditioning, weak global structure
22 Gallagher G. 21-hi Peaks multimodal, moderate conditioning, weak global structure
23 Katsuura multimodal, weak global structure
24 Lunacek bi-Rastrigin multimodal, weak global structure

and uses an anisotropic kernel:

k(x, x0) = exp

 d’
i=1

��i |xi � x 0i |pi
!
.

Here, x, x0 2 Rd are candidate solution vectors, with dimension d
and i = 1, . . . ,d . Furthermore, the kernel has parameters �i 2 R+
and pi 2 [0.01, 2]. During the model building, the nugget e�ect [12]
is activated for numerical stability, and the respective parameter �
is set to a maximum of 10�4. Parameters �i , pi and � are determined
byMaximum Likelihood Estimation (MLE) via di�erential evolution
[28] (‘optimDE’). The budget for the MLE is set to 500⇥ t likelihood
evaluations, where t = 2d + 1 is the number of model parameters
optimized by MLE (� ,p, �).

The respective in�ll criterion is optimized, after the model train-
ing. Again, di�erential evolution is used for this purpose. In this
case, we use a budget of 1 000 ⇥ d evaluations of the model (in
each iteration of the SBO algorithm). Generally, these settings were
chosen rather generously to ensure high model quality and a well-
optimized in�ll criterion.

To rule out side e�ects caused by potential peculiarities of the
implementation, independent tests were performed with a di�erent
implementation based on the R-package ‘mlrmbo’ [4, 5]. Notably,
the tests with ‘mlrmbo’ employed a di�erent optimizer (focus search
instead of di�erential evolution) and a di�erent Kriging implemen-
tation, based on DiceKriging [26].

2.3 Test Functions
To answer the presented research questions, we want to investi-
gate how di�erent in�ll criteria for SBO behave on a broad set of
test functions. We chose one of the most well-known benchmark
suites in the evolutionary computation community: the Black-Box
Optimization Benchmarking (BBOB)2 suite [14].While the test func-
tions in the BBOB suite themselves are not expensive to evaluate,
we emulate expensive optimization by limiting the algorithms to
only a few hundred evaluations. The standard BBOB suite contains
24 noiseless single-objective test functions, divided into �ve groups
by common features and landscape properties. The global optima
and landscape features of all functions are known. An overview of
the 24 functions and their most important properties is given in
Table 1. Hansen et al. present a detailed description [16].

Each of the BBOB test functions is scalable in dimensionality so
that algorithms can be compared with respect to performance per
dimension. Furthermore, each function provides multiple instances.
An instance is a rotated or shifted version of the original objective
function. All described experiments were run with a recent GitHub
version3, v2.3.1 [15]. Each algorithm is tested on the 15 available
standard instances of the BBOB function set.

Preliminary experiments were run using the smoof test func-
tion set implemented in the ‘smoof’ R-package [6, 7]. The smoof
package consists of a total of more than 70 single-objective func-
tions as well as 24 multi-objective functions. Since our analysis
will consider observations in relation to the scalable test function
2https://coco.gforge.inria.fr/
3https://github.com/numbbo/coco
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dimension, we do not further discuss the complete results of the
(often non-scalable) smoof test function set. Yet, considering the
�xed dimensions in smoof, similar observations were made for both
smoof and BBOB.

3 RESULTS
3.1 Convergence Plots
Our �rst set of results is presented in the form of convergence
plots shown in Figure 1. The �gure shows the convergence of the
SBO-PV and SBO-EI algorithm on two of the 24 BBOB functions.
These two functions (Rastrigin, Sharp Ridge) were chosen because
they nicely represent the main characteristics and problems that
can be observed for both in�ll criteria. These characteristics will
be explained in detail in the following paragraphs. A simple ran-
dom search algorithm was included as a baseline comparison. The
convergence plots of all remaining functions are available as supple-
mentary material, also included are the results with the R-package
‘mlrmbo’.

As expected, the random search is largely outperformed on three
to ten-dimensional function instances. In the two-dimensional in-
stances, the random search approaches the performance of SBO-PV,
at least for longer algorithm runtimes. For both functions shown
in Figure 1, it can be observed that SBO-EI works as good or even
better than SBO-PV on the two-, and three-dimensional function
instances. As dimensionality increases, SBO-PV gradually starts to
overtake and then outperform SBO-EI.

Initially, SBO-PV seems to have a faster convergence speed on
both functions. Yet, this speedup comes at the cost of being more
prone to getting stuck in local optima or sub-optimal regions. This
problem is most obvious in the two- and three-dimensional in-
stances, especially on the two-dimensional instance of BBOB func-
tion 3 (Separable Rastrigin). Here, SBO-EI shows a similar conver-
gence to SBO-PV on roughly the �rst 40 iterations. However, after
just 100 iterations, the algorithm appears to get stuck in local op-
tima, reporting only minimal or no progress at all. As Rastrigin is
a highly multi-modal function, the results for SBO-PV are not too
surprising. At the same time, SBO-EI yields steady progress over
all 300 iterations, exceeding the performance of SBO-PV.

