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ABSTRACT
In the last years, reinforcement learning received a lot of attention.
One method to solve reinforcement learning tasks is Neuroevo-
lution, where neural networks are optimized by evolutionary al-
gorithms. A disadvantage of Neuroevolution is that it can require
numerous function evaluations, while not fully utilizing the avail-
able information from each fitness evaluation. This is especially
problematic when fitness evaluations become expensive. To reduce
the cost of fitness evaluations, surrogate models can be employed
to partially replace the fitness function. The difficulty of surrogate
modeling for Neuroevolution is the complex search space and how
to compare different networks. To that end, recent studies showed
that a kernel based approach, particular with phenotypic distance
measures, works well. These kernels compare different networks
via their behavior (phenotype) rather than their topology or en-
coding (genotype). In this work, we discuss the use of surrogate
model-based Neuroevolution (SMB-NE) using a phenotypic dis-
tance for reinforcement learning. In detail, we investigate a) the
potential of SMB-NE with respect to evaluation efficiency and b)
how to select adequate input sets for the phenotypic distance mea-
sure in a reinforcement learning problem. The results indicate that
we are able to considerably increase the evaluation efficiency using
dynamic input sets.
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1 INTRODUCTION
Neuroevolution (NE) is a technique concernedwith the construction
of Artificial Neural Networks (ANNs) via evolutionary optimiza-
tion algorithms. One important application of NE is Reinforcement
Learning (RL), where it is a considerable challenge to evolve com-
petitive ANNs with evolutionary methods. The mapping from the
genotypical representation, its phenotypic behavior, and finally to
the fitness measurement (i.e., its ability to solve a learning task) can
become extremely complex.

Evolutionary algorithms will need to spend a significant amount
of fitness function evaluations to find well-performing networks.
This may become an issue if fitness evaluations are expensive and
dominate the overall time or resource consumption of the optimiza-
tion process. Surrogate Model-Based Optimization (SMBO) is one
way to deal with this issue [7]. Here, data-driven models partially
replace the expensive fitness function. Except for few recent stud-
ies [5, 16–18], SMBO has found no application in the context of
NE.

Following these recent developments, we intend to design surro-
gate models that allow to learn a cheap yet accurate representation
of the genotype-phenotype-fitness mapping. In that context, we
also focus on kernel-based Kriging models. The approach of kernel-
based modeling with Kriging for complex, combinatorial structures
is discussed in more detail by Zaefferer [21].

For graphs, such as ANNs, this can become a difficult task. Spe-
cific graphs, such as trees, may allow computing kernels based on
measures like the tree edit distance [14]. Such distances on the
genotype can be plugged into the kernel function (i.e., replacing
the Euclidean distance) and used to model the genotype-fitness
mapping [22]. However, the same is not as simple for graphs like
neural networks, as the computation of edit distances is NP-hard in
the general case. At best, approximate distances can be used, such
as the compatibility distance employed by Gaier et al. [5]. Stork et
al. [16] discuss the use of surrogates of fixed ANN topologies in
control tasks using genotypic distances.

https://doi.org/10.1145/3321707.3321829
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As an alternative to genotypic distances, it is often possible to
compute the distance on some form of behavior or phenotype. This
ideawas first discussed byHildebrandt and Branke [6] in the context
of genetic programming for dynamic job shop scheduling problems.
It was later also tested for symbolic regression by Zaefferer et
al. [22]. The key idea of this approach is that complex structures
can be compared by observing their output (phenotype), rather
than their structure (genotype). In terms of NE, different distance
measures were recently tested for classification problems by Stork et
al. [17, 18]. They came to the conclusion that phenotypic distances
for ANNs are promising if the correct input signal is chosen.

A fairly different model has been used for a RL problem in the
context of NE by Koppejan and Whiteson [10]. Their goal was
not to replace the fitness function (as is usually done in SMBO).
Rather, they intended to reduce the sample cost involved in testing
a controller within different instances of a specific problem class.
Instead of a purely data-driven model, they employ a model that is
mostly based on the understanding of the physical system under
consideration (a hovering helicopter). In terms of the classification
by Bartz-Beielstein and Zaefferer [2], this can be seen as a cus-
tomized modeling strategy. A transfer to other problem domains is
not straight-forward. Most approaches considered in our study can
be seen as similarity-based strategies or mapping strategies.

