
Surrogate-Assisted Learning of Neural Networks

Jörg Stork, Martin Zae�erer, Andreas Fischbach, Frederik
Rehbach, Thomas Bartz-Beielstein

SPOTSeven Labs, TH Köln
Steinmüllerallee 1, 51643 Gummersbach
E-Mail: firstname.lastname@th-koeln.de

1 Introduction

Surrogate-assisted optimization has proven to be very successful if applied
to industrial problems. The use of a data-driven surrogate model of an
objective function during an optimization cycle has many benefits, such
as being cheap to evaluate and further providing both information about
the objective landscape and the parameter space. In preliminary work, it
was researched how surrogate-assisted optimization can help to optimize
the structure of a neural network (NN) controller [7]. In this work, we will
focus on how surrogates can help to improve the direct learning process
of a transparent feed-forward neural network controller. As an initial
case study we will consider a manageable real-world control task: the
elevator supervisory group problem (ESGC) using a simplified simulation
model [3]. We use this model as a benchmark which should indicate
the applicability and performance of surrogate-assisted optimization
to this kind of tasks. While the optimization process itself is in this
case not considered expensive, the results show that surrogate-assisted
optimization is capable of outperforming metaheuristic optimization
methods for a low number of evaluations. Further the surrogate can be
used for significance analysis of the inputs and weighted connections to
further exploit problem information.

2 Motivation

Recent advancements in robotics and control have shown, that methods
from the field of computational intelligence are becoming more and more
significant. Robot control policies are no longer just trained by machine
learning algorithms. Rather, robots learn how to solve a certain task

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 195



by themselves, e.g., by methods of evolutionary robotics [4]. In an
real world environment evolutionary learning of control policies can be
costly, as the fitness of a certain robot action can only be evaluated
after a sequence of time steps, which can easily be in minutes or hours.
Thus, these learning processes pose a di�cult optimization problem and
standard learning methods are not suitable for the time requirements of
these tasks. Neural networks are a well established type of controller in
evolutionary robotics. Here, the set of coe�cients and the topology of
the network need to be optimized for optimal performance. More recent
and sophisticated approaches for developing and learning of controllers,
such as neuroevolution of augmenting topologies [18] were invented to
handle these optimization processes, but they still need many evaluations
to adapt the neural networks.

• Our hypothesis is that assisting this learning process by means of
surrogate-assisted optimization, which has proven to be able to
perform significantly well in expensive industrial optimization tasks
[14, 15], should be beneficial.

• As a second hypothesis, we assume that these surrogate models can
help to retrieve additional useful information about the objective
function, e.g., importance of certain inputs.

We want to test this hypothesis based on experiments with a small real-
world task simulator, which is implemented as a simple neural network
and not expensive to evaluate. The results can be transferred to more
sophisticated tasks, like a real world learning process. The results should
indicate the applicability and basic performance of surrogate-assisted
optimization methods in comparison to state-of-the-art optimization algo-
rithms. The variable importance information provided by the surrogate
models is also analyzed with regard to their usefulness. For instance,
variable importance could be helpful to identify especially important or
defective inputs sensors of a physical controller, e.g., in an evolutionary
robotics task.

3 The Elevator Supervisory Group Problem

3.1 General Description

Today, elevator systems are present everywhere in urban areas. They
need to be optimized to achieve the desired service quality in terms of

196 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



waiting time for the customers, as well as in terms of energy e�ciency.
They are controlled by an elevator group controller, which assigns the
elevator cars to certain floors and destinations on basis of the customer
service calls. The ESGC problem as introduced by [3] is a so-called
destination call system, where the customer can choose their desired
destination on the floor level outside the elevator cars. In the introduced
problem instance, the controller is implemented as a sophisticated neural
network NN, where the specific structure and weights depict a certain
control strategy. The optimization of these weights imposes a set of
challenges, which render this task highly complex:

• The topology of the fitness function is to a high extent non-linear
as well as multi-modal.

• The tra�c load is dynamic and stochastic, as customers do not
arrive in a deterministic manner.

• Gradient-based methods cannot be applied successfully to this
optimization problem.

• The simulator is computational expensive, which limits the number
of function evaluations.

As consequence of the complexity of such simulators [3] introduced a
simplified validation model of an ESGC system, the sequential ring(S-
Ring).

