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ABSTRACT
Real-world problems such as computational �uid dynamics sim-
ulations and �nite element analyses are computationally expen-
sive. A standard approach to mitigating the high computational
expense is Surrogate-Based Optimization (SBO). Yet, due to the
high-dimensionality of many simulation problems, SBO is not di-
rectly applicable or not e�cient. Reducing the dimensionality of
the search space is one method to overcome this limitation. In ad-
dition to the applicability of SBO, dimensionality reduction enables
easier data handling and improved data and model interpretability.
Regularization is considered as one state-of-the-art technique for
dimensionality reduction. We propose a hybridization approach
called Regularized-Surrogate-Optimization (RSO) aimed at over-
coming di�culties related to high-dimensionality. It couples stan-
dard Kriging-based SBO with regularization techniques. The em-
ployed regularization methods are based on three adaptations of
the least absolute shrinkage and selection operator (LASSO). In
addition, tree-based methods are analyzed as an alternative vari-
able selection method. An extensive study is performed on a set of
arti�cial test functions and two real-world applications: the elec-
trostatic precipitator problem and a multilayered composite design
problem. Experiments reveal that RSO requires signi�cantly less
time than standard SBO to obtain comparable results. The pros and
cons of the RSO approach are discussed, and recommendations for
practitioners are presented.
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1 INTRODUCTION
Real-world optimization problems often have multiple characteris-
tics that clearly distinguish them from arti�cial test-functions.

Mostly these characteristics impede an easy or quick optimiza-
tion approach. Among others, two of the most concerning criteria
are being high dimensional and being costly to evaluate. A popular
approach for the optimization of costly functions is Surrogate-Based
Optimization (SBO). In SBO a data-driven surrogate model is used
as a substitute for the real objective function. While the �tting pro-
cess requires some computational e�ort, the �tted model is much
cheaper to evaluate than the original function. A so-called in�ll
criterion is used to judge the quality of each candidate solution
on the surrogate model. Such a criterion could for example simply
be the predicted function value. An internal optimizer, such as an
evolutionary algorithm (EA), is used to extensively search for the
optimum of the cheap to evaluate surrogate. This optimum of the
in�ll criterion is evaluated on the real objective function leading to
an additional information gain that is used for updating and hope-
fully improving the surrogate model. This process is iteratively
repeated.

A more detailed explanation of SBO and its applications can be
found in [3] and [23]. Dealing with high dimensional problems
usually requires a large number of function evaluations to obtain
an adequate model �t. Yet, exactly this largely contradicts with a
high cost of function evaluation. Furthermore, even trying to build
a surrogate on high-dimensional data causes problems. Firstly, the
computational e�ort related to �tting amodel scales with the dimen-
sionality of the data. Fitting a high-dimensional surrogate model
might turn out to be just as expensive as evaluating the objective
function itself and thus diminishes the usefulness of SBO. Further-
more, depending on the applied model, �tting a problem with high
dimensionality might even be completely infeasible. This leads to
the �rst of the two main research questions:
(Q-1) How can SBO e�ciently be applied to high-dimensional ob-
jective functions?

The second research question stems from ongoing research co-
operations with industry. Simply delivering a black-box type algo-
rithm which somehow manages to �nd good solutions for a given
problem is neither ideal nor even accepted. In order to reach accep-
tance for a proposed new methodology, algorithms have to deliver
interpretable results. High-dimensional surrogate models are not
well interpretable. Having a model that only uses a few important
variables in order to predict a certain function increases the under-
standability and acceptance of an algorithm in industry. Therefore,
the second research question is:
(Q-2) How can the interpretability of high-dimensional SBO be
increased?

The rest of this paper is structured as follows: Section 2 gives
an overview of related research and introduces methodologies for
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variable selection. In Section 3, two applications from industry and
a set of arti�cial test-functions are presented. They are used to judge
the performance of our proposed methodology, which is presented
in Section 4. Section 5 describes the experimental setup. Results are
presented in Section 6 and �nally discussed in Section 7. The paper
concludes with a short outlook on future work.

2 RELATED RESEARCH
2.1 Kriging and E�cient Global Optimization
One of the most frequented model choices for low-budget opti-
mization is Kriging. Kriging uses Gaussian process models in order
to estimate the objective function value of some given candidate
solution. The predictions of Kriging are based on a correlation
structure which is calculated from the set of all evaluated candidate
solutions [9].