In contrast to the related work, we focus on the application
of Surrogate Model-Based NeuroEvolution (SMB-NE) for RL and
the special needs which arise from solving such tasks, particular
considering the computation of a phenotypic distance. In summary,
we investigate the following questions:
Q-I How can we learn the mapping from a neural network to its

performance in terms of solving RL tasks?
Q-II How does a model-based NE compare to model-free NE on

RL problems?
Q-III How should phenotypic distances be configured to generate

well-performing surrogate models?
We describe the corresponding models and algorithms for NE

and RL in section 2. SMB-NE in the context of RL is described in
section 4. Our experimental setup is described in section 5 and the
results are discussed in section 6. A final summary and an outlook
on future work are given in section 7.

2 METHODS
The application of model-based search for RL introduces a set of
challenges. In general, for solving RL problems, we want to distin-
guish between three possible scenarios:
S-1 New task:Wewant to solve a new task, i.e., no prior experiments

were conducted and no data is available. Here, no information
from prior runs can be used to accelerate the current run and
initial experiments have to be conducted to gather information.

S-2 Same task, different instance: Data and optimized controllers
from former experiments are available and a different problem
instance of the same envionment (e.g. different start param-
eters) has to be solved. For many of these cases, the ANN
controller trained for prior runs may be reused if it is not over-
fitted and provides a robust solution performance. If not, the
existing ANN controller can be subject to further optimization,
where a fast convergence to a good solution is anticipated.
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Figure 1: A CGPANN genotype with two inputs, eight nodes,
an arity of three and different transfer functions. Each node
has a transfer function, a boolean activity gene and several
inputs with adjacent weights. Green nodes are active and
part of the encoded ANN. In the related topology only ac-
tive nodes are included and duplicate connections are aggre-
gated. Taken from [18].

S-3 Same task, different environment:Data from former experiments
is available, but a different, yet similar environment needs to
be solved. For example, changes to the environment, such as a
different maze (in a maze solving problem) or different physical
shape of a robot or appliance, could be considered. In this case,
a prior optimized ANN controller could provide a good starting
solution. An available data model of the optimization run could
still provide valid information.

In this work, we will focus on the first scenario (S-1), whereas for
(S-2) different instances will be tested and a robust controller is part
of the benchmark target. (S-3) will be part of future work.

Our model-based approach for solving RL tasks is a combination
of existing algorithms: Cartesian Genetic Programming for Neu-
ral Networks (CGP-ANN), Surrogate Model-Based Optimization
(SMBO), and specific Kriging models utilizing Phenotypic Distance
(PhD) kernels. We describe these algorithms in the following.

2.1 Cartesian Genetic Programming for Neural
Networks

In this work, the ANNs are encoded as in the CGP-ANN algorithm
[9, 13, 19]. Each individual consists of a fixed number of nodes, as
visualized in fig. 1. Beside the input nodes, which represent the data
inputs, each node has a single transfer function, a fixed number
of inputs and associated weights based on their arity. Nodes are
always connected to proceeding nodes and multiple connections to
the same node are possible. Only those nodes which are directly
or indirectly connected to an output are evaluated during a run,
while all other remain passive and do not influence the behavior
of a network. Thus, very small active ANN topologies and also
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those only using specific inputs are possible, even if the genotype
has numerous nodes. In CGP-ANN, the networks are optimized
using mutation, following the concept an Evolutionary Strategy
(ES). A typical choice is a (1+4)-ES, whereby the elitist is always
the current best individual (e.g., if during evolution an individual
achieves the same fitness as the elitist, the more recent is selected).
The C library CGP by A. Turner1, extended by interfaces to R, was
used to perform the experiments.

2.2 Kriging for modeling ANNs
In this study, we focus on an SMBO approach that employs Kriging
(Gaussian process regression) [4]. The main question in this context
is how Kriging can model the complex dependencies between a
neural network’s topology and its fitness.

At its core, Kriging is based on kernels such as the exponential
kernel k(x ,x ′) = exp(−

∑n
i=1 θi (xi − x ′i )

2). In this example, x ∈ Rn

is a vector of real values, and θi ∈ R+ is a non-negative parameter
of the kernel. If x is not a real valued vector, but rather represents a
candidate ANN, we need to change the kernel such that it compares
networks rather than vectors. For instance, the weighted distance
measure −

∑n
i=1 θi (xi − x ′i )

2 may be replaced with some distance
between ANNs. To that end, previous work suggested evaluating
distances that are based on observations of network behavior (or
phenotypes) [6, 18, 22]. More details on the computation of pheno-
typic distances are given in section 3.1.

