
CIplusBand 1/2017

Conditional Inference Trees for theKnowledge Extraction from MotorHealth Condition Data
Alexis Sardá-Espinosa, Subanatarajan Subbiaha, Thomas Bartz-Beielstein





Conditional Inference Trees for the Knowledge Extraction from Motor Health
Condition DataI

Alexis Sardá-Espinosa, Subanatarajan Subbiaha, Thomas Bartz-Beielsteinb

aABB AG
German Research Center
Wallstadter Straße 59

68526 Ladenburg
bTechnische Hochschule Köln

Faculty of Computer Science and Engineering Science
Steinmüllerallee 1

51643 Gummersbach

Abstract

As the amount of data gathered by monitoring systems increases, using computational tools to analyze it becomes a necessity.
Machine learning algorithms can be used in both regression and classification problems, providing useful insights while avoid-
ing the bias and proneness to errors of humans. In this paper, a specific kind of decision tree algorithm, called conditional
inference tree, is used to extract relevant knowledge from data that pertains to electrical motors. The model is chosen due to
its flexibility, strong statistical foundation, as well as great capabilities to generalize and cope with problems in the data. The
obtained knowledge is organized in a structured way and then analyzed in the context of health condition monitoring. The fi-
nal results illustrate how the approach can be used to gain insight into the system and present the results in an understandable,
user-friendly manner.

Keywords: Decision tree, Conditional inference tree, Health condition monitoring, Machine learning, Knowledge extraction

1. Introduction

As technologies evolve, the amount of data generated and
cataloged by monitoring systems increases. In many cases
there is, hopefully, information contained in the data that can
provide useful insight into the processes that generated it,
so that a structured analysis can lead to the extraction and
exploitation of specific knowledge. Learning from data is a
diverse process, but when the quantity of available data is
very large, it is necessary to use computational tools to be
able to efficiently process it. This is where machine learning
comes into play.

The question of what exactly constitutes a machine learn-
ing approach cannot be answered exactly. Learning, by itself,
usually entails the acquisition of new knowledge or the re-
finement of an existing task, organizing and representing the
results in an effective way. Machine learning, then, attempts
to implant these capabilities into computers (Michalski et al.,
2013).

Machine learning can be seen from several points of view.
At the core, Michalski et al. (2013) differentiates between

IThis document is the preprint version of the article accepted by the Jour-
nal of Engineering Applications of Artificial Intelligence: http://dx.doi.
org/10.1016/j.engappai.2017.03.008

Email addresses: alexis.sarda@gmail.com
(Alexis Sardá-Espinosa), subanatarajan.subbiah@de.abb.com
(Subanatarajan Subbiah), thomas.bartz-beielstein@th-koeln.de
(Thomas Bartz-Beielstein)

three research foci depending on the objective: task-oriented
studies, cognitive simulation, and theoretical analysis. These
are not mutually exclusive, and in most cases they comple-
ment each other. Subsequently, machine learning systems
could be further classified on three bases: the underlying
learning strategy, the representation of knowledge discov-
ered, and the application domain. In the end, though, the
goal is almost always the same: it is desired to develop a con-
cise approach that will perform a certain task with consistent
performance and that will be able to match or exceed human
cognition. This usually has the additional advantage of being
explicit and, to some extent, objective, which can then lead
to an automated or semi-automated procedure that can be
used in general situations.

The applications of machine learning are many. It is com-
mon to perform classification or regression in order to build
models based on certain data and then apply the obtained
models to new information to calculate predictions. Depend-
ing on the goal and scope of the task, classification or regres-
sion can be an intermediary step in the overall process of
knowledge extraction.

Mazloumi et al. (2011) used neural networks to learn
from travel time data in order to build prediction models,
but then computed uncertainty in the model taking into ac-
count different sources of error, so that a prediction interval
was obtained instead of a single point estimate.

Varga et al. (2009) applied decision trees to reactor run-

Preprint submitted to Elsevier March 31, 2017



away data to organize and summarize the most important
information from the process and then display it in a user-
friendly format in an operator support system. These are
good examples of how a relatively general machine learning
algorithm can be fine-tuned to a specific application, so that
relevant data can be extracted in their respective contexts.

In Gerdes (2014) the author proposed an approach based
on decision trees to monitor aircraft systems and to forecast
time series data of the condition monitoring system to reduce
the number of unscheduled downtimes of the aircraft. The
author also proposed embedding a genetic algorithm based
optimization approach to improve performance of the deci-
sion trees thus making it in an automated manner.

Similar to the application case considered in this paper,
in Marton et al. (2013) the authors considered the applica-
tion case of generators using a data-driven approach. In con-
trast to decision trees, the authors used the data collected
from a SCADA system to build a prediction model based on
neural networks, principal component analysis, and partial
least squares. The prediction performance of the model was
measured using mean absolute percentage error, and the pre-
dicted data is revised to detect any abnormal behavior and
possible degradation of the equipment to generate alarms.

Another contribution for motor diagnostics based on de-
cision trees was proposed in Yang et al. (2000). The authors
proposed a decision tree model based on the vibration anal-
ysis of motor to diagnose its status. The abnormal frequency
components were classified and the causes for vibration were
identified.

This work presents an approach to extract and exploit
knowledge in an automated way by means of a decision tree
algorithm. Section 2 describes the problem that was to be
solved and its context. The foundations for the machine learn-
ing algorithm that was used, as well as a brief description of
the algorithm itself, are presented in Section 3. Section 4 ex-
plains how the data was preprocessed in order to feed it to
the algorithm, and how the cross-validation procedure was
carried out. The analysis and interpretation of the obtained
results are given in Section 5, and the final conclusions are
summarized in Section 6.