Kriging can deliver a high prediction accuracy even if only a very
limited dataset is available for the model �tting process. Addition-
ally, Kriging is also favored in SBO, due to its ability to estimate the
models uncertainty. Based on some candidate solution, Kriging gen-
erates a normal distribution of the corresponding objective value,
where the mean is the predicted value and the standard deviation
is the uncertainty.

Importantly, Krigings uncertainty estimate is used in the cal-
culation of the Expected Improvement (EI) in�ll criterion for a
given candidate solution [17]. EI is used in the popular E�cient
Global Optimization (EGO) algorithm [13]. EGO is based on the
idea that instead of searching for the candidate solution with the
best predicted objective function value, one can take into account
the models uncertainty estimate. The EI criterion combines the
bene�ts of an explorative search (search in unknown regions with
high uncertainty) with those of an exploitative search (only search
in the best predicted region). Therefore, EGO is known as a well
balanced algorithm for global optimization that does not get as
easily stuck in local optima.

2.2 Least Absolute Shrinkage and Selection
Operator

Regularization techniques are often used in engineering or other ap-
plied sciences to face high dimensional regression problems. While
a number of di�erent regularization methods are commonly used,
the Least Absolute Shrinkage and Selection Operator (LASSO) is
very popular. It is often chosen for its e�cient variable selection
property [27, 28]. This capability helps to deal with problems where
the number of variables is larger than the total number of obser-
vations, as it shrinks the coe�cients of non-important parameters
to zero. Therefore, the approach can be used parameter free. The
user does, for example, not have to select a speci�c threshold for
variable importance, as all non-important variables are assigned
exactly zero. Ordinary least squares (OLS) is the standard tech-
nique for estimating the unknown parameters in a linear regression
model. In ordinary least squares [8], we estimate the parameters
by minimizing the sum of the squared errors:

�̂OLS := argmin
�

�
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where n is the number of observations. The basic idea of LASSO
is to add a penalty term to the least squares problem, in order to
penalize non-zero parameter values. This is done in the following
way:
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where | |� | |1 is the so called l1�penalty and p is the number of deci-
sion variables also called predictors. It is worth noticing that setting
� = 0 results in �̂� ⌘ �̂OLS . The choice of �, also referred to as
regularization or penalty parameter, is crucial. In fact, it handles a
trade–o� between goodness–of–�t and sparsity. However, �nding
a good value for � does not require an additional user determined
parameter. � can be estimated during variable selection by employ-
ing cross-validation. Here, a common choice for the penalty value
is the one that minimizes cross-validation error.

2.3 Tree-Based Methods: Random Forests
Random forests, which were introduced by Breiman [5], build an
ensemble of tree based predictors. Each tree is grown on a randomly
sampled (bagged) subset of the training data. Random forests are
well-established robust models that can be build to �t mostly any
data independent of the class of used variables. Thus, also mixed
problems e.g. with numeric, integer, and categorical variables can
be �tted. Among others, random forests gained publicity in being
used for regression and classi�cation through Liaw et al. [15].

An extremely useful byproduct of random forests is their inher-
ent capability of estimating variable importance. There are multiple
possibilities to assess a set of given variables. Arguably the two
most used of these are the out-of-bag (OOB) error and the Gini
criterion. The OOB error is a bootstrapped methodology that esti-
mates the importance of a variable. The variable is removed as an
input for the bagged trees, and the quality drop in the prediction
is observed. A high di�erence in the OOB error is a sign for high
variable importance. The second heuristic, the Gini criterion, is
calculated by measuring the decrease in the Gini node impurity at
each split while building a tree. The average decrease in impurity
for a given variable is then assigned as the variables importance
[1].

The availability of variable importance measures even for mixed
and discrete problems renders random forests to be a good �t for
the industry problems which are covered in the next sections. Tutz
et al. [29] also make use of this characteristic of tree-based methods.
They argue that tree-based approaches outperform generalized
linear models in variable importance assessments when it comes
to higher-order terms and variable interactions. Yet, tree-based
methods tend to neglect the main e�ects [29].