3.2 S-Ring Perceptron Simulator

The S-Ring was introduced to benchmark di�erent ESGC algorithms
independent of a certain elevator/floor configuration. It uses a simplified
NN to control the elevators, where the connection weights can be modified
and represent the variables of an optimization problem. Each weight
setting will result in a certain control strategy which is tested on simula-
tions of di�erent tra�c situations. The S-Ring has low computational
costs, which allows us to use an ESGC instance as a benchmark for a
large variety of algorithms. Using di�erent tra�c situations will lead to
a fitness function which is subject to noise. The S-Ring optimization
problem can be defined as follows [3]:

F (n, m, p, w̨) = E

A
tÿ

i

c̨i

B
(1)

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 197



Table 1: S-Ring Configuration

nFloors nElevators probNewCustomer nIterations
6 2 0.3 10000

4 Methods for Learning of Neural Networks

A standard method for learning NN controller is backpropagation. Back-
propagation optimizes the weights by utilizing a set of training data
that contains input values with corresponding outputs. In case of the
S-ring optimization, our task is not machine learning, but to find the
(single) global optimum for the given fitness topology of a time dependent
simulation problem. We receive a fitness value only after evaluating the
weights in a designated simulation run. This means, there is no clear
mapping from input to output data, as the output only defines a certain
control policy and the final action changes dynamically in every time step.

198 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017

where n is the number of elevators, m the number of floors, p the
probability of an arriving customer per floor and w̨ the NN weight vector,
which depicts the control policy. This objective function evaluates the
average waiting time of all customers c̨i during a simulated tra�c situation
with t steps. For a given set of n, m, p the performance is only influenced
by the weight vector of the NN controller. Thus, the simplified problem,
as further used during this paper, can be written as F = F (w̨). The
parameters n, m, p were set as follows: Table 1 also displays the number
of time steps for a single simulation run, which was set rather high to
simulate a longer period. For each simulation run, the exact same period
was used, resembling a certain fixed time-frame, e.g. a certain day in
a year. By choosing a fixed time frame, we removed the noise of the
problem, which renders the problem simpler to optimize. Moreover, the
problem was adapted by setting the desired customer service quality of
the ground floor to a high priority, while the second floor was set to a
lower priority. This should simulate a typical real world hotel scenario,
where it is wanted that arriving customers in the lobby are fast served.
The second floor displays an internal service area, which is of low priority
for the quality of service. As a side e�ect, this reduces the dimensionality
of the optimization problem from 12 to 10.



Thus we will need to use more sophisticated methods: metaheuristic
optimization and surrogate-assisted optimization.

4.1 Metaheuristic Optimization

Metaheuristics are sophisticated heuristics, which are often inspired by
nature. They utilize stochastic processes (randomization) and usually do
not require any gradient information. Metaheuristics are known to be
general solvers which apply to a large variety of global problems without
needing a priori information. They are suitable for highly non-linear and
multi-modal problems, as well as so-called black-box problems, where no
information about the topology of the objective function is known. No
algorithm is able to deliver their best performance for every problem
without adapting their control parameters; By parameter tuning [2, 6], we
can exploit beneficial parameter settings, but it is very time-demanding.
To provide reliable results without putting a lot of e�ort into algorithm
tuning, we selected four di�erent state-of-the-art R implementations of
common metaheuristics from the range of simulated annealing methods
and evolutionary algorithms for our comparison. Simulated annealing
[9] is inspired by annealing processes in metallurgy, where materials
are heated and cooled to change their physical structure. Simulated
annealing follows the base principle of an greedy stochastic algorithm, but
implements a control strategy which allows to accept also solutions with
lesser fitness. This allows to escape local optima and establishes a global
search strategy. Evolutionary algorithms [1] are based on the principles
of natural selection: in each generation, a population of individuals (e.g.
solutions w̨) is evolved by mutation, recombination and selection steps.
The selected packages are DEoptim, GA, GenSA and genoud. DEoptim
and GA were chosen due to personal preference, while the two latter
were chosen based on the survey on Continuous Global Optimization in
R by Mullen [12]. GenSA and genoud performed best on a set of di�erent
optimization problems.

• DEoptim [13] is an R-implementation of the di�erential evolution
algorithm [19], which belongs to the class of evolutionary algorithms.
It is designed for global optimization using real vectors.

• GA [16] is a package which implements an genetic algorithm an
allows optimization of real and integer problems.