2. Problem Definition

The data that will be considered pertains to a condition
monitoring system which evaluates motors and generators.
Based on voltage, current, and vibration measurements, a
series of indicators that represent health condition of the mo-
tors is computed automatically and summarized in a report
that is then given to the customers. In order to maintain con-
fidentiality, the data will be anonymized throughout this re-
port.

As with most condition monitoring systems, the main goal
is to detect and quantify variation in the asset’s health com-
pared to its normal operating condition, which could lead
to reduced performance or maintenance actions. In order to
standardize the results, specific labels that reflect health sta-
tus based on the measured parameters are assigned.

The workflow that concludes in the final report is partly
interactive. The raw measurement files and the motor infor-
mation must be loaded manually and an analyst must over-
look the whole process to make sure that the output makes
sense. Once all parameters have been obtained, the analyst
must perform validation of the report and put forward, if nec-
essary, a set of suggestions for the customer. This can be a
time-consuming task, especially if the user is not acquainted
with the different algorithms that are already being used.

The structure of the reports and the organization of the
data therein suggests the possibility of using machine learn-
ing algorithms to extract meaningful information. Since the
health labels take on a specific set of values, the task can be
considered as a classification problem, although the main in-
terest is to use the underlying models generated to assess the
report generation workflow with respect to the results, and
to try to identify areas of opportunity that can be improved
in the future.

Eventually, it is desirable to analyze new data not only by
itself, but also with respect to the knowledge that has already
been acquired over the years from the whole fleet of devices
currently in operation. This could help identify possible in-
consistencies, such as input errors, illogical or non-standard
results, among others. Additionally, it might be possible to
simplify the validation task for the analyst so that time re-
quirements are reduced and the explicitness of the reports
increases. This last point is particularly important due to the
fact that users are more prone to errors and biases, which
could make it difficult to reproduce past results.

The overall approach is described in the diagram of Fig. 1.
The data will consist of several input variables (sometimes
also called attributes or covariates in the literature) as well
as the output labels. Some important aspects of preprocess-
ing will be considered due to possible correlation and miss-
ing values. The models will be obtained by using decision
tree models, whose parameters will be tuned by using boot-
strap cross-validation and 0.632+ error estimates. Finally,
the evaluation of the models in the context of the data will
be performed. The specifics of each step of the process will
be explained in more detail in the following sections.

3. Decision Trees

3.1. Decision Trees

More than a specific algorithm, decision trees are a frame-
work to create an explicit hierarchy of tests that result in a
partitioning of the decision space. The general procedure al-
lows for several strategies to be used at each step, which in
turn results in a wide variety of tree models being available.
They have very good comprehensibility and serve as the ba-
sis of most of the algorithms that will be used, so they will be
briefly described following Kotsiantis (2007).

Decision trees form a structure made by nodes and branches,
starting at a single root node and ending in the terminal
nodes, also called the leaves of the tree. At each node, usually
a single variable is considered, and one or more thresholds

2



Data Input

Preprocessing

Building Decision 
Tree Model

Cross-Validation
500 Bootstrap 

Replications

Parameter 

Tuning

0.632+ 

Estimates
Model Selection

Evaluation of 
Extracted 

Knowledge

Application to 

New Data

Figure 1: Diagram showing the different steps of the utilized approach.

are chosen by using a given measure of split quality or node
impurity. These thresholds, depicted by the branches of the
tree, divide the decision space for the considered variable. An
instance can thus be classified by starting at the root node,
analyzing the specified variable, following the appropriate
branch and recursively repeating until a leaf is reached.

The general procedure to build decision trees is based on
a recursive partitioning procedure, which can be expressed as
follows: considering a specific dataset with m variables, the
one that best splits the decision space with respect to a given
measure is denoted with m∗. The root node is created by con-
sidering m∗ and, assuming c is the threshold that achieves the
best split, two branches are created: one where m∗ ≤ c and
another one for m∗ > c. This must be recursively repeated
on the sub-lists at each node until a stopping criterion is sat-
isfied.

Note that the recursive partitioning procedure should be
unbiased, i.e., under the assumption of independence of the
response Y and the input variables X i , i = 1, . . . , m, the prob-
ability of selecting variable X j is 1/m for all j = 1, . . . , m re-
gardless of the measurement scales or number of missing val-
ues (Hothorn et al., 2006).

Depending on the methodology used at each step of the
algorithm, and the selected criteria, a very different tree model
can be obtained. As such, many variations of the general pro-
cedure were proposed, including versions with multiple split-
ting and regression trees. However, these procedures suf-
fer from selection bias towards variables with many possible

splits or with many missing values, and overfitting.
To avoid overfitting, several algorithms implement a prun-

ing strategy after the tree is fully grown. Conditional in-
ference trees go one step further by implementing a unified
framework for handling both selection bias and overfitting.

3.2. Conditional Inference Trees
A conditional inference tree is one possible decision tree

algorithm for recursive binary splitting, which tries to em-
bed the framework in a well-defined statistical environment
based on permutation tests, attempting to distinguish between
significant and insignificant improvements.

As an improvement of the recursive partitioning proce-
dure described in Section 3.1, conditional inference trees sep-
arate the variable selection from the splitting procedure. This
results in basically three steps in the conditional inference
tree procedure. The first one concerns variable selection, the
second one chooses the splitting methodology, and the last
one is the recursive application of the first two steps. The
reader is referred to Hothorn et al. (2006) for a detailed de-
scriptions of these steps. A vignette with more information
and several practical examples is also available for the corre-
sponding software package1.

In addition to their basic capabilities of avoiding bias and
overfitting, conditional inference trees possess other useful
characteristics.

• Their maximum depth or the minimum amount of ob-
servations allowed at each node of the tree can be lim-
ited in order to prevent pathological splits.

• Conditional inference trees can deal with missing val-
ues on a split-by-split basis by setting weights to zero if
a given variable from a considered observation is miss-
ing.

• They can be used for a broad variety of variables, e.g.,
nominal, ordinal, and multivariate response variables.

