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Abstract. Reinforcement Learning (RL) is the process of training
agents to solve specific tasks, based on measures of reward. Understand-
ing the behavior of an agent in its environment can be crucial. For
instance, if users understand why specific agents fail at a task, they might
be able to define better reward functions, to steer the agents’ develop-
ment in the right direction. Understandability also empowers decisions
for agent deployment. If we know why the controller of an autonomous
car fails or excels in specific traffic situations, we can make better deci-
sions on whether/when to use them in practice. We aim to facilitate
the understandability of RL. To that end, we investigate and observe
the behavioral space: the set of actions of an agent observed for a set of
input states. Consecutively, we develop measures of distance or similarity
in that space and analyze how agents compare in their behavior. More-
over, we investigate which states and actions are critical for a task, and
determine the correlation between reward and behavior. We utilize two
basic RL environments to investigate our measures. The results showcase
the high potential of inspecting an agents’ behavior and comparing their
distance in behavior space.

Keywords: Reinforcement Learning · Behavior · Understandable AI

1 Introduction

In Reinforcement Learning (RL), agents are learning policies to solve a specific
task. For example, we can consider a robot as an agent who has to navigate a
particular environment and react to certain obstacles. At first, a user is interested
in these robots’ performance, which is commonly evaluated by their ability to
solve the task and further based on a user-defined reward function. Besides this
performance assessment, the trained robot’s behavior, such as the action it takes
for individual states, is the only observable part, as the internals of the policy
remain indistinguishable by an external observer. Thus, users desire to analyze
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and compare the behavior to exploit how the robot reacts in certain situations
or if it behaves as intended. Even a well-performing robot may have developed
a specialized behavior not intended by the user, such as only driving backward.

This paper compares agents