• GenSA provides a version of generalized simulated annealing [20].

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 199



Complex ESGC 
Simulator

S-Ring Simulation Model
Pre-defined Structure 

Neural Network

Surrogate Model

Optimization

Fitting and Updating Model

Surrogate Prediction

Best Predicted Weight
Vector

Objective Function 
Information / Variable 

Importance

Figure 1: Surrogate-Assisted Optimization Cycle. The ESGC Simulator is
approximated by the S-Ring simulator. The fitness topology is fitted by the
surrogate on basis of the initial design and sequential updates. The
sequential weight vectors are computed by an optimization of the surrogate.

200 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017

• rgenoud [11, 17] is an R-package which provides and implemen-
tation of a so-called hybrid algorithm. This algorithm combines
evolutionary algorithms with the derivative-based quasi-Newton
method Broyden-Fletcher-Goldfarb-Shanno (BFGS).

4.2 Surrogate-Assisted Optimization

Surrogate-assisted optimization algorithms employ data driven models
to lighten the burden of expensive objective function evaluations. One
framework for surrogate-assisted optimization is Sequential Parameter
Optimization (SPO) [2]. SPO provides a flexible framework that employs
methods from the fields of design of experiment, optimization, and
statistics. In essence, SPO starts by generating an initial design of
experiment, then builds a surrogate model (e.g., a linear model or Kriging).
Then, the surrogate model is optimized to suggest a promising candidate
solution, which is afterwards evaluated by the expensive objective function.
These last steps (model building, optimization and evaluation) are iterated
until some budget of evaluations is exhausted. Figure 1 shows the
optimization cycle for the underlying ESGC problem. The experiments
make use of SPOT, the R implementation of SPO. For this study, we
have chosen to investigate three di�erent surrogate models within the
SPO framework.



• Second order model with step-wise regression: Firstly, we
build second order linear regression models. The model is first
build with all first order e�ects, quadratic e�ects as well as second
order interactions. E.g., for two parameters x1 and x2 a model of
the form y(x) = c1x1 + c2x2 + c3x2

1
+ c4x2

2
+ c5x1x2 is determined.

This full model is further refined by backwards, stepwise variable
selection based on the Akaike information criterion. The stepwise
variable selection is skipped whenever the data size is insu�cient.
While the resulting models are comparatively simple, one advantage
is the comparatively low computational e�ort.

• Random Forest: Secondly, we use a Random Forest [5] model.
Random Forests are ensembles of decision trees. We use the default
settings of the randomForest R-package [10]. Random Forests are
able to learn non-linear dependencies in the data, are typically
numerically robust and fast to compute, and can handle discrete
input variables.

• Kriging: Thirdly, a Kriging model (also known as Gaussian process
regression) is employed. Kriging assumes that the observed data
is the result of a stochastic process. We use an implementation
from the R-package SPOT. The implementation is loosely based
on Matlab code by Forrester et al. [8]. The correlation of samples
is modeled via an exponential correlation function cor(x, xÕ) =
exp(≠

qn
i=1

◊i|xi ≠ xÕ
i|

pi). The vectors x and xÕ are samples, or
candidate solutions of the optimization problem. The parameters
◊i > 0 and 1 Æ pi Æ 2 are determined by maximum likelihood
estimation. Forrester et al. provide a detailed and easy to follow
description of Kriging and related methods [8]. Of the three models,
Kriging requires the largest computational e�ort, yet produces the
potentially most accurate model.

4.3 Variable importance

Most black-box optimizers tend to deliver only the best found parameter
settings found within the available budget of objective function evalua-
tions. Hence, these optimizers do no provide any information on what
they have learned about the importance of the input variables during the
optimization process. An advantage of the surrogate model techniques
applied in this study is the provision of some knowledge beyond the best
found parameter setting. For example, the estimated model coe�cients or

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 201



the change of the prediction accuracy (i.e. the model error) by permuting
variable values may provide strong indicators for the importance of each
input variable.

• Linear Regression Models: In linear regression models, p-values
can be taken to analyze the significance of a variable. However,
statistical significance does not automatically mean a large impact
of the variable on the result. The values of the regression coe�cients
can be compared instead. Larger coe�cient values account for larger
impact of the corresponding variable for the outcome. This has to
be used carefully, especially if the scales of variables di�er. The
data must be standardized first, to enable a safe comparison of the
regression coe�cients to judge the variables importance.