3 PROBLEMS
3.1 The Electrostatic Precipitator Problem
The electrostatic precipitator (ESP) problem is an industrial opti-
mization problem that is part of ongoing research. A comprehensive
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Figure 1: ESPwith 3 separation zones. This�gurewas kindly
provided by Steinmüller Babcock Environment GmbH.

introduction to the ESP-problem which is based on [25] is given in
the following:

The ESP is one of the main components of gas cleaning systems.
They are used in large scale coal-�red power plants or other indus-
tries where solid particles have to be removed from a gas stream.
Electrostatic precipitators are large devices with dimensions of up
to 30m ⇥ 30m ⇥ 50m, resulting in multiple millions of Euros just in
steel building cost. The main task of an ESP is to separate and ex-
tract particles from exhaust gases in order to reduce environmental
pollution. Figure 1 illustrates this system.

In the �ue gas inlet hood of an ESP, a gas distribution system
(GDS) (shown in Figure 2) is required to control and guide the gas
�ow through separation zones in which particles are removed from
the exhaust gases. If no GDS is used, or if the system is con�gured
poorly, the fast inlet gas stream will rush through the separation
zones of the ESP. This results in very low separation e�ciencies. In
case of a well con�gured GDS, the in�owing gas is nicely distributed
across the whole surface of the separation zones, resulting in high
e�ciency. Hence, the e�cient operation of an ESP requires an
optimal con�guration of the GDS.

The GDS in the given industry project consists of 334 slots. Each
of these slots can be con�gured with ba�es, as well as blocking
and perforated plates. Ba�es are metal plates which are mounted
at an angle to the general gas �ow. They are used to redirect a gas
stream into a new direction. Blocking plates completely block a gas
stream. Perforated plates are used to slow down and only partially
block gas streams. They are created by punching a grid of holes
into metal plates. Smaller holes lead to higher pressure drops and
thus a slower gas stream. Larger holes allow for a nearly free gas
�ow. These plates can be mounted into each of the 334 con�gurable
slots. Optionally, some slots can also be left empty allowing the air
to pass through.

A single Computational Fluid Dynamics (CFD) simulation of the
system requires up to eight hours running in parallel on 16 cores.
This renders the models usage as a test-function in the development
of new algorithms as infeasible. For this reason, a smaller model

Figure 2: Visualization of a gas distribution system (GDS)
mounted in the inlet hood of an ESP. This �gure was kindly
provided by Steinmüller Babcock Environment GmbH.

with lowered computational cost was created. The resulting model
only requires between one and two minutes of runtime compared
to the multiple hours of the full model. This speed-up comes at the
cost of reduced simulation accuracy. However, the reduced model
still captures some of the di�culties and complex features of the
actual problem, while enabling a much more detailed experimental
study. Reproducing the rugged problem landscape is much more
important than the actual accuracy of each sample point.

The reduced model only uses 49 instead of the original 334 con-
�guration slots. Each of the 49 slots can be con�gured with one
of seven di�erent types of plates including leaving the slot empty.
The vast amount of possible con�gurations for the GDS reveals
a complex discrete optimization problem. Each single evaluation
of a given con�guration, still requires to run a computationally
expensive CFD simulation thus resulting in large runtimes for ex-
perimental studies.

The open source CFD framework OpenFOAM [30] was used to
perform our simulations. The original landscape of a real industrial
problem is transferred into a function which can be evaluated in
reasonable computation time. The ESP problem was therefore con-
sidered as a good industrial benchmark for this paper. Currently,
the accelerated simulation model is used to tune and advance the
research in algorithms for the optimization of the full long-running
simulation.

3.2 The Sandwich-Structured Composite Plate
Design Problem

Sandwich panels are composites structures consisting of two thin
laminate outer skins and lightweight, e.g., honeycomb, thick core
structure. Owing to the core structure, such composites are distin-
guished by sti�ness. Despite the thickness of the core, sandwich
composites are light and have a relatively high �exural sti�ness.
Given the considerable mechanical properties and the minimum
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Figure 3: Loads and boundary constrains applied to
sandwich-structured composite plate. The yellow arrows
represent the applied lifting loads, the purple ones the
torquing loads, and the blue and orange ones the encastre
boundary conditions.

weight, they represent one of the most attractive solutions in nu-
merous applications in the �elds of aeronautics, road vehicles, ships,
and civil engineering.