• Alternative modeling approaches such as neural net-
works or support vector machines have excellent pre-
diction capabilities, but do not provide any insight into
the underlying problem. Conditional inference trees
can be used as tools for prediction and understanding.

• Conditional inference trees are better suited for diag-
nostic purposes than the standard (exhaustive) recur-
sive partition procedures implemented in Classification
and Regression Trees (CART).

• They use well-known, established statistical concepts
for variable selection and stopping. The resulting tree
models are easier to communicate to practitioners.

Because of these properties, conditional inference trees
were chosen as the modeling tool for the analysis of health
condition from motors and generators.

1https://cran.r-project.org/web/packages/party/
vignettes/party.pdf

3



4. Methodology

4.1. Preprocessing

The condition monitoring reports are a way of structur-
ing and summarizing the set of values that are computed for
each motor after the raw electrical signals have been ana-
lyzed. Each report is organized into four main sections that
are of interest to the analyst. They will be referred to as sec-
tions A, B, C and D, respectively. Each of these sections has a
status label associated with it, which can take on three possi-
ble values: KR (Keep Running) < WW (Wait & Watch) < SI
(Stop & Inspect); the order shown is increasing with respect
to degradation level.

In many situations it is advantageous to transform the
data in order to accentuate or attenuate certain characteris-
tics (Cox and Jones, 1981). For example, some transforma-
tions like the logarithmic transform can help with regression
when variability of a variable is not constant between dif-
ferent sub-populations. In other cases, data must be trans-
formed so that the machine learning algorithms are capable
of actually processing it. This may be necessary if there are
missing values, or if dimensionality is so high that the prob-
lem becomes intractable. The scale of each feature is also
relevant, since there are some algorithms that would natu-
rally give more or less weight to features whose values are
numerically larger or smaller.

There are several procedures that can be applied in order
to preprocess data. What to use depends greatly on the al-
gorithm to be used later for analysis, and also on the nature
of the data. The algorithm under consideration is capable
of dealing with variables measured with arbitrary scales, so
normalization is not necessary in this case. Additionally, the
algorithm is capable of dealing with missing values, so they
do not need to be removed or imputed with a different pro-
cedure. Nevertheless, some of the variables present so many
missing values that it is probably detrimental to keep them
in the dataset. As such, if more than 75% of the observations
have a variable missing, that variable will be removed.

There are advanced methods for dimensionality reduc-
tion, such as principal component analysis, that can reduce
the number of variables by performing an orthogonal trans-
formation on the data and keeping only those dimensions
with the most information. Unfortunately, doing such a trans-
formation modifies the decision space, and in our application
it is critical to maintain as much interpretability as possible.
Therefore, a simpler methodology employing the linear cor-
relation between the variables of each report section will be
used. Variables which are correlated to any other by 0.85
or more (absolute value), using Pearson’s correlation coeffi-
cient and ignoring missing values on a pairwise basis, will be
discarded.

4.2. Cross-Validation

There is no single method that can be optimally applied to
every scenario. Therefore, it is necessary to measure perfor-
mance in such a way that allows the evaluation of different

algorithms as well as their sensitivity to their tuning param-
eters. Common measures include accuracy, speed, compre-
hensibility or interpretability, and time required to learn. It
follows that the decision on which combination of algorithm
and performance measure offers the best results heavily de-
pends on the task at hand.

It is possible to utilize naive approaches as baselines, in
order to ensure that the algorithms are indeed resulting in
a measurable improvement. The simplest baseline is the no-
data rule, which always assigns a given class regardless of
the input values, and might be actually used if the cost of
acquiring data is too high. Another approach is to always
predict the most common class, which takes into considera-
tion the prior probabilities given observed the data. In addi-
tion, costs or weights can be assigned to either classification
or misclassification, in order to induce a higher priority on
certain classes.

There are many problems to be taken into account when
training machine learning algorithms. Once a performance
metric has been chosen, knowing which algorithm, along with
which combination of tuning parameters, yields the optimum
results with respect to the metric is one of the main inter-
ests. Obtaining an estimate for the algorithm’s general per-
formance is not simple, the datasets used for training are al-
ways finite, so a way must be found to effectively use them in
order to calculate estimates that have, ideally, low bias, low
variance and that are not a result of overfitting.

It is well known that testing an algorithm with the same
dataset with which it was trained leads to overly optimistic
estimates (Arlot et al., 2010), which can be more or less bi-
ased depending on the learning procedure itself. Closely re-
lated to that is the fact that some algorithms can learn in such
a way that they perfectly fit the training data but are not able
to generalize to new observations, which is the problem of
overfitting. Moreover, it is not uncommon for there to be one
or more tuning parameters which can change the outcome
depending on the algorithm’s sensitivity. algorithm was used
in conjunction with the data The set of procedures that are
used to overcome these problems are called cross-validation,
and they serve multiple purposes. First of all, they attempt
to use the available data as efficiently as possible in order
to yield valid estimates of performance. Furthermore, they
also help evaluate one specific algorithm with different tun-
ing parameters, as well as variability of the results when pa-
rameters are fixed but the data change. Even though they
cannot alleviate overfit directly, they provide tools to identify
it, so that measures can be taken in order to reduce or negate
the effects. The approach presented here will focus on using
bootstrap cross-validation.

The generic bootstrap methodology explained in Efron
and Tibshirani (1993) is a computer approach that has many
applications. In general, if there is a dataset with n observa-
tions, several new datasets are constructed by sampling with
replacement from said dataset until n observations have been
selected; this is repeated B times and these new datasets con-
stitute the bootstrap samples.

In the nonparametric bootstrap, sampling is performed

4



based on a uniform distribution that places a probability of
1/n on each observation. This, along with the fact that sam-
pling is done with replacement, means that the probability
that a bootstrap samples does not contain an observation is
(1− 1/n)n ≈ e−1 ≈ 0.368. Thus, on average, the number of
observations in each bootstrap sample is 0.632n.