One complication of using such phenotypic distances in Kriging
is dimensionality. Specifically, Kriging is often suggested for prob-
lems with less than 20 variables (e.g., see Table 3.1 in [4]). At the
same time, the vectors of phenotypes we consider in the context of
ANNs may easily grow to lengths of 100 or more elements. Hence,
the combination of Kriging and phenotypic distances may appear
to be a poor choice.

We propose to tackle this in two manners, each related to two
different aspects that affect problems with high-dimensionality in
Kriging. One problem of high-dimensional data is the determination
of the kernel parameters such as θi . These are usually determined
by Maximum Likelihood Estimation (MLE), using numerical op-
timization algorithms [4]. In MLE, the parameters are chosen to
maximize the likelihood determined by the Kriging model.

Clearly, the number of parameters increases with the dimen-
sionality of the data. Optimizing many parameters by numerical
optimization may pose a very difficult problem. A straight-forward
fix is to set all parameters θi to the same value, that is, to use
k(x ,x ′) = exp(−θ

∑n
i=1(xi − x ′i )

2), where only a single parameter
θ has to be determined by MLE. That is, we choose an isotropic
rather than anisotropic model.

A second problem is the behavior of distances in high-dimensional
spaces. Roughly speaking, when measuring Euclidean distance of
different data points in a high dimensional space, nearly all points
will have the same distance [1]. Clearly, this is undesirable for any
model that is based on such distances. Aggarwal et al. [1] state
that other distances are less affected by this issue, especially the
Manhattan distance (based on the L1 norm). For that reason, we
finally propose to use an isotropic kernel based on the Manhattan

1http://www.cgplibrary.co.uk - accessed: 2018-01-12
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Figure 2: Example for Kriging modeling: distances between
ANNs (blue circles) in one dimension xi of a phenotypic out-
put. The bold line is the model prediction, while the thin
lines display the uncertainty of the model.

distance to measure the distance between phenotype vectors, i.e.,

kPhD(x ,x ′) = exp(−θ
n∑
i=1

|xi − x ′i |). (1)

Figure 2 illustrates an example model for a one-dimensional case.
Besides dimensionality, another important aspect of kernels for
Kriging is their definiteness. Usually, kernels are required to be
positive semi-definite. The kernel kPhD from eq. (1) is definite, as it
is a special case of the positive semi-definite Gaussian kernel [4].

3 SURROGATE MODEL-BASED
NEUROEVOLUTION FOR REINFORCEMENT
LEARNING

3.1 Phenotypic Distance Measure for ANN
Topologies

Evolved ANN topologies do not have fixed structures in terms
of hidden layers, weights, connections, or functions. Measuring a
distance between these complex structures is thus a challenging
task. In detail, it is difficult to measure a distance directly on these
structures, due to several problems:
P-1 Competing Conventions: A famous problem which arises in the

context of ANNs are competing conventions [15], i.e., different
genotypes can result in the same topology, as well as the same
phenotype.

P-2 Incomparability: Even ANNs with fixed genotypic structures
(e.g., as produced by CGP), are often not directly compara-
ble. When comparing two genotypes, elements such as certain
nodes may be not aligned in the same way, despite having
the same effect on the outcome. In other words, it is not al-
ways straightforward to decide which pairs of nodes should
be aligned with each other, when comparing two different
networks. This could be handled by complex and computation-
ally expensive sorting and aligning processes, but this would
pose an optimization problem in itself and render the compari-
son computationally expensive [18]. This issue becomes more
problematic with increasing size of the considered networks.

P-3 Lack of Smoothness: In some cases, small changes in the geno-
type can have a significant effect on the final behavior. For
instance, removing a single connection may change the fitness
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of the network dramatically. That means, small distances in the
search space may lead to large distances between fitness values.
Essentially, this implies that the search space is not smooth
under a genotypic distance. This presents a severe problem to
every optimization or modeling algorithm.

P-4 Distance Balancing: Different types of changes in a network
have different meaning and impact. For example, changing
a weight has a different impact than changing the transfer
function of a node. It is thus difficult to provide a meaningful
distance that correctly balances (or weights) such changes. For
example, it is unclear whether two networks that only differ in
a single weight are at the same distance as two networks that
only differ in a single transfer function.

Due to these issues, genotypic distance do not seem to be ideal for
the computation of high-performing surrogate models in SMB-NE.
Thus, we follow the idea of comparing the behavior of ANNs and
employ a Phenotypic Distance (PhD) for modeling the dependen-
cies of ANNs [6, 18, 22]. In the context of ANNs, we consider the
reaction (output) of an ANN to an input signal to be its behavior
or phenotype. In detail, we compute the PhD by first selecting a
representative input vector for a given task. Then, these inputs
are fed into the ANN, and we observe a vector of output values.
In terms of RL, the input vectors are typically vectors of consecu-
tive observed environment states. The observed outputs are then
directly compared via the kernel described at the end of section 2.2.