The objective of the Sandwich-Structured Composite Plate De-
sign (SCPD) optimization problem is to target the optimum design
of a sandwich-structured composite plate. The plate has been loaded
by lifting and torquing loads, linearly distributed along the length
of the plate. The lifting loads are applied on the nodes lying in
the one of the edges and the torquing ones on the nodes in the
centerline. An encastre at the root of the plate has been enforced
as shown in Fig. 3.

The objective of the optimization is then to minimize the dis-
placement in the out-of-plane direction of one of the vertices of
the plate at the free edge. For accurately computing this, the �nite
element analysis solver Abaqus [11] has been employed.

In the SCPD problem, the plate has been modeled with 19 di�er-
ent layers of equal thickness but di�erent materials. The 13 central
ones, the core, are constituted by Al-hexagonal-honeycomb. The
two thin laminate outer skins are made by one layer of �ber re-
inforced Carbon-Epoxy composite (outer) and two layers of �ber
reinforced Kevlar-Epoxy(inner). The adopted materials and their
properties are reported in Table 1. As one can see, the core is con-
stituted by an isotropic materials and the skins by orthotropic ma-
terials. In case of orthotropic materials, the sti�ness of the material
is crucially a�ected by the lamination angle. Contrarily, isotropic
materials have equal in-plane and out-of-plane Young’s modulus.
Hence, the lamination angle of isotropic materials does not a�ect
the material behavior.

In this problem, the lamination angles de�ning the design have
been considered as the decision variables of the optimization. It is
then clear that all the variables describing the lamination of the
layers made by Al-honeycomb have no in�uence in the response.

The purpose of this test case is to show the e�ective improve-
ments given by integrating the dimensionality reduction in the SBO
process.

3.3 Arti�cial Problems
In addition to the two discussed real-world problems, a multitude of
arti�cial test-functions is utilized in this study. Since these functions
are cheap to evaluate, a surrogate model-based approach for their
optimization is not e�cient. However, we argue that the results
obtained by optimizing these functions are transferable to other
more costly functions. The functions stem from a popular collection

Figure 4: Ply stack con�gurations. For each ply the thick-
ness, identical for all the plies, the lamination angle and the
constituent material are depicted. The red lines represent
the lamination angles.

Table 1: Properties of the Material used in the study of the
sandwich-structured composite plate design problem.

Properties Young’s Young’s In-plane Poisson’s
modulus 0 modulus 90 Shear modulus Ratio

Symbols E1 E2 G12 � 12
Units GPa GPa GPa
HC-Al 2.03 2.03 4.8 0
Kevlar-Epoxy 41 10.4 4.3 0.28
Carbon-Epoxy 147 10.3 7 0.27

of test functions, they were chosen for their variable importance
properties 1. All chosen test-functions have a subset of important
variables as well as a set of variables which is completely irrelevant
for the optimization. This simulates the circumstances that are
often met in real-world problems quite well. Here, it is often not
known which variables impact a system the most, or even at all.
There, one can in a lucky scenario estimate the importance of some
variables through the experience of a practitioner. Yet very often,
the importance of the variables is completely unknown, e.g. like in
the ESP-Problem. Table 2 gives an overview on all test-functions
which were used in this study. They range from ten dimensions
(the two functions given by Linkletter et al. [16]) up to the 30-
dimensional function from Morris et al. [19]. Moreover, the portion
of important to completely irrelevant variables varies from function
to function. The four given functions by Moon [18] are mostly
the same function yet with varying di�culty levels to distinguish
the �ve most important variables from other less important ones.
The R implementations for each of the arti�cial test-functions was
acquired from the Virtual Library of Simulation Experiments [26].
More details on each respective test-function can be found in the
literature cited in Table 2.

1https://www.sfu.ca/ ssurjano/screen.html
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Table 2: Test-functions and their dimensionality (nDim),
the amount of very important variables (nImp), the total
amount of relevant variables (nRelevant), and the amount
of irrelevant variables (nIrr). Since the real importances for
the ESP-Problem are unknown, question marks are used to
�ll the gaps.

Function Name nDim nImp nRelevant nIrr
linketal06dec [16] 10 2 6 4
linketal06sin [16] 10 2 2 8
moon10hd [18] 20 5 15 0
moon10hdc1 [18] 20 5 5 15
moon10hdc2 [18] 20 5 15 0
moon10hdc3 [18] 20 5 15 0
oakoh04 [20] 15 5 10 5
morretal06 [19] 30 2 2 28
ESP-Problem 49 ? ? ?
SCPD-Problem 19 2 6 13

4 ALGORITHMS
4.1 Surrogate-Based Optimization
The SBO algorithm applied in this study is a standard implementa-
tion based on EGO as described in 2.1. Thus, a Kriging surrogate is
iteratively �tted to all available data of the objective function. The
expected improvement in�ll criterion is optimized on the surrogate
in order to propose a next candidate solution. The R implementation
in the ’CEGO’-package [31] was used for Kriging.