Yet, this promising performance seems to change on higher
dimensional functions. On the �ve- and ten-dimensional function
sets, the performance of SBO-PV is close to the one of SBO-EI
early on. Later in the run, SBO-PV outperforms SBO-EI noticeably.
Neither algorithm shows a similar form of stagnation as was visible
for SBO-PV in the lower dimensional test scenarios.

This behavior indicates that with increasing dimensionality, it
is less likely for SBO to get stuck in local optima. Therefore, the
importance of exploration diminishes with increasing problem di-
mension. De Ath et al. reach a similar conclusion for the higher
dimensional functions they considered [9]. They argue that the
comparatively small accuracy that the surrogates can achieve on
high dimensional functions results in some internal exploration
even for the strictly exploitative SBO-PV. This is due to the fact
that the estimated location for the function optimum might be far
away from the true optimum. In Section 3.3 this is covered in more
detail. There, we investigate exactly how much exploration is done
by each in�ll criterion.

3.2 Statistical Analysis
To provide the reader with as much information as possible in
a brief format, the rest of this section will present data that was
aggregated via a statistical analysis. We do not expect that our data
follows a normal distribution. For example, we know that we have
a �xed lower bound on our performance values. Also, our data is
likely heteroscedastic (i.e., group variances are not equal). Hence,
common parametric test procedures that assume homoscedastic
(equal variance), normal distributed data may be unsuited.

Therefore, we apply non-parametric tests that make less assump-
tions about the underlying data, as suggested by Derrac et al. [11].
We chose theWilcoxon test, also known as Mann-Whitney test [19],
and use the test implementation from the base-R package ‘stats’.
Statistical signi�cance is accepted if the corresponding p-values are
smaller than � = 0.05. The statistical test is applied to the results of
each iteration of the given algorithms. As the BBOB suite reports
results in exponentially increasing intervals, the plot in Figure 2
follows the same exponential scale on the x-axis. The �gure shows
the aggregated results of all tests on all functions and iterations.
Blue cells indicate that SBO-EI signi�cantly outperformed SBO-PV,
while red indicates the opposite result. Uncolored cells indicate
that there was no evidence for a statistically signi�cant di�erence
between the two competing algorithms. The �gure is further split
by the input dimensionality (2,3,5,10) of the respective function,
which is indicated on the right-hand side of each subplot.

We start with an overview of the two-dimensional results. Ini-
tially, SBO-PV seems to perform slightly better than its competitor.
Until roughly iteration 60, it shows statistical dominance on more
functions than EI. Yet, given more iterations, EI performs well on
more functions than PV. The performance of SBO-PV with less
than 60 iterations, together with the convergence plots, indicates
that SBO-PV achieves faster convergence rates. Thus, SBO-PV is
considered the more greedy algorithm.

This same greediness of SBO-PVmay increasingly lead to stagna-
tion when more than 60 iterations are performed. Here, the SBO-PV
algorithm is getting stuck at solutions that are sub-optimal or only
locally optimal. SBO-EI starts to outperform SBO-PV, overtaking
it at roughly 70 iterations. At the maximum budget of 300 func-
tion evaluations, SBO-EI outperforms SBO-PV on 8 of the 24 test
functions. SBO-PV only works best on 3 out of the 24 functions
for the two-dimensional instances (Sphere, Linear Slope, Rosen-
brock). Notably, those three functions are unimodal (at least for
the two-dimensional case discussed so far). It is not surprising to
see the potentially more greedy SBO-PV perform well on unimodal
functions.

A similar behavior is observed on the three-dimensional function
set. Initially, SBO-PV performs well on up to �ve functions, while
SBO-EI only performs better on up to two functions. At around
85 iterations, SBO-EI again overtakes SBO-PV and then continues
to perform well on more than eight functions up to the maximum
budget of 300 iterations.

Based on the observations for the two- and three-dimensional
scenarios, one could assume that a similar pattern would be ob-
served for higher-dimensional functions. However, as previously
discussed, it seems that SBO-PV’s convergence rate is less likely
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Figure 1: Convergence plots of SBO-EI and SBO-PV on two of the 24 BBOB functions. Random search added as baseline. The
experiments are run (from left to right) on 2,3,5, and 10 input-dimensions. The y-axis shows the best so far achieved objective
function value on a logarithmic scale. The center line indicates the median of the algorithm repeats. The surrounding ribbon
marks the lower and upper quartiles. Y-values measure di�erences from the global function optimum.

to stagnate with increasing problem dimensionality. On the �ve-
dimensional functions, only three functions remain on which SBO-
EI outperforms at the maximum given budget. Namely: Rastrigin,
Büche-Rastrigin, and Gallagher’s Gaussian 101-me peaks function.
All of which have a large number of local optima. Furthermore,
Gallagher’s function has little to no global structure, thus requiring
a more explorative search. On the other hand, SBO-PV performs
better on up to 7 functions. This now also includes multimodal func-
tions, hence functions that are usually not considered promising
candidates for SBO-PV.