The clear advantage of the PhD is that the output length and
structure are not dependent on the genotype or topology of the
compared ANNs. The computation of the input to output mapping
can be performed independently of different structures (e.g, it does
not matter whether the network has 10 or 1000 active connections,
different transfer functions etc.). Moreover, the observed outputs
of the PhD give a clear impression of how the networks react and
explicitly account for granular changes in how ANNs differ in
solving a specific task.

The potential disadvantages of the PhD are the computation
times for generating the output vectors. For complex, large ANNs
topologies (genotype size does matter much less) they can sum up to
a significant amount. This issue is less significant if we consider the
task itself to be computationally expensive, especially for expensive
simulators, or even real-time experiments. In this study, we thus
concentrate on enhancing the evaluation efficiency and not the
overall computation time, which is strongly related to solving a
specific task.

3.2 Phenotypic Distances: Input Vector
Selection

The PhD is, in contrast to genotypic distances, strongly task and
environment dependent. One critical aspect of employing pheno-
typic distances is thus that their design needs to be adapted to each
specific application. For our purpose of modeling ANNs in RL, we
first need to define how the input of the networks are chosen. These
inputs can then be used to generate the output of the ANNs, which
will be compared by the distance measure.

Choosing the input vectors involves multiple issues, such as
distribution of the state data, size of the data set, and many more.
In this paper, we focus on four different types of input vectors:

• Precomputed set (Pre): As a comparison baseline, we use
the set of states that are observed by optimal or near-optimal
solutions. A number of state vectors from previously success-
ful runs are stored and used as a precomputed input set. This
is an artificial baseline for our outlined scenario (S-1), where
the knowledge about these states is initially not available.
This could be seen as a best-case scenario.

• Static initial set (Init): We extract the observation vectors
st=1 from the initial dataset Dt=1 to form the input vector
vt=1, which is not altered during the run. The possible down-
side of this approach is, that the initial, randomly generated
solutions typically have a poor fitness. Clearly, poor solutions
may see quite different states than successful, near-optimal
solutions. They may cover only a small subset of all possible
observable states. As these initial input vectors are thus not
representative, the resulting distance may not be useful in
predicting good solutions.

• Sampling set (LHS): Furthermore, input vectors can also be
determined by design of experiment methods, such as latin
hypercube sampling (LHS) [12]. The idea is to distribute the
data in a space-filling manner between known bounds for
the network inputs. In contrast to the static initial approach,
these inputs cover the whole state space, they are artificial
and do not represent the observed states of real runs.

• Dynamic set (Dyn): Finally, wemay updatevt at each itera-
tion, if a new best ANN is found by the SMBO algorithm. The
observed states st of this new solution will replace the worst
in the input vectorvt . This implies that the input vectors are
changed dynamically over time and may approximate the
baseline if the algorithm converges to the optimum. Clearly,
this also means that the employed distance measure changes
in each iteration. Models trained in different iterations of the
algorithm are hence not directly comparable.

Further considerations include the number of observations in the
input vector and maximum size of overall input vector. A large size
forvt increases the computation time for generating the phenotypes
of the ANNs and further may introduce problems with too high
dimensionality (section 2.2). On the other hand, a larger input
vector including the states of different runs may lead to a more
representative phenotype and thus distance. In this context, another
problem is introduced by the dynamic input vectors, as their size
can change over time and is more difficult to control.

4 SURROGATE MODEL-BASED
NEUROEVOLUTION FOR REINFORCEMENT
LEARNING

In this work we employ SMB-NE, which was first introduced by
Stork et al. [17, 18] and tested by evolving neural networks for clas-
sification problems. The SMB-NE algorithm follows the principles
of Efficient Global Optimization [8], which was introduced in the
context of expensive real-world optimization problems. In case of
SMB-NE for RL, we require additional steps due to the complex
ANN structures. The complete procedure is outlined in fig. 3 and
algorithm 4.1 . The detailed steps of the algorithm are:
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Initialization of model set. The algorithm starts by sampling an
initial set with k candidates Dt = {(x1:k ,y1:k )}. The initial set is
generated completely at random, so the included genotypes can
differ strongly in their size, given by the number of genomes, con-
nections, functions and weights. The active ANN topologies are
then compiled with CGP to be evaluated with the underlying RL
task.