4.2 Regularized Surrogate Optimization
In order to apply SBO e�ciently to high-dimensional objective
functions, we propose a hybrid algorithm: Regularized Surrogate
Optimization (RSO). It consists of standard SBO coupled with an
additional regularization stage. The implementation of RSO is ex-
plained in Algorithm 1, as well as visualized in Figure 5. During the
startup phase of the algorithm, an initial design of candidate solu-
tions is generated and evaluated on the objective function. Instead
of now building the surrogate model directly on this data, in RSO
a regularization method is used to decrease the dimensionality of
the given data. In this study, various methods are compared: three
approaches based on LASSO and one based on random forest. The
study is programmed in R [24].

As described in Section 2.2, LASSO is usually used for assigning
importances to the variables (dimensions) of a given dataset. Yet,
due to its characteristic of being able to set the importances of
variables to exactly zero, LASSO can easily be transformed into a
feature selection method.

Three methods based on LASSO regularization have been tested
in this study. They di�er on taking or not into account quadratic
e�ects. The �rst approach is based on the adaptive LASSO [32] and
aims at identifying only linear e�ects. It is essentially a two step
regularization process that takes advantage of a preliminary Ridge
regression [12] to have a clearer distinction between active and
inactive variables out of the LASSO regularization. This is done in

ObjecWiYe
FXncWion 

High-DimenVional
ReVXlW

LoZ-DimenVional 
DaWa

EYalXaWe

SWopping
CUiWeUion meW?

RegXlaUi]aWion OpWimi]aWion
AlgoUiWhm

SXUUogaWe
Model

OpWimi]aWion
Loop

SeTXenWial OpWimi]eU

ReYeUVe
RegXlaUi]aWion +

STOP

IniWial
DeVign

Figure 5: Implementation of the RSO algorithm: After the
evaluation of an initial design, the resulting data is reduced
through regularization. The lower-dimensional data is�tted
with a surrogatemodel. An optimization algorithm searches
for the best candidate solution on the surrogate model. The
proposed candidate is merged with information from a re-
verse regularizationmethod, back to the original dimension-
ality. The candidate is evaluated and the process is iterated
until some stopping criterion is met.

Algorithm 1 Implementation of the RSO algorithm: Here, initDe-
sign() is a function that produces an initial set of candidate solu-
tions, buildSurrogate() is a procedure to build a surrogate model,
and optimize() is a suitable optimization algorithm. The function
regularization() selects, and reduces X to its important features.
revRegularization() re�lls the missing dimensions ofX before eval()
can be used to evaluate the new candidate solution on the objective
function.
1: function RSO(initDesign(), buildSurrogate(), optimize(), regu-

larization(), revRegularization(), eval())
2: X = {x1,x2, ...,xn } = initDesign()
3: Ä = eval(X )
4: while !(stopping criterion) do
5: Xrd = regularization(X ) . reduce dimensionality of X
6: model = buildSurrogate(Xrd ,Ä)
7: xnew = optimize(model) . search optimum of model
8: xnew = revRegularization(xnew )
9: Änew = eval(xnew ) . evaluate in�lled candidate
10: X = {X ,xnew }
11: Ä = {Ä,Änew }
12: end while
13: end function

the following way:

ŵ� := argmin
�

�
| |Y � X� | |22 + �w | |� | |2

 

�̂�,�w := argmin
�

�
| |Y � X� | |22 + �ŵ�w | |� | |1
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10-fold cross-validation is used to determine both the regressions �
and �w values yielding the lowest mean absolute error. The same
procedure is also used in the other methods based on LASSO regu-
larization.

The second approach aims at identifying not only linear e�ects
but also pure quadratic ones. This consists in a standard LASSO
regression where pure quadratic terms are included as predictors.