In the simplest case, using bootstrap for cross-validation
consists in training the algorithms with the bootstrap sam-
ples, then evaluating them with those observations that were
not part of the sample and finally averaging all the bootstrap
estimates.

A variation that is somewhat specific to classification tasks
that use accuracy as metric is the so-called 0.632 estimator
proposed in Efron (1983). Given a total of B bootstrap sam-
ples where εi is the error estimate for sample i and ε0 is the
error on the full training set (also called the apparent error),
the 0.632 accuracy error can be calculated with Eq. (1). Note
that the estimate is defined in terms of the error rate, which
for classification tasks is simply 1 minus the accuracy.

εboot632 =
1
B

B∑
i=1

(0.632 · εi + 0.368 · ε0) (1)

The 0.632 estimator has some shortcomings. It can fail
if the classifier is a perfect memorizer or the dataset is com-
pletely random, where there is no relationship between out-
come and predictors (Kohavi (1995)). In order to overcome
these problems, the 0.632+ estimator was later introduced
in Efron and Tibshirani (1997). It was intended to be a less
biased compromise that depends on the amount of overfit-
ting.

To compute it, first a no-information rate ξ must be es-
timated by permuting responses and predictors. Let δi, j de-
note the discrepancy between observation i and prediction j,
then the estimate is given by Eq. (2a).

For multicategory classification, let p̂l be the proportion
of observed responses equal to level l and q̂l be the corre-
sponding proportion of predictions equal to l. Then, the no-
information rate can be estimated with Eq. (2b).

ξ̂=
1
n2

n∑
i=1

n∑
j=1

δi, j (2a)

ξ̂=
∑

l

p̂l(1− q̂l) (2b)

Afterwards, a relative overfitting rate can be estimated
with Eq. (3) and the final 0.632+ estimate is given by Eq. (4),
where ε is the bootstrap estimate and ε′ is defined as min

�
ε, ξ̂

�
.

R̂′ =

¨
(ε− ε0)/

�
ξ̂− ε0

�
, if ε, ξ̂ > ε0

0, otherwise
(3)

εboot632+ = εboot632 + (ε
′ − ε)0.368 · 0.632 · R̂′

1− 0.368 · R̂′ (4)

4.3. Workflow

The workflow to analyze each report section will be es-
sentially the same. First, each section will be evaluated inde-
pendent of the remaining ones, and a stratified partitioning
to create train and test sets, allocating 85% of the data to the
training set, will be utilized. The training set will be further
divided into new train and validation sets in concordance
with the bootstrap cross-validation strategy. Afterwards, the
models will be re-trained by utilizing all available variables,
in order to see if the variables from other sections could pro-
vide valuable information to the model.

A baseline for each section will be established by employ-
ing the naive rule. This will provide a basic point of com-
parison to know how much of an improvement, if any, is the
algorithm providing. Then, the accuracy estimates given by
the 0.632+ bootstrap will be used to get an idea of approx-
imate performance. 500 bootstrap samples will be used for
each cross-validation run.

It is true that accuracy is not the best metric to assess
classification performance, especially if the dataset is unbal-
anced. However, the current focus is doing data exploration
by means of a machine learning algorithm to extract knowl-
edge that can be useful in future analyses, so the interpre-
tation of the results will be of greater importance. For this
purpose, accuracy should yield satisfactory results.

All experiments and analyses were performed using the R
programming language (R Core Team, 2016; RStudio Team,
2015) by leveraging the caret package for model training
and validation (Kuhn, 2008). These are all open source soft-
ware packages that support most operating systems and are
freely available.

5. Experimental Results

5.1. Sample Training - Section A of the Reports

For section A of the reports, using the naive rule would
result in an estimate of accuracy equal to 0.514. In the fol-
lowing, the improvements provided by the machine learning
algorithm will be assessed.

Technically speaking, conditional inference trees can be
tuned by modifying the minimum criterion (α), although there
are other parameters that can also be controlled, such as the
tree depth or the amount of observations allowed at each ter-
minal node, also called the bucket size. The first step taken
was to assess the influence of α by testing the common values
of 0.9, 0.95 and 0.99, enforcing no restriction on the tree’s
depth. The obtained average accuracy and its standard devi-
ation (SD) is reported in Table 1.

Judging by the cross-validation results, it can seen that α
had virtually no influence on the overall algorithm’s accuracy
for this dataset. Having established the previous, the effects
of the tree’s depth on accuracy can also be evaluated. The
previous tree had a depth of 3, so we can simply test values
from 1 to 3 while keeping α constant at 0.99. The results for
this run are shown in Table 2, where it is seen that limiting
the tree depth to 2 marginally improves accuracy. Note that

5



Table 1: Train results for conditional inference trees in section A using min-
imum criterion as tuning parameter. A total of 500 bootstrap samples were
used for cross-validation.

Min. Criterion (α) Accuracy Accuracy SD

0.900 0.758 0.030
0.950 0.759 0.030
0.990 0.760 0.029

a smaller depth implies that less splits are made throughout
the tree, which means that, potentially, less variables would
be needed in the final model.

Table 2: Train results for conditional inference trees in section A using max-
imum depth as tuning parameter.

Max. Depth Accuracy Accuracy SD

1 0.749 0.024
2 0.762 0.026
3 0.761 0.026

An added advantage of tree models is their ease of vi-
sualization and interpretation. For example, the tree model
obtained in the second cross-validation run is shown in Fig. 2.
Each node of the tree is depicted by a circle with the variable
used for splitting and its associated p-value (see Section 3.2).
The terminal nodes, also called the leaves, show a barplot of
the output label distribution considering only the observa-
tions at each respective leaf, and denote with n the number
of observations that were assigned to that leaf.