Evaluation with RL task. Each ANN is evaluated over a number
of time steps, which are defined by the RL task. In each time step,
the ANN computes actions based on the currently observed state
inputs. Each action is then given a reward. Some actions lead to a
negative reward, such as a robot bumping in a wall, or expending
some resources. Positive rewards are given for accomplishing a
certain goal. The fitness of a so-called episode is typically the sum
of all rewards over the executed time steps. The fitness information
is thus limited, as it includes only the final reward of an episode
and does not reveal which single action was beneficial or not.

Extraction of observed states. If the input vector vt is not given
upfront or precomputed by DOE methods, it needs to be extracted
from the RL experiment. For each experiment, all observed sys-
tem states are stored in a vector st . The set of state observation
vectors is sorted according to the determined fitness values for
each experiment. From this set, the best numst observation vectors
(according to the fitness of the respective ANN) are selected. They
are combined in the order of their fitness to form a single input
vector vt with length lenvt = numst ∗ lenst . If the observation
vector length is beyond a certain size, a subset of each st is selected
before combining them to vt . This intends to keep the number of
elements in the vector from becoming too large.

Kriging model construction. The Kriging model is constructed as
described in section 2.2. We utilize the R-package CEGO [20] to train
the Kriging model. At the start of the process, the model is trained
with the initial set of solutions Dt=1. The state input vector vt is
used to compute the phenotype of each ANN, which is required
to calculate the PhD. In the later modeling steps, a subset Mt is
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Figure 3: SMB-NE Cycle for Reinforcement Learning

selected fromDt to build the model. This subset selection intends to
avoid issues with growing data sizes, which may render the Kriging
model too time-consuming to compute. This setMt contains numm
of all archived solutions. It is typically set to numm > 100, so
for runs with fewer than 100 evaluations it has no effect. Mt is
formed by combining a number (typically 1

5 ∗ numm ) of the best
found solutions with the rest being sampled at random from the
archive (without replacement, thus duplicates are not possible).
This process further influences the balance between exploration
and exploitation, as in each iteration a different set of ANNs is
considered for the model construction.

Surrogate Optimization. The sequential optimization steps are
conducted by optimizing the Expected Improvement (EI) of the
surrogate model to suggest new promising ANNs. The EI criterion
delivers a balance between the predicted fitness and the uncertainty
of a solution, thus also leading to a balance between exploration
and exploitation in den model-based search [8]. For the model
optimization, we utilize the same (1+4)-ES of CGP-ANN to generate
new candidates. To predict the fitness of new candidates their PhD
needs to be computed, which requires their ANN outputs, based on
the selected input vector vt . The identified candidate with highest
EI on the surrogate model is again evaluated with an RL run and
added to the archive Dt .

Dynamic state vector update (optional). If the dynamic strategy
for the input vector vt is chosen, it is updated if the new candidate
solution has a better fitness than the best known solution. During
this update, the observed states st of the related RL run replace the
ones of the worst candidate solutions in the input vector vt .

Next iteration. If the stopping criterion is not met, the next itera-
tion is started.

5 EXPERIMENTS
For our experiments, we chose two problems from the OpenAI
Gym toolkit as a benchmark, because they are well-known in the
community. Specifically, we chose the classic RL problems CartPole-
v1 and MountainCar-v0, displayed in fig. 4.. They are implemented
in python and the reticulate package in R was used to create an
interface between SMB-NE and openAI Gym.

5.1 OpenAi Gym Benchmarks
The CartPole-v1 environment is a classic cart-pole balancing prob-
lem, where a pole is placed with an un-actuated joint to a cart
moving on a frictionless track. It has four observations per state,
the cart position, cart velocity, pole angle, and the pole velocity at

Figure 4: OpenAI Gym CartPole-v1 and MountainCar-v0
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Algorithm 4.1: Surrogate Model-based Neuroevolution for
Reinforcement Learning
1 begin
2 t = 1
3 initialize k CGP genotypes (xi ) at random
4 evaluate their fitness with the objective function to get

initial solutions Dt = {(x1:k ,y1:k )}
5 extract state vectors to create PhD input vector vt
6 build Kriging surrogate modelmt with Dt using input

vector vt to compute ANN phenotypes for PhD ;
7 while not termination-condition do
8 if t > 1 then
9 rebuild surrogate modelmt with selected

subsetMt ⊆ Dt
10 end
11 optimize EI estimated by st with evolution strategy

to discover promising xt+1
12 evaluate network xt+1 with the objective function
13 if yt+1 < yt then
14 update input vector vt+1 with states of

successful run (dynamic input vector)
15 end
16 update archive Dt+1 = {Dt , (xt+1,yt+1)}

17 t = t + 1
18 end
19 end

its tip. Based on these observations, two discrete actions can be
chosen by a controller, either pushing the car to the left or to the
right. The goal is to keep the pole balanced and the cart near to the
center of the track. Each episode of the environment is evaluated
over 200 time steps and terminated if the pole or cart moves out
of pre-defined ranges. For each time step reward of 1 is given and
the environment is considered solved if an average reward of 195
is achieved per episode over 100 trials.