X =
⇥
X X � X

⇤
The predictors having the coe�cients beyond the 90-th per-

centile are considered as active(Active):

ActiveL =
n
i 2 [1,nvar ] : �̂i > q0.9(�̂)

o

ActiveQ =
n
i 2 [1,nvar ] : �̂i+nvar > q0.9(�̂)

o
Active = ActiveL [ ActiveQ ,

where nvar is the number of variables, ActiveL and ActiveQ are the
sets of variables having respectively a considerable linear and pure
quadratic e�ect. For both these �rsts two methods the ’glmnet’-
package [10] has been adopted to perform the regression.

The third and more ambitious method is intended to screen the
active variables on the basis of all the linear and pairwise interac-
tions. This makes use of the ’hiernet’-package [4]. This approach
uses two criteria to screen the variables on the basis of their linear
and quadratic contribution. It identi�es the variables that have a sig-
ni�cant linear contribution (ActiveL ) using the same approach used
in the previous method. Following the notation of [4], the variables
having a strong linear contribution are computed as follows:

�̂ = |�̂+ � �̂� |

ActiveL =
n
i 2 [1,npred ] : �̂i > q0.9(�̂)

o
,

To screen all the coe�cients related to second-order interactions
a clustering approach based on k-means clustering is used. All the
coe�cients with value exactly zero are removed. Next two clusters
are de�ned using k-means clustering technique. Then the cluster
with the greatest mean is identi�ed and selected. Finally, all the
variables involved in at least one interaction coe�cient are elected
as signi�cant variables.

S⇤ = argmin
S

2’
i=1

’
�̂2Si

| |�̂ � µ̂i | |2

i⇤ = {i 2 [1, 2] : µ̂i = max(µ̂)}
ActiveQ =

�
j [ k : 8�j ,k 2 S⇤i⇤

 
,

where m̂ui is the mean of points in Si and �̂ are the coe�cients
related to the interactions [4]. The overall set of active variables is
then de�ned as Active = ActiveL [ ActiveQ .

Variable selection in random forests can be applied in a similar
fashion. The algorithms used in this study were implemented with
the help of the ’randomForest’-package [15]. Again, cross-validation
is used to sequentially remove variables from the dataset in the
order of their estimated importance. The set of variables with the
lowest cross-validation error is chosen for the next stage.

Next, a surrogate model (in this case, the Kriging implementation
of the ’CEGO’-package [31]) is trained. By only �tting the model to
the regularized dataset, the time required for the model building is

reduced signi�cantly. Just like in standard SBO, some in�ll criterion
can be optimized on the surrogate in order to propose a new can-
didate solution. The expected improvement criterion, which was
described in Section 2.1, was chosen for this process. The new candi-
date solution cannot be directly evaluated on the objective function.
Since the model and thus also the optimizer only searches for the
best con�guration for the selected variables, a reverse regulariza-
tion method is required to assign values to the neglected variables.
This method assigns a value to each of the variables which are not
included in the surrogate-model. Preliminary experiments showed
that uniform random sampling outperformed other in�ll methods.
Yet, a more detailed comparison of these reverse regularization
methods is out of the scope of this paper.

The combination of the information generated by the reverse
regularization method and the optimization of the surrogate model
can then be evaluated on the objective function. This process is
iteratively repeated until the budget is depleted or some stopping
criterion is met.

5 DESCRIPTION OF EXPERIMENTS
5.1 Replicability
In order to assure reproducability, all algorithm and experimenting
codes that are described in the following will be published. This
sadly excludes the codes to run the ESP-problem as they partially
contain company information. All other codes are available on
GitHub2.

5.2 Performance Criteria
Choosing the correct performance criteria for a set of experiments
often depends on the cost of each objective function evaluation. On
the one hand, if each evaluation is considered cheap, the amount
of function evaluations can be ignored and the overall required
runtime of the optimization can bemeasured. On the other hand, the
governing factor of cost might be to evaluate the objective function.
In that case, one can often neglect the runtime of the optimizers
themselves. Instead, there might only be a speci�c budget for the
amount of objective function evaluations that can be done. For
example, if one function evaluation is linked to some real-world
experiment, a company might only want to spend money for a
maximum of 200 such experiments.

Thus, how well an algorithm performs on a certain problem is
a�ected by both algorithm complexity and the problem cost. In
order to judge the presented methods from multiple standpoints
regarding a varying cost for each objective function evaluation,
both of these performance measures are implemented. In each
optimization run, the time required to �t and optimize the surrogate
model is recorded for each iteration. From this, the total runtime
of the optimizer itself can be approximated. Additionally, the best-
found objective function value of each run of the algorithms is
stored.