The tree in Fig. 2 provides a lot of information. First of
all, it implies which predictors are the most relevant with
respect to the output variable. The training set contains 20
predictors, so the fact that only two of them can provide an
accuracy of 0.762 is noteworthy.

On the other hand, the barplots at the leaves depict the
consistency of the results. The output given by the tree it-
self is a class label, but by analyzing the observations at the
leaves, the posterior probabilities of each class label can be
evaluated, conditioned on the splits given by the tree. For
instance, the third barplot in Fig. 2 implies that, if an obser-
vation is assigned there, it would be extremely rare for it to
have a class different than WW, whereas the last barplot im-
plies that any observation assigned there would never have
a KR class (given the data).

When doing classification, a popular method of display-
ing the results is by means of a confusion matrix. This ma-
trix has a number of rows and columns equal to the number
of levels in the output class, and each cell shows the corre-
spondence between observed and predicted labels. During
cross-validation, predictions are obtained at every step in or-
der to evaluate model performance, but only considering the
observations in the validation sets. Nonetheless, a confusion
matrix with the average correspondence of each cell across
the 500 replications can be constructed. This matrix is shown

in Table 3, where the cell averages are expressed as percent-
age values of the total cell counts.

Table 3: Confusion matrix for section A using conditional inference trees.
Each cell shows the average correspondence between predicted and ob-
served values across the 500 replications performed during CV, but expressed
as a percentage of the total counts.

Reference

Prediction KR WW SI
KR 49.5 12 1.11
WW 1.86 18 3.09
SI 0.0386 6.75 7.61

It is evident the model is good at predicting the KR cases,
which is expected for two reasons. On the one hand, the KR
level was the most common one in the dataset, and on the
other hand, from a practical point of view, it makes sense that
discerning SI motors from the WW ones gets more difficult
as the level of degradation increases.

So far the analysis has looked at section A independently
from the other sections of the report. Additionally, some of
the variables that were in the raw dataset were removed dur-
ing cleaning on account of their correlation to other variables.
By re-training the models with the ignored features, it can be
checked whether the cleaning step was justified and if some
of the variables from other sections can help with classifica-
tion. The value of α was kept at 0.99, but maximum depth
values from 0 to 8, where 0 signifies no restrictions, were
tested. Also note that this is only a limitation of maximum
depth, meaning that the algorithm can still decide to stop at a
smaller depth if the conditions are satisfied (see Section 3.2).

The best model using all variables resulted, in an accu-
racy estimate of 0.758, which is essentially the same value
obtained without the extra features. Interestingly, by inspect-
ing the model obtained after using all variables, it was dis-
covered that it was the exact same model obtained when us-
ing only the cleaned dataset from section A. This provides
reassurance that the variables from other sections have no
significant influence in the status labels assigned here.

As the final step in the learning process, the model from
Fig. 2 can be used to classify the data that was left in the test
set, which has been ignored so far. This will provide one final
estimate of future performance of the specific algorithm that
was selected.

The confusion matrix for the results with the final model
and the test set is shown in Table 4. The results translate to
an accuracy estimate of 0.753, which is very close to what
was expected.

5.2. Overall Results
The experimental methodology followed for the remain-

ing section was the same. The naive estimate was computed
for each section of the report, since the proportion of the class
labels changed. Different conditional inference trees were
built by tuning the algorithm parameters and using only the
respective section data. Then the models were trained again

6



var_63
p < 0.001

1

≤ 19.97 > 19.97

var_55
p < 0.001

2

≤ 40.126 > 40.126

Node 3 (n = 14)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 4 (n = 353)

KR WW SI

0

0.2

0.4

0.6

0.8

1

var_63
p < 0.001

5

≤ 30.057 > 30.057

Node 6 (n = 98)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 7 (n = 98)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Figure 2: Visualization of the conditional inference tree for section A. Each oval contains a specific variable. Following the branches leads to specific binary
partitions for the variables based on the shown threshold. The value of n at the leaves represents the total number of observations that fall in that terminal
node.

Table 4: Confusion matrix for test data in section A. The final conditional
inference tree was used. Each cell shows the raw correspondence counts
between observed and predicted values.

Reference

Prediction KR WW SI
KR 47 10 2
WW 2 17 0
SI 1 9 9

with all available variables to assess variations in the out-
come. Once the final model was established, it was applied
to the test set of the corresponding section to get one final es-
timate of performance. The summary of the results is shown
in Table 5, including the previous results of section A for com-
pleteness. The graphical depiction of the trees for each sec-
tion can be seen in Appendix A.

It is interesting to see that in most cases, including ad-
ditional variables into the training procedure was actually
detrimental for average accuracy, albeit slightly. This also
means that the machine learning algorithm is good at deal-
ing with irrelevant or redundant information contained in the
data.

5.3. Evaluation
Now that there is an idea of the performance that could

be expected from the conditional inference trees, the specific

Table 5: Results after applying the machine learning workflow to all sections
of the reports.

Section Naive
rule

Model
accuracy

Accuracy with
all variables

Test set
accuracy

A 0.514 0.762 0.758 0.753
B 0.736 0.865 0.851 0.859
C 0.525 0.840 0.830 0.847
D 0.492 0.669 0.669 0.656

details that relate to the quality and the interpretation of the
underlying mechanisms at play can be outlined. These in-
terpretations will be focused on the considered dataset, and
will reflect some insight that can only be obtained after care-
ful analysis of all variables and their meaning.

In an ideal scenario, the variables in the data would con-
tain all the necessary information regarding the motor’s health,
and a machine learning algorithm would be able to extract it
and attain perfect accuracy on both known and future data;
in reality, this is rarely the case. Some plausible reasons for
this could be data input errors, some form of noise, incon-
sistent processing algorithms, human bias, etc. The accuracy
estimates that were obtained in the previous sections provide
clues about the data quality, or lack thereof: if accuracy is
low, there is clearly some information missing, or the models
were not able to uncover it. It is desired to provide possi-

7



ble directions which the data experts can take to find out the
reason for the discrepancies, if they do not already know it.
Otherwise, heir feedback could be used to improve on the
models.