In the MountainCar-v1 environment, a car situated between two
hills on a one-dimensional track has to be driven up a mountain,
whereby the acceleration of the car is not strong enough to drive
up directly. Thus, a swinging forward and backward behavior is
needed to succeed. The observation space consists of only two
variables, the current position and velocity. The action space has
three discrete options: drive left, do nothing and drive right. Again,
an environment episode is run over 200 steps, but terminated if the
goal is reached. For each step, a negative reward -1 is given and the
environment is considered solved if a reward larger than -110 is
achieved over 100 trials.

While for CartPole the fitness function is set to direct negative
reward (as we utilize minimization during optimization), the Moun-
tainCar fitness function is altered for the optimization to a mixture
of achieved maximum height (maxHeight) and reward by

f itness : y(x) = −(maxHeiдhtepisode +
Rewardepisode

100
) (2)

Table 1: Algorithm Parameter Setup for the Experiments

Problem Weight Range Nodes Arity
CPole/MCar [-1,1] 200/100 20/10

CGP-RS Max Episodes
CPole/MCar 3000/5000
CGP-ANN Mutation rate Max Episodes
CPole 2/5/10 20 + 750 · 4
MCar 2/5/10 20 + 1250 · 4
SMB-NE PhD Input Sets Max Episodes Surr Evals
CPole Pre, Init, LHS 20 + 3000 1000 per iter
CPole Dyn: nums = 2/5/10 20 + 3000 1000 per iter
MCar Pre, Init, LHS 20 + 5000 1000 per iter
MCar Dyn: nums = 2/5/10 20 + 5000 1000 per iter
MCar Dyn**, nums = 5 20 + 5000 4000 per iter

This modification was chosen to compute a more granular fitness.
Without this, most initial solutions get the worst reward. An ini-
tial data-set where nearly all solutions have the same poor fitness
would be detrimental for training a surrogate model. The stopping
criterion remains unchanged, based only on the reward.

5.2 Parameter Tuning and Setup
Due to the considerable runtimes, we were not able to perform
exhaustive tuning of the parameter space for CGP-ANN and SMB-
NE, but conducted some preliminary tests to acquire information
about the algorithm parameter space and the significance of specific
variables. For CGP-ANN, two mutation operators (single active mu-
tation and random mutation) as well as different mutation strengths
were tested. The preliminary tests have shown, that CGP-ANNwith
a single active mutation, where in each iteration the genotype is mu-
tated until at least a single active genome (and an arbitrary number
of non-active genomes) is altered, was not able to deliver a compet-
itive performance. Moreover, the choice of the mutation strength
in random mutation has a significant impact on the performance.
Thus, we decided to conduct experiments with different mutation
strength of 2,5 and 10 percent, which were selected based on former
experiments to show the influence of this parameter and conduct
realistic comparisons. SMB-NE includes an even larger set of pa-
rameters, such as the choice of input vectors (for the PhD), their
number and dimensions, as well as optimizer and its parameters
during the surrogate model optimization. Most of these parameters
were thus set by the authors experience and due to the small set
of preliminary tests. We identified that the number of different
observation vectors nums for creating the input vector vt might
be an important tuning factor and thus added different variants to
the experiments. Although we expect that the chosen parameters
for both algorithms do not reflect the best possible options, they
should still provide valuable insights on the performance level of
both algorithms.

Table 1 shows the parameter setup for the benchmarks. CGP-
ANN genotypes for CartPole/MountainCar are set to an arity of
20 or 10, with 200 or 100 nodes, resulting in up to 4000 or 1000
connections between nodes. We perform all test with a large set of
activation functions: tanh, softsign, step, sigmoid, and gauss. Both,
the maximum size of the genome, and the function were set by the
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Figure 5: Experimental results. The number of required function evaluations (episodes) to solve the environments is Log10
scaled. Algorithms have different colors and specific setups are attached to the algorithm names. The numbers indicate either
the utilized mutation rate in percent (CGP-ANN) or the number of utilized state observation vectors nums (SMB-NE).

authors experience. This displays a typical scenario in NE, where
we do not know upfront which size for the genotypes is best.