By combining these measurements, it is possible to judge which
algorithm performs best, considering a given problem cost. On
cheap problems, the faster algorithms should outperform the more

2https://github.com/frehbach/rehb20b
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complex ones. On costly problems, the more e�cient algorithms in
terms of function evaluations should win.

5.3 Experiment Design and Budget Allocation
Each optimization run starts with a rather small initial design size
of 5 candidate solutions, randomly sampled from the design space.
Since both of the described real-world problems are expensive
simulation tasks, only a small budget is feasible. Therefore, each
algorithm is given a total budget of 200 function evaluations. The
same budget is kept for the arti�cial test-functions, even though
they would be very cheap to evaluate. This is done in order to
improve comparability, as they are meant to simulate expensive to
evaluate functions.

In order to optimize the in�ll criteria of the �tted surrogate
models, additional optimization algorithms are necessary. For the
real-world problems with mixed-integer variables a mixed-integer
evolution strategy [14] from the "CEGO"-package [31] is employed.
The Di�erential Evolution [22] implementation of the "SPOT"-
package [2] is used to optimize the surrogates of the arti�cial test-
functions. In both cases, the algorithms were given a budget of 2000
cheap function evaluations to optimize the surrogate in�ll criterion.

To account for the stochasticity of all algorithms, a number
of repetitions are required for each experiment. Yet, numerous
experiments on more expensive functions would lead to a very
high computational cost. Each algorithm is applied 20 times to each
test-function to keep the experiment runtime feasible.

The results of the experiments are examined with a statistical
analysis. The same analysis procedure is executed one by one on
each test-function. First, a statistical multiple-comparisons test is
done. We judge di�erences between two results to be signi�cant if
the given p-values are smaller than � = 0.05. A ranking is created
by the following procedure: The set of algorithms which is never
outperformed with statistical signi�cance is assigned rank one (the
best rank). These algorithms are then removed from the list of all
algorithms and the same check is performed for the remaining
algorithms that are now competing for rank two and so on. This is
iteratively continued until all algorithms are assigned with a rank. A
pairwise-multiple comparison test, according to Conover [6, 7] was
used to check for di�erences between each of the algorithm pairs.
The tests use the R implementations of the "PMCMR"-package [21].

The testing methodology was chosen because the collected data
is not normally distributed, and is also heteroscedastic (i.e., group
variances are not equal). Therefore, parametric test procedures
that require normal distributed data are infeasible. Yet, also non-
parametric tests are not free of assumptions. The test assumes the
given data stems from statistically independent random samples
within and between the groups. Additionally, they are required to
have an ordinal measurement scale [6, p. 289]. For the collected
optimization results that we consider, these assumptions should
hold.

6 RESULTS
The two main objectives of RSO are performance enhancements
and runtime reduction. How well these goals were achieved can be
observed in Figure 6. For both problems, the results indicate that
switching to the RSO approach, regardless of the method adopted,

results in a signi�cant decrease in required algorithm runtime with
a comparable or even better �nal objective function result. For
example, on the ESP-Problem a more than 5x speedup can be ob-
served.

The di�erences between the RSO approaches can be compared
with the results depicted in Figures 6 and 7, where the results
obtained on two arti�cial test-functions are shown. Speci�cally, lin-
ketal06dec is linearly dependent on all important and relevant vari-
ables. This enhances the performances of Regularized-Surrogate-
Optimization (RSO) when adopting the regularization approach
based on the Adaptive LASSO or Random Forest and degrades them
when using regularization methods that aim at catching non-linear
dependencies. In particular, it is interesting to see from Figure 7
that RSO-LASSO-1 is able to screen all active variables from the
beginning on, throughout the whole optimization. RSO-LASSO-
2 and RSO-LASSO-3 are less able to catch the relevant variables.
RSO-LASSO-3 even neglects an important variable on liketal06dec.
Contrary, in case of moon10hdc1, the impact of the active variables
is completely due to quadratic terms. Therefore, RSO-LASSO-3 re-
sults to be the most appropriated. In fact, it rapidly screens the
important variables delivering statistically signi�cant better results
compared to standard SBO in less than one-fourth of the time.