5.3.1. Evaluation of Section A
First of all, the tree in Fig. 2 for section A can be evalu-

ated. This model is a nice starting point to show how the re-
sults of machine learning can be used. The tree itself is com-
pletely objective, it simply tries to organize the knowledge
given by the data, so it cannot automatically decide whether
some values are illogical, making them outliers. Nodes 4 and
6 show what would be desired: a large number of observa-
tions with the same class and very few (ideally none) of the
other classes; this would mean that the cases are perfectly
discernible by the given splits. On the other hand, nodes
3 and 7 show relatively more problems: the class distribu-
tion of the observations falling in those leaves are more bal-
anced, so the boundaries between classes are not well de-
fined. If only the accuracy and the confusion matrix of the
model are analyzed, these discrepancies would go undiscov-
ered. By delving into the internals of the model, more infor-
mation and possibly errors and glitches in the actual data can
be extracted.

The accuracy of the model was not high enough to war-
rant its use in an automated way, but is still considerably high
even though it only used two variables, and it also helps gain
insight into the data. It can be argued that var_63 is the
most important variable for section A, and that if its value is
above 19.97, it would be extremely rare for a motor to have a
KR label. It can be seen, however, that there is indeed at least
one KR observation with a high value of var_63 (in node 6),
which begs the question: why is it that that motor has a KR
label despite having such a high value of var_63?

Similarly, some guidelines for the evaluation of the re-
ports suggest that if var_55 is above a value of 54, the mo-
tor should be in good condition. Node 4 of that tree certainly
has more KR cases, but the threshold chosen by the tree is
different, and there are still many WW and SI observations
in that node.

5.3.2. Evaluation of Section B
Naturally, this same type of evaluation can be applied to

the models that were obtained for the other sections. The
next tree would be the one in Fig. A.1 for section B. It is
particularly interesting because it is remarkably simple, us-
ing only 5 predictors even though section B originally had
more than 50. Its accuracy was also better. By itself, this
already poses an important question: if good accuracy can
be obtained with few predictors, what is the purpose of the
other variables? Should they be calculated at all? It could be
that they are required for intermediate calculations, so that
the more relevant values can be obtained, but maybe it is not
necessary to include them in the reports.

The variables that were chosen for the model appear to
agree with what was expected. There are limits for variables
var_38 and var_40, given by specific standards, so it would

be good to see if the splitting thresholds are in line with said
standards.

Based on knowledge from the data, it was expected that
any motor where var_54 is larger than zero could never
have a KR label, but there are a few cases where this is not
true. By looking at the few KR cases falling on node 12, some-
thing worth noting was uncovered: some of those reports
appear to have manual corrections made to them, whereby
the values changed visually, but the numeric elements stayed
the same. Due to the automatic parsing of the reports, such
corrections cannot be detected automatically, and are a crit-
ical source of inconsistencies. Moreover, there is important
knowledge that could be extracted here (and, ideally, stan-
dardized): if corrections were made, what was the reason
for it? These reasons could be incorporated into the models,
and they could also lead to improvements of the processing
algorithms that use the initial raw data.

Predictor var_2 is a categorical feature that specifies one
of the inherent characteristics of the motor, so it is unex-
pected to see that it was actually used as a splitting vari-
able. Due to the way it is shown in node 9 in Fig. A.1, it
should be interpreted like this: any motor whose var_2 is
not variable, and whose var_38 is larger than 5.4, has a
higher chance of having a class different than KR.

5.3.3. Evaluation of Section C
Moving on to section C, the largest model was obtained,

which is shown in Fig. A.2. It used almost all the available
variables for that section and obtained decent accuracy, but
it should still be improved. There is a good reason for the
model to be so large: the variables in this section are for
similar mechanical elements of the motor that are mounted
in different places, and health status probably depends on
the values of all the elements, so the model has to take into
account all possibilities.

The appearance of var_1 in nodes 25 and 10 seems rather
redundant, because most observations at the left and right
leaves are mostly WW. By contrast, using var_2 in node 5
could have other implications with respect to var_91: it
could be that var_91 is more important if the motor’s var_2
is equal to variable.

Evidently, many of the variables are independent from
each other: the right branches of nodes 2 through 7, except
for node 5, have no further splits, and judging by the barplots
at the leaves, it is clear that if any of those variables exceed
their corresponding thresholds, there is a large probability
that their labels will be WW.

Nodes 8 and 9 used variables that are equivalent (as noted
before, they are calculated for the same mechanical elements,
just mounted in different places of the device). However, it
seems that the difference for var_84 is not as obvious as the
one for var_76; this only happens rarely (there are only 7
observations at node 14), but it would be better to define a
clear threshold so that future analyses are more consistent.

It is also worth mentioning that, since section C had very
few SI cases, it could be argued that the mechanical elements
analyzed therein rarely fail, or it could also be that they are

8



changed more often by preventive maintenance actions. If
that is the case, there is an area of opportunity that may be
exploited here: discussing the few SI cases with the experts
might shed light into how they were identified as such, and
those rules could be incorporated into the classification algo-
rithms.

5.3.4. Evaluation of Section D
Lastly is the tree for section D depicted in Fig. A.3. This

model was the one with the worst performance, something
that readily gives some information: there were many vari-
ables available for this section, but it seems that they are not
able to capture the most important elements of variability.
On the other hand, this could also mean that the differences
between KR, WW and SI cases are not clearly defined, so the
analysts may have a hard time identifying each new case.

There were 3 additional categorical variables in this sec-
tion: var_107, var_108 and var_109. A value of yes in
any of them should mean that there are problems with the
motor, but the model of Fig. A.3 tells a different story. Not
only did var_109 not appear in the model, following the
right branches of nodes 2 and 5 shows that there were a con-
siderable amount of observations with a KR label in the cor-
responding leaves. By looking at some of the corresponding
reports, it was found out that some of them also presented
manual corrections that change visually but not numerically.
The reason for this inconsistency should definitely be clari-
fied so that it is certain that the calculations that lead to the
values reflected in those variables are not flawed.

Inconsistencies notwithstanding, it could still be argued
that var_106 and var_102 are the most important for sec-
tion D, and that higher values mean higher level of degra-
dation. This behaviour was expected, but it is still advisable
that the analysts establish clear boundaries for the values of
those variables if there are currently none, in order to ensure
consistency.

The fleet data provided is just one example of a monitor-
ing system that collects large quantities of data. The gains
that can be obtained by exploiting it are not always immedi-
ate, and the refinement process will need the collaboration
of all parties involved. With this in mind, it is clear that, if
used appropriately, machine learning can be a valuable set of
tools with many applications.

6. Conclusions

In the present context, the data come from a fleet of mo-
tors whose health condition is monitored frequently, but in
practical terms, the general methodology presented in this
work can be applied to many other situations.

The number of available machine learning algorithms is
staggering, and the line that separates them from other meth-
ods, such as statistical approaches and neural networks, is
often blurry. Clearly, the first choice to be made is which
algorithms are going to be tested, something that depends
heavily on the scope, and is not always straightforward since
no single algorithm can perform optimally in every situation.

Due to the nature of the data, classification algorithms
were a natural choice. However, the main interest was ob-
taining deeper and more intuitive knowledge out of the anal-
ysis, so greater importance was given to the interpretability
of the models. In this relatively early stage of the project,
where understanding the data is critical, these models proved
to be very helpful, being a very valuable tool. Nevertheless,
as the project evolves, there will certainly be a need for re-
finement as new ways to automate the workflow as much as
possible are explored, and more elaborate algorithms could
be considered, such as neural networks and support vector
machines.

In order to utilize the data in the best way possible, cross-
validation was fundamental to the evaluation of the variabil-
ity of the machine learning algorithm not only with respect
to the data but also with respect to its tuning parameters.

The assessment of data quality and subsequent cleaning
entails a series of preprocessing and, possibly, anonymization
steps that can sometimes have the largest impact on the final
results. After all, if the tidiness of the input data is lacking,
not even the most powerful algorithm will deliver proper re-
sults. Unfortunately, there are also many options to choose
from in order to obtain a tidy dataset, and it is not easy to say
which ones are the most appropriate ones a priori. The clean-
ing that was performed, which depended mostly on linear
correlation, was easy to justify by training with both datasets
(the original and the tidy ones) and identifying the differ-
ences in results, or lack thereof. Commonly, this is not pos-
sible, since cleaning is often done in order to reduce dimen-
sionality and carry out an analysis that would otherwise be
unfeasible.

The experimental analysis marked the culmination of the
analysis. Employing all of the aforementioned techniques on
a real dataset showed how every element comes together and
interacts with each other, emphasizing the utility of machine
learning from a practical point of view. Conditional inference
trees proved to be a robust algorithm, capable of effectively
handling missing values and maintaining its results even in
the presence of redundant or irrelevant data. They had no
problem whatsoever when dealing with numeric and categor-
ical variables, even if they were measured at different scales.
Additionally, their visualization techniques are very intuitive,
which makes their evaluation and communication of their re-
sults much easier.

Careful interpretation of the results led to finding glitches
in the data and gain insight into the process, thus uncovering
possible areas of opportunity in the report generation work-
flow. Even models with relatively poor performance helped
by virtue of their inadequate results.

In the future, the classification analysis could also be fur-
ther improved. For example, the levels of the output classes
(KR, WW and SI) had the same weight during the experi-
ments, and this could be modified by assigning different weights
to each level, so that the correct classification of a given class
has a higher priority with respect to the others. Similarly,
other metrics could be evaluated to see if the final models
change significantly.

9



References

Arlot, S., Celisse, A., et al., 2010. A survey of cross-validation procedures
for model selection. Statistics surveys 4, 40–79.

Cox, N.J., Jones, K., 1981. Exploratory data analysis. Quantitative Geogra-
phy, London: Routledge , 135–143.

Efron, B., 1983. Estimating the error rate of a prediction rule: improvement
on cross-validation. Journal of the American Statistical Association 78,
316–331.

Efron, B., Tibshirani, R., 1997. Improvements on cross-validation: the 632+
bootstrap method. Journal of the American Statistical Association 92,
548–560.

Efron, B., Tibshirani, R.J., 1993. An introduction to the bootstrap. CRC
press.

Gerdes, M., 2014. Predictive health monitoring for aircraft systems using
decision trees.

Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphi-
cal Statistics 15, 651–674.

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection, in: IJCAI, pp. 1137–1145.

Kotsiantis, S.B., 2007. Supervised machine learning: A review of classifica-
tion techniques. Informatica 31, 249–268.

Kuhn, M., 2008. Building predictive models in r using the caret package.
Journal of Statistical Software 28, 1–26.

Marton, I., Sánchezb, A.I., Carlosa, S., Martorella, S., 2013. Application of
data driven methods for condition monitoring maintenance. CHEMICAL
ENGINEERING 33, 301–306.

Mazloumi, E., Rose, G., Currie, G., Moridpour, S., 2011. Prediction intervals
to account for uncertainties in neural network predictions: Methodology
and application in bus travel time prediction. Engineering Applications
of Artificial Intelligence 24, 534–542.