On the ten-dimensional function set, SBO-EI is outperformed
on nearly all functions, with only two temporal exceptions. Only
on the Sphere function and the Katsuura function, a statistically
signi�cant di�erence can be measured for a few iterations in favour
of SBO-EI. SBO-PV performs signi�cantly better on 9 out of the 24
functions. Only on the function group with weak global structure,
SBO-PV fails to produce signi�cantly better performance.

Summarizing these results for separate function groups, it is
noticeable that SBO-EI tends to work better on the multimodal
functions. Here, SBO-EI clearly excels on the two-, and three-
dimensional instances. On the functions with weak global structure,
it continues to excel on the �ve-dimensional functions and is at
least not outperformed on the ten-dimensional ones.

SBO-EI performs especially poor on ‘functions with low or mod-
erate conditioning’. Here, SBO-PV outperforms SBO-EI on at least
as many functions as vice versa, independent of the budget and the
problem dimensionality. Generally, multimodality does not seem
to require an explorative search methodology as long as the input
dimensionality is high.

3.3 Case Study: Measuring Exploration
The performance discussion in Section 3.1 largely relies on the
idea that SBO-PV generally does less exploration than SBO-EI.
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Figure 2: Statistical analysis of di�erence in performance be-
tween SBO-EI vs. SBO-PV. y-axis shows the BBOB-function
index. Colors indicate which in�ll criterion performed bet-
ter in each case, based on the statistical test procedure.
Blank boxes indicates that there was no signi�cant di�er-
ence found. The results are presented for the 2,3,5 and 10
dimensional BBOB-function set as indicated in the gray bar
to the right of each plot segment. The BBOB suite reports re-
sults in exponentially increasing intervals, thus the �gure
follows the same exponential scale on the x-axis.

Multiple functions were observed on which the search with SBO-
PV stagnates too early (cf. Section 3.1). On the other hand, we argue
that as long as SBO-PV does not get stuck in sub-optimal regions,
its greedy behavior leads to faster convergence and, thus, a more
e�cient search process. This may especially be true if the budget is

small in relation to the problem dimension. In other words, if time
is short, greedy behavior may be preferable.

To support this hypothesis, additional experiments were carried
out to determine the amount of "exploration" each criterion does
in di�erent stages of the optimization runs. For this purpose, we
assume that exploration can be estimated as the Euclidean distance
of a proposed candidate to its closest neighbor in the already eval-
uated set of candidate solutions. Therefore, placing a new point
close to a known point is regarded as an exploitative step. Else,
placing a new point far away from known points is considered as
an explorative step.

This measure was applied to the previously discussed optimiza-
tion runs on the BBOB function set. The results for the two functions
are shown in Figure 3. Represented are the same functions as in
the previous section for comparability. Results of the case study on
all 24 BBOB functions are included in the supplementary material.

As discussed earlier, the performance of SBO-PV stagnated on
the two- and three-dimensional instances of this function. Hence, it
is interesting to see that the measured distance becomes fairly small
in those same cases. While SBO-EI seems to make comparatively
large search steps, SBO-PV seems to propose candidate solutions
in the close vicinity of already known solutions.

On the higher-dimensional functions, the di�erence between
SBO-EI and SBO-PV decreases. On the Rastrigin function, both
in�ll criteria reach similar levels on the ten-dimensional function.
On the Sharp Ridge problem, a signi�cant di�erence between the
criteria remains. But the di�erence decreases with increasing prob-
lem dimension. This supports the idea that the convergence speed
of SBO-PV is generally higher due to less time being spent on
exploring the search space.

4 DISCUSSION
Before giving a �nal conclusion and an outlook on possible future
work, we will reconsider the underlying research questions of this
investigation.

RQ-1 Can distinct scenarios be identi�ed where PV outperforms
EI or vice versa?

The large quantity of results measured on the BBOB and the
smoof function sets (cf. Section 2.3) allows identifying scenarios in
which either PV or EI perform best.

• Problemdimension:Considering the previously presented
results, SBO-EI performs better on lower-dimensional func-
tions, whereas SBO-PV excels on higher dimensional func-
tions. If no further knowledge about a given optimization
problem is available, then the benchmark results indicate
that it is best to apply SBO-EI to functions with up to three
dimensions. Problems with �ve or more input dimensions
are likely best solved by SBO-PV.