An overview of the statistical analysis of the results can be found
in Table 3. A review of the results on the arti�cial test-functions
shows two key observations: Firstly, on the real-world problems, the
RSO variants largely deliver the same results in terms of resulting
objective function value. On the SCPD problem, RSO-LASSO-3 is
even able to outperform standard SBO signi�cantly. Secondly, the
arti�cial objective functions need to be discussed. Here, SBO is
never outperformed in terms of resulting objective function quality.
Yet, the di�erent RSO approaches often are able to deliver similar
results or slightly worse results in less computational time. When
there is a statistical quality di�erence between standard SBO and
the RSO approach, then often RSO based on LASSO regularization
delivered better quality results than RSO-RF.

Table 3: Performance overviewof all algorithmson each test-
function. Numbers shown are determined by rank-based
pairwise multiple-comparison tests regarding the objective
function value. The best result on each problem ismarked in
bold. The last-row shows the mean rank of each algorithm.

Problem RSO-RF RSO-LASSO-1 RSO-LASSO-2 RSO-LASSO-3 SBO
linketal06dec 1.0 1.0 1.0 2.0 1.0
linketal06sin 1.0 1.0 1.0 1.0 1.0
moon10hd 2.0 1.0 4.0 3.0 1.0
moon10hdc1 2.0 2.0 2.0 1.0 1.0
moon10hdc2 2.0 1.0 2.0 2.0 1.0
moon10hdc3 3.0 2.0 3.0 2.0 1.0
oakoh04 2.0 2.0 3.0 1.0 1.0
morretal06 2.0 2.0 1.0 2.0 1.0
ESP-Problem 1.0 1.0 1.0 1.0 1.0
SCPD-Problem 1.0 1.0 1.0 1.0 2.0
MeanRank 1.7 1.4 1.9 1.6 1.1

7 CONCLUSION AND OUTLOOK
Before drawing a �nal conclusion and discussing future work, we
will reconsider the discussed research questions:
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Figure 6: Comparison of all algorithms on two signi�cant test functions and both of the real-world problems. Lower values
are better.
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The initial research question (Q-1) discussed in Section 1 asks
whether or not it is possible to enable surrogate-based optimization
for high-dimensional problems. The main stated issues were in-
creased modeling time and furthermore even possible model failure
due to very high dimensionality.

The results given in Section 6 show that the proposed hybrid al-
gorithm Regularized-Surrogate-Optimization requires signi�cantly
less computation time. At the same time it delivers, dependent
on the respective optimization problem, comparable results. Most
importantly, RSO is applicable even to very high-dimensional prob-
lems without the same risk of modeling failure that one would

have compared to standard Surrogate-Based Optimization. The re-
duced modeling run-time can make the RSO algorithm feasible in
situations where SBOwould be a bad choice due to time constraints.

The second research question (Q-2), concerns about the inter-
pretability of SBO for industry partners. It is often hard to suggest
models or algorithms in industry if they are acting in a black-
box manner. Thus, if the model itself is based on a complex high-
dimensional system, gaining support from �eld engineers for a new
optimization technique is hard. In contrast, a model that is able to
identify the most important variables correctly is easier to explain.
The selected variables should mostly coincide with the practition-
ers’ �eld knowledge, con�rming his understanding of a system
and making it easy to gain support for the new algorithm imple-
mentation. The RSO algorithm delivers exactly this interpretability
bene�t for industry partners. Additionally, it helps in not only deliv-
ering the answer of what is the best possible con�guration for some
system. It answers the why is this con�guration so good, resulting
in a further knowledge gain for the company. Since the RSO ap-
proach is intrinsically scalable to a speci�c dimensionality, it is also
possible to optimize a speci�c amount of most important variables
of a system without knowing which ones these will be a priori.
For example, RSO could, to some extent, combine an initial sys-
tem analysis with a later optimization routine in time-constrained
projects.

These initial results of the application of RSO on industry prob-
lems give much room for open research questions. Firstly, the RSO
approach is coupled with Kriging. While Kriging is one of the most
popular choices in the �eld of low-budget surrogate optimization,
generalizing the algorithm to other surrogates would increase its
applicability to more problems. Furthermore, tests on noisy func-
tions or multi-objective functions should be considered. Also, the
parameterization of LASSO was evaluated through smaller prelimi-
nary experiments. More extensive studies are required for future
analysis.
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