• Random Forest: Variable importance can be estimated by com-
puting the out-of-bag error first. Afterwards a permutation of
the values of one variable is computed randomly. This keeps the
distribution of the values equal. In the next step the out-of-bag
error is computed again and the result compared to the initial
out-of-bag error. If the error (e.g., mean squared error) varies a
lot, the variable can be seen as important. With this process, a
ranking of the importance of the variables can be computed.

• Kriging: The width parameter ◊i determines how far the influence
of each sample point spreads in dimension i. In detail, the larger
the width parameter is, the faster are the potential changes in the
predicted value. The smaller the width parameter is, the slower are
the potential changes in the prediction. The descending order of
the ◊ values give an indicator of the variable importance.

5 Experiments

Our stated hypothesis is tested by performing a benchmark on the S-
Ring problem. The performance of a random search algorithm will be
added as a baseline comparison. All four metaheuristic algorithms and
further the surrogate-assisted optimization with three di�erent models
are compared on basis of their total objective function evaluations to
simulate the performance on a possible expensive function. Thus, the
smallest number of evaluations is set to 100, which is a common limit
for optimization of expensive objective functions. The maximum number
of tested evaluations for the metaheuristics is set to 1e+5 to see the

202 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Table 2: Experimental Setup

Algorithm No. Evaluations popSize maxIter

RandomSearch 100 100 1
RandomSearch 1e+3, 1e+5 1e+3, 1e+5 1

Metaheuristics:
GenSA 100, 200, 500 / /
GenSA 1e+3, 1e+5 / /

DEoptim 100, 200, 500 5,5,10 9,19,24
DEoptim 1e+3, 1e+5 10,100 49,499

GA 100, 200, 500 10,10,20 10,20,25
GA 1e+3, 1e+5 50,50 20,2e+3

genoud 100, 200, 500 10,10,20 10,20,25
genoud 1e+3, 1e+5 50,1e+3 20,100

Surrogates:
Model No. Evaluations initDesign Optimizer

SecondOrderLM 100, 200, 500, 1e+3 10,20,50,100 DEoptim
RandomForest 100, 200, 500, 1e+3 10,20,50,100 DEoptim

Kriging 100, 200, 500, 1e+3 10,20,50,100 DEoptim

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 203

convergence behavior on the objective function. The maximum number
of surrogate-assisted optimization runs are limited to 1000 total objective
function evaluations and 10 percent of this budget are used for the
initial latin hypercube sampling. A single optimization iteration can,
due to the model fitting, model optimization and prediction, become
very computationally expensive for large sample sizes. As all tested
algorithms are stochastic, each experiment is repeated 20 times. As
previously mentioned, for all tested algorithms the parameter settings,
beside the iterations and populations size to set an exact number of
evaluations, are not changed and use the pre-set default settings. The
experimental setup is summarized in table 2.



6 Results and Discussion

6.1 Benchmark Comparison

Figure 2 shows the benchmark results for the di�erent combinations of
algorithms and number of evaluations:

• Metaheuristics: For 100 evaluations, GA and genoud perform
better than random search, while DEoptim and GenSA show in-
ferior results. The methods significantly improve with a rising
number of evaluations and are able to outperform random search.
For instance, for 1000 evaluations, most method (except GenSA)
perform better than the random search method, which is also the
case for 1e+5 evaluations. The long run results (1e+5) also indicate
that GenSA and DEoptim seem to converge to a global optimum,
while genoud and GA show significantly inferior results. A large
number of evaluations seems to benefit GenSA the most, as with less
evaluations it is in all cases outperformed by the other algorithms.
This can be strongly connected to the chosen default parameter
settings.

• Surrogate-Assisted Optimization: For 100 evaluations, the
surrogate-assisted optimization outperforms the metaheuristics sig-
nificantly. Particular Kriging is performing on a level equivalent to
this of 1000 random search evaluations and near 500 metaheuristic
evaluations. This picture becomes even clearer for 200 evaluations,
where Kriging again improves and surpasses random search with
1000 evaluations. For 1000 evaluations, Kriging reaches the level of
1e+5 random search evaluations and thus outperforms all metaheu-
ristic algorithms on this level. The second-order linear model also
performs well, but is not able to show considerable improvements in
comparison to the metaheuristics.Random forest shows poor results
for larger evaluations sizes, where it is inferior to random search.