All inputs are, if possible, normalized to the [-1,+1] range and
the connection weight range was also set to [-1,+1]. The setup
considers a maximum runtime of 3000 or 5000 episodes, whereby
the run is stopped as soon as the stopping criterion (environment
solved) is met. The size of the initial data set Dt=1 is set to 20 for
all algorithms. CGP-ANN starts the normal evolution with the best
found solution of the initial set and computes four candidates per
iteration. SMB-NE selects a single new candidate per iteration and
utilizes 1000 search steps for the model optimization. All SMB-NE
setups use the same mutation rate during the model search (5%).
The tested setups include all variants introduced in section 3.2 (Pre,
LHS, Init and Dyn). For the dynamical approach, different numbers
of observation vectors nums to create the input vectorvt are tested.
The input vectors generated by LHS are based on the (theoretical)
bounds of the state observations for each environment and have 800
elements. All experiments are repeated 30 times with different ran-
dom number generator seeds. Different algorithms/configurations
are tested with the same set of seeds to be comparable. A CGP-ANN
configuration that only generates random solutions is included in
the experiments as a baseline (RS). For assessing the performance
of an exhaustive model search, we test an additional variant (Dyn**)
of SMB-NE with the dynamic set for MountainCar-v0, where we
set the size of the surrogate model evaluations to 4000. Due to the
computational effort, this variant is only repeated 20 times. The
statistical significance of the observed differences are evaluated
using the Kruskal-Wallis rank sum test [11] and a posthoc test for
multiple pairwise comparisons according to Conover [3].

6 RESULTS AND DISCUSSION
Figure 3 and Table 2 show the results of all conducted experiments
with both benchmark problems. For easier comparison, the results
of the box plots are log10 scaled and colored according to the type

of algorithm. The numbers indicate either the utilized CGP-ANN
mutation rate in percent or the number of utilized state observation
vectors nums for computing the PhD in SMB-NE.

CartPole-v1. For CartPole-v1, all algorithms are able to find suc-
cessful solutions, but show a high variation in solution quality over
the different random seeds. This variation relates to the different
starting conditions for the RL environment and different initial data
sets. On the one hand, the environment might rarely be solved by
pure random chance during the initialization of the algorithms. On
the other hand, even CGP-ANN sometimes fails to find solutions
within the specified budget of 3020 total fitness function evaluations.
In contrast, all SMB-NE variants are able to discover ANNs which
solve these environments within the given budget. The statistical
tests indicate an overall significance of the results (Kruskal-Wallis
rank sum test). However, no evidence for a significant differences
between any CGP variant and Random Search is discovered by the

Table 2: Result tables for both environments, reportedmean
and standard deviation, sorted by CartPole-v1 ranking

Algorithm Setup Evaluations (Required Episodes) ± sd
CartPole-v1 MountainCar-v0

SMBNE DynSet 5 ** not tested 130.67 ± 76.90
SMBNE DynSet 10 57.57 ± 22.79 218.96 ± 129.70
SMBNE PreSet 5 63.17 ± 41.88 198.70 ± 152.10
SMBNE DynSet 5 64.83 ± 32.43 179.40 ± 105.05
SMBNE InitSet 5 64.97 ± 34.43 327.22 ± 235.47
SMBNE DynSet 2 66.67 ± 43.98 320.67 ± 240.68
SMBNE LHS 80.41 ± 44.19 219.05 ± 152.43
CGP MutRate 5 328.00 ± 508.28 916.13 ± 1146.07
CGP MutRate 10 487.20 ± 626.35 1830.40 ± 1612.21
CGP MutRate 2 541.73 ± 897.50 320.67 ± 240.68
CGP MutRate 1 not tested 462.13 ± 667.98
RS Base 1271.07 ± 1139.16 5020.00 ± 0.00



GECCO ’19, July 13–17, 2019, Prague, Czech Republic J. Stork et al.

statistical test procedure (posthoc), while all SMB-NE variants are
evaluated to be different to CGP and Random Search. Between the
tested inputs sets for SMB-NE, there is not sufficient evidence to
indicate a significant difference according to the respective posthoc
test. The results show that the best tested SMB-NE variants are able
to clearly outperform the best tested CGP-ANN variant and require
about 70% (median) or 80% (mean) fewer function evaluations (or
environment episodes).