Michalski, R.S., Carbonell, J.G., Mitchell, T.M., 2013. Machine Learning: An
Artificial Intelligence Approach. Springer Publishing Company, Incorpo-
rated. chapter 1.

R Core Team, 2016. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing. Vienna, Austria. URL:
https://www.R-project.org/.

RStudio Team, 2015. RStudio: Integrated Development Environment for R.
RStudio, Inc.. Boston, MA. URL: http://www.rstudio.com/.

Varga, T., Szeifert, F., Abonyi, J., 2009. Decision tree and first-principles
model-based approach for reactor runaway analysis and forecasting. En-
gineering Applications of Artificial Intelligence 22, 569–578.

Yang, B.S., Park, C.H., Kim, H.J., 2000. An efficient method of vibration
diagnostics for rotating machinery using a decision tree. International
Journal of Rotating Machinery 6, 19–27.

Appendix A.

10



var_38
p < 0.001

1

≤ 5.408 > 5.408

var_40
p < 0.001

2

≤ 4.599 > 4.599

var_17
p < 0.001

3

≤ 6.044 > 6.044

Node 4 (n = 430)

KRWW SI

0

0.2

0.4

0.6

0.8

1

Node 5 (n = 7)

KRWW SI

0

0.2

0.4

0.6

0.8

1

var_40
p = 0.004

6

≤ 11.343 > 11.343

Node 7 (n = 32)

KRWW SI

0

0.2

0.4

0.6

0.8

1

Node 8 (n = 8)

KRWW SI

0

0.2

0.4

0.6

0.8

1

var_2variable
p = 0.009

9

≤ 0 > 0

Node 10 (n = 56)

KRWW SI

0

0.2

0.4

0.6

0.8

1

var_54
p = 0.004

11

≤ 0 > 0

Node 12 (n = 10)

KRWW SI

0

0.2

0.4

0.6

0.8

1

Node 13 (n = 21)

KRWW SI

0

0.2

0.4

0.6

0.8

1

Figure A.1: Visualization of the conditional inference tree for section B of the data reports.

var_75
p < 0.001

1

≤ 1.145 > 1.145

var_79
p < 0.001

2

≤ 0 > 0

var_74
p < 0.001

3

≤ 7.641 > 7.641

var_87
p < 0.001

4

≤ 3.241 > 3.241

var_2variable
p < 0.001

5

≤ 0 > 0

var_83
p < 0.001

6

≤ 1.353 > 1.353

var_90
p < 0.001

7

≤ 0.041 > 0.041

var_84
p < 0.001

8

≤ 3.646 > 3.646

var_76
p < 0.001

9

≤ 3.015 > 3.015

var_1squirrel_cage
p = 0.025

10

≤ 0 > 0

Node 11 (n = 40)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 12 (n = 216)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 13 (n = 90)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 14 (n = 7)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 15 (n = 41)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 16 (n = 7)

KR SI

0
0.2
0.4
0.6
0.8

1

var_91
p = 0.011

17

≤ 0.018 > 0.018

Node 18 (n = 54)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 19 (n = 30)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 20 (n = 17)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 21 (n = 12)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 22 (n = 66)

KR SI

0
0.2
0.4
0.6
0.8

1

var_74
p = 0.025

23

≤ 3.525 > 3.525

Node 24 (n = 7)

KR SI

0
0.2
0.4
0.6
0.8

1

var_1squirrel_cage
p = 0.007

25

≤ 0 > 0

Node 26 (n = 16)

KR SI

0
0.2
0.4
0.6
0.8

1
Node 27 (n = 99)

KR SI

0
0.2
0.4
0.6
0.8

1

Figure A.2: Visualization of the conditional inference tree for section C of the data reports.

11



var_106
p < 0.001

1

≤ 5.865 > 5.865

var_108yes
p < 0.001

2

≤ 0 > 0

var_106
p < 0.001

3

≤ 3.056 > 3.056

var_103
p < 0.001

4

≤ 3.869 > 3.869

var_107yes
p < 0.001

5

≤ 0 > 0

var_104
p = 0.006

6

≤ 4.198 > 4.198

Node 7 (n = 410)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 8 (n = 7)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 9 (n = 41)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 10 (n = 12)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 11 (n = 71)

KR WW SI

0

0.2

0.4

0.6

0.8

1

var_103
p < 0.001

12

≤ 2.684 > 2.684

var_96
p < 0.001

13

≤ 0.996 > 0.996

Node 14 (n = 86)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 15 (n = 28)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 16 (n = 12)

KR WW SI

0

0.2

0.4

0.6

0.8

1

var_102
p = 0.027

17

≤ 5.515 > 5.515

Node 18 (n = 15)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Node 19 (n = 19)

KR WW SI

0

0.2

0.4

0.6

0.8

1

Figure A.3: Visualization of the conditional inference tree for section D of the data reports.

12



Kontakt/Impressum
Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe "CIplus". Alle Veröf-
fentlichungen dieser Reihe können unter
https://cos.bibl.th-koeln.de/home

abgerufen werden.

Köln, Januar 2012

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.
Datum der Veröffentlichung: 01.04.2017

Herausgeber / Editorship
Prof. Dr. Thomas Bartz-Beielstein,
Prof. Dr. Wolfgang Konen,
Prof. Dr. Boris Naujoks,
Prof. Dr. Horst Stenzel
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
TH Köln,
Steinmüllerallee 1,
51643 Gummersbach
url: www.ciplus-research.de

Schriftleitung und Ansprechpartner/ Contact editor’s office
Prof. Dr. Thomas Bartz-Beielstein,
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
TH Köln,
Steinmüllerallee 1, 51643 Gummersbach
phone: +49 2261 8196 6391
url: http://www.spotseven.de
eMail: thomas.bartz-beielstein@th-koeln.de

ISSN (online) 2194-2870

https://cos.bibl.th-koeln.de/home
www.ciplus-research.de
http://www.spotseven.de