The good results of the Kriging surrogates can be explained by their
strong ability of fitting non-linear landscapes and their general good
interpolation ability. While the second-order linear model can fit non-
linear behavior so a certain extend, they are not fit to build global
surrogates of highly multi-modal landscapes. The poor performance of
random forest is due to the pure continuous nature of the problem and
the bad interpolation abilities of these models.

204 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Table 3: Variable importance

Weight RF Mean MSE Decrease Kriging theta values
1 117.31366 3.82746
2 9.83143 1e-04
3 59.79332 1.15356
4 17.86245 0.4643613
5 11.06656 0.2711343
6 14.05440 0.001178616
7 64.32869 2.221088
8 64.86968 1.164819
9 34.63966 1.8983
10 47.50249 3.45285

6.2 Model Variable Importance

To check the usefulness of the variable importance, we used three of the
best models, which were fitted with 1000 evaluations.

• The second-order linear model has a multiple R-squared of 0.869
and an adjusted R-squared 0.8611, thus it is able to explain a high
extent of the underlying variance. It contains a large number of
60 model terms, including main e�ects, interactions and quadratic
e�ects, where the p-values indicate a high importance. Due to this
high number of terms, an additional analysis is needed to extract
the importance variables. At this point, as we are not able to
validate the results in terms of their usefulness, we decided not to
conduct any further analysis.

• The random forest model has a mean of squared residuals of 0.129
and explains 71.44 percent of the variance. The mean decrease in
MSE is shown in table 3 and compared to the results of Kriging.

• The estimated activity parameters (theta) are shown in table 3.
Table 3 indicates, that at least the most important weight (No. 1) and
the least important weight (No. 2) are the same for both the Kriging
and random forest model. The other weights also show some correlation.
The variable importance comparison shows, that the models are able to
extract knowledge beyond the best found parameter setting. To validate
the given results, we will need to use a designated experimental design,
which will be part of future research.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 205



Table 4: Algorithm Computation Time. All values are approximated.

Algorithm No. Evaluations Computation Time
S-Ring Problem C 1 < 0.001 seconds
S-Ring Problem R 1 < 1 second

Metaheuristics 100 0.1 second
Metaheuristics 1000 1 second
Metaheuristics 1e+5 1-2 minutes

surrRF 100 1 minute
surrSO 100 4 minutes
surrKR 100 8 minutes
surrRF 1000 1 hour
surrSO 1000 4 hours
surrKR 1000 > 1 day

6.3 Computation Time Comparison

An important aspect of every optimization technique is the total compu-
tation time. Table 4 shows approximated values for the metaheuristics
and the surrogate-assisted optimization with the respective models. As
the problem itself has nearly no computation time, the indicated values
are mainly caused by the optimization algorithms. As the values indi-
cate, surrogate-assisted optimization is in comparison very expensive.
The model fitting, updating and optimization process is computationally
expensive, particularly for a higher number of samples. This is especially
visible for Kriging, which is very sensitive to higher sample sizes. At
this point, we also have to consider that the SPOT implementation is a
R-framework, which is in terms of computation time much inferior to C
or C++ based implementations. For instance, a re-implementation of
the S-Ring simulator in R, which is normally implemented in C, is about
1000 times slower. We can assume, that an optimized version would be
significant faster. Moreover, SPO performs sequential optimization, while
the metaheuristics are able to conduct parallel evaluations.

206 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



7 Conclusion

In accordance to our hypotheses, the results show that surrogate-assisted
optimization is a beneficial approach for the underlying NN control op-
timization task. The tested algorithms were capable of outperforming
metaheuristic optimization methods. Furthermore, the surrogate can
be used for significance analysis of the inputs and weighted connecti-
ons to further exploit problem information. We can thus assume that
surrogate-assisted optimization is able to provide a greater understanding
of the learning process. The clear downside of the surrogate-assisted
optimization is the large computation time, which is more than 10000
times larger than these of metaheuristic optimization. However, this
huge downside becomes less significant in scenarios where the objective
function evaluations become very expensive, e.g., in the area of several
minutes. The model fitting and optimization process could be conducted
simultaneously to the real-time evaluations. Also, not considered here are
optimized and parallel surrogate-assisted approaches, which could consi-
derable improve the computation time. In this study, we used the default
parameters for all given algorithms, whereby no extensive research was
made to optimize the SPOT default parameters, while the metaheuristic
implementations default parameters are commonly optimized or include
self-adaptive procedures to show comparable results. An extended study
to identify generally good settings for large set of problems could be
helpful to further improve general performance. In future research, we
will test the applicability to a larger range of di�cult problems from the
area of artificial intelligence and evolutionary robotics. Moreover, we will
study the usefulness of the extracted variable importance for evolutionary
robotics.