MountainCar-v0. As the results indicate, the MountainCar-v0
is more difficult to solve and CGP with random search is not able
to discover a single valid solution. Overall, more evaluations are
required to solve the task. The mutation rate in CGP-ANN has a
noticeable influence on the performance. The tested configuration
with a mutation rate of 2% performed best. Based on these result, ad-
ditional runs with even smaller mutation rates were conducted (1%
is reported), but showed no improvements. For the sake of brevity,
they are not shown in the result plots. Again, the Kruskal-Wallis
rank sum test indicates that significant differences are present. The
posthoc test shows that all algorithms performed statistical differ-
ent from Random Search (with exception of CGP with 10%mutation
rate). Only the SMB-NE DynSet** variant, which features a more
extensive surrogate model search, shows evidence for a significant
difference to CGP-ANN. From the input sets, the Init set variant
performed worst. Still, the best standard dynamic variant DynSet 5
requires 45% fewer evaluations than CGP-ANN and the dynamic
variant DynSet** performs even better (60-70% less required func-
tion evaluations).

Discussion. The presented experimental results provide substan-
tial insights on the performance potential of utilizing model-based
search in NE. For both test cases, SMB-NE outperforms the basic
(1+4)-evolutionary strategy integrated in CGP-ANN. First, we focus
on the results of the model-free CGP-ANN with the (1+4)-ES. Par-
ticularly for MountainCar-v0, significant performance differences
in the choice of mutation rate are visible. This effectively shows the
need for either exhaustive tuning of this parameter or development
of an adaptive strategy.

Secondly, no clear statistical significant differences were ob-
served for the different choices of how the state input vector for
the PhD distance is generated. Thus, we are not able to support
the different assumptions raised in the introduction of the input
sets (Pre,Init, LHS and Dyn). Given the current experimental design
with large input vectors, we can state that SMB-NE is fairly robust
to the choice of the input vector. However, the MountainCar-v0
results show a slight preference towards the dynamic input sets,
thus we still assume that it is preferable if the computed distance is
based on state vectors that were actually observed, rather than arti-
ficially created or precomputed. Especially if a further dimension
reduction of the PhD is considered, the dynamic input vector thus
seems the best choice.

In comparison to CGP-ANN, SMB-NE is in general able to pro-
duce more stable results, rendering it a promising choice for new
tasks, as in the outlined scenario (S-1). For example, Figure 6 shows
the convergence of the SMB-NE using a dynamic input vector with
nums = 5 in comparison the CGP-ANN with a mutation rate of
5%. The mean reward over the 30 repeats of the current candidate
is shown for each iteration. As can be observed, the model-based
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Figure 6: Convergence plot of SMBNE.DynSet 10 (solid blue)
and CGP.MutRate 5 (dashed red) on CartPole-v1, mean re-
ward of current candidates (not best solution) aggregated
over repeats with standard deviation (colored areas), the en-
vironment is solved by reaching a reward of 195 per episode.

search shows a strong increase in reward after the initial set and
then a steady convergence, while CGP-ANN improves also steady,
but slower.

7 CONCLUSION AND FUTUREWORK
In this work, we investigated how a surrogate model-based search
can be utilized to enhance the efficiency of NE, given the com-
plex task of evolving artificial neural networks for reinforcement
learning. Our surrogate models are based on phenotypic distance
measures which utilize the observed differences in the outputs of
an ANN. We discovered that our SMB-NE for RL is capable of sig-
nificantly outperforming a model-free evolutionary strategy, which
also answers our initially raised research question Q-II. Regarding
Q-I and Q-III, we proposed different approaches of generating state
vectors for the ANN’s input space. The current empirical results do
not provide evidence for strong differences between the input sets
generation methods, SMB-NE thus seems rather robust towards
this choice. Still, we regard the dynamic input sets as the most
promising approach.

Of course this work and the results raised further questions. The
first is how to optimally set the parameters of the SMB-NE algo-
rithm, particularly regarding the dimension of the input sets. Up to
now, we do not know which length of state vector is required to
generate a well-performing model and, thus, reasonable optimiza-
tion performance. The length of the state vector is also related to
the computation costs, particularly for computing the PhD mea-
sure. The computation costs are a potential drawback of SMB-NE,
but the clear and robust improvements of the evaluation efficiency
render it notably attractive for tasks where the fitness evaluations
themselves are very expensive. For instance, consider a robot con-
trolled by an ANN. Testing that robot in a real environment may
be very expensive, while computing only the outputs of the ANN
are considerably cheaper. In ongoing work we will furthermore
attempt to generalize our results to more environments from the
Gym toolkit as well as tests with real-world problems. We plan to
investigate the underlying mechanics. In particular, the significance
of certain algorithm parameters are of interest and may require
more attention to algorithm tuning.
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