• Budget: The main drawback of an exploitative search (SBO-
PV) is the likelihood of prematurely converging into a local
optimum. The larger the available budget of function eval-
uations, the more likely it is that SBO-PV will converge to
a local optimum. Yet, as long as SBO-PV is not stuck, it is
more e�cient in �nding the overall best objective function
value. Therefore, for many functions, there should be a cer-
tain critical budget until which SBO-PV outperforms SBO-EI.
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(b) BBOB Function 13 - Sharp Ridge

Figure 3: The proposed candidate solutions’ distance to its nearest neighbor in the set of known solutions. The y-axis shows
the measured Euclidean distance. The experiments are run (from left to right) on 2,3,5, and 10 input-dimensions. The colored
lines indicates themedian of the distance, computed over the repeated runs of each algorithm. The surrounding ribbonmarks
the lower and upper quartiles.

If the budget is larger, SBO-EI performs better. The results
indicate that this critical budget is increasing with input di-
mensionality. In the discussed benchmarks, SBO-EI started
to excel after roughly 70 iterations on the two- and three-
dimensional functions. On the �ve-dimensional set, SBO-EI
started excelling on some functions at around 200 iterations.
On the ten-dimensional, no signs of approaching such a crit-
ical budget could be observed, indicating that it might lie far
beyond (i.e. >> 300 evaluations) reasonable budgets for SBO.

• Modality: Lastly, any a priori knowledge regarding the land-
scape of the given function can be used to make a more
informed decision. For this, the function classes and land-
scape features of the BBOB function should be considered.
The greatest weakness of SBO-PV is to get stuck in local

optima (or �at, sub-optimal regions). Hence, if it is known
that a given function is fairly multimodal, then EI may be
a good choice. For simpler, potentially unimodal functions,
we recommend using PV.

RQ-2 Is EI a reasonable choice as a default in�ll criterion?
Since the best in�ll criterion changes depending on the optimiza-

tion problem, a simple answer to this question can not be given. We
suggest that the default choice should be determined depending on
what is known about the use case.

• Problem dimension: As discussed above, problem dimen-
sion is a crucial factor. Even when optimizing a black-box
function, the input dimensionality of the function should be
known a priori. Therefore, being able to select a proper in�ll
criterion based on input dimensionality should be applicable
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to most optimization tasks. The problem dimension is usu-
ally provided to the algorithm when the user speci�es the
search bounds.

• Budget: The available budget of function evaluations can
be considered for the selection of a good in�ll criterion. As
discussed above, the number of evaluations has a strong
impact on whether the EI or the PV criterion performs better.
However, the budget can not be determined automatically
and will depend on fairly problem-speci�c knowledge. In
practice, the importance of this has to be communicated to
practitioners.

• Modality: Another impact factor is the modality of the
search landscape. For black-box problems, this is usually
not known. To avoid premature convergence, a conservative
choice would be to select EI (as long as the problems are
low-dimensional and the budget is relatively high).

• Criterion Complexity: Regardless of performance, there
may be an additional argument for selecting the PV criterion:
its simplicity. This has two consequences. Firstly, it is easier
to implement and compute. Secondly, it is easier to explain,
which may help to bolster the acceptance of SBO algorithms
in practice.

5 CONCLUSION
In conclusion, we observe that SBO-EI performs di�erently than
often assumed. Especially on higher-dimensional functions, SBO-
PV seems to be the better choice, despite (or because) of its fairly
greedy search strategy. Only on lower-dimensional, multimodal
functions, SBO-PV is more likely to get stuck in local optima, at
least given the limited budgets under which our benchmark study
was performed. In these cases, the largely explorative approach of
SBO-EI is required to escape local optima. The proposed case study
con�rmed that the estimated exploration between SBO-PV and
SBO-EI, as measured in distance to the nearest neighbor, decreases
with increasing dimensionality.

Finally, we would like to end this paper with suggestions for
future research. First and foremost, the experiments clearly show
that the PV is a surprisingly competitive in�ll criterion. Future work
on new in�ll criteria should include PV in their benchmarks (e.g.,
as a baseline). Portfolio methods that cover multiple in�ll criteria
would likely pro�t from considering PV in their framework.

Future work should reassess the importance of explorative SBO
in practical applications. In this context, the sub-optimal perfor-
mance of SBO-EI for dimensionalities of �ve or more is troubling
and needs to be further investigated.

A consideration that was not covered in this work, is the global
model quality. A globally accurate model is not required for an
optimization task that only searches for a single optimum. However,
there may be additional requirements in practice. For instance,
the learned model may have to be used after the optimization
run to provide additional understanding of the real-world process
to practitioners or operators. A model that is trained with data
generated by a purely exploitative search might fall short of this
requirement, despite its ability to �nd a good solution.
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