Acknowledgements

This work is part of a project that has received funding from the Euro-
pean Unions Horizon 2020 research and innovation program under grant
agreement no. 692286.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 207



●

●

●●

● ● ●

●

● ●

●

●●

●●●

●

DEoptim.100
GA.100

genoud.100
GenSA.100

RS.100
surrKR.100
surrRF.100
surrSO.100

DEoptim.200
GA.200

genoud.200
GenSA.200
surrKR.200
surrRF.200
surrSO.200

DEoptim.500
GA.500

genoud.500
GenSA.500
surrKR.500
surrRF.500
surrSO.500

DEoptim.1000
GA.1000

genoud.1000
GenSA.1000

RS.1000
surrKR.1000
surrRF.1000
surrSO.1000

DEoptim.100000
GA.100000

genoud.100000
GenSA.100000

RS.100000

2.30 2.35 2.40 2.45 2.50 2.55

Figure 2: S-Ring Simulator Benchmark Results. The algorithms with their respective
number of evaluations are shown on the y-axis, the x-axis shows the
achieved fitness. SurrSO uses the second order model, SurrRF the random
forest model and SurrKR the Kriging model. The vertical lines represent
the baseline, where the solid line is the median random search fitness for
100, the dashed line for 1000 and the pointed line for 100000 evaluations

208 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



References

[1] T. Back. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
university press, 1996.

[2] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß. Sequential
parameter optimization. In Evolutionary Computation, 2005. The
2005 IEEE Congress on, volume 1, pages 773–780. IEEE, 2005.

[3] T. Bartz-Beielstein, M. Preuss, and S. Markon. Validation and
optimization of an elevator simulation model with modern search
heuristics. Metaheuristics: Progress as Real Problem Solvers, pages
109–128, 2005.

[4] J. C. Bongard. Evolutionary robotics. Communications of the ACM,
56(8):74–83, 2013.

[5] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
[6] Á. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control

in evolutionary algorithms. IEEE Transactions on evolutionary
computation, 3(2):124–141, 1999.

[7] O. Flasch, T. Bartz-Beielstein, A. Davtyan, P. Koch, W. Konen, T. D.
Oyetoyan, and M. Tamutan. Comparing ci methods for prediction
models in environmental engineering. In Proc. of CEC, 2010.

[8] A. Forrester, A. Sobester, and A. Keane. Engineering Design via
Surrogate Modelling. Wiley, 2008.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[10] A. Liaw and M. Wiener. Classification and Regression by random-
Forest. R News, 2(3):18–22, 2002.

[11] W. R. Mebane Jr and J. S. Sekhon. Genetic optimization using
derivatives: the rgenoud package for r. Journal of Statistical Software,
42(11):1–26, 2011.

[12] K. M. Mullen. Continuous global optimization in r. Journal of
Statistical Software, 60(6):1–45, 2014.

[13] K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline. Deop-
tim: An r package for global optimization by di�erential evolution.
2009.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 209



[14] Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization of
computationally expensive problems via surrogate modeling. AIAA
journal, 41(4):687–696, 2003.

[15] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. K. Tucker. Surrogate-based analysis and optimization. Progress
in aerospace sciences, 41(1):1–28, 2005.

[16] L. Scrucca. Ga: a package for genetic algorithms in r. Journal of
Statistical Software, 53(4):1–37, 2013.

[17] J. S. Sekhon and W. R. Mebane. Genetic optimization using deriva-
tives. Political Analysis, 7:187–210, 1998.

[18] K. O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary computation, 10(2):99–
127, 2002.

[19] R. Storn and K. Price. Di�erential evolution–a simple and e�cient
heuristic for global optimization over continuous spaces. Journal of
global optimization, 11(4):341–359, 1997.

[20] Y. Xiang, S. Gubian, B. Suomela, and J. Hoeng. Generalized
simulated annealing for global optimization: The gensa package. R
Journal, 5(1), 2013.

210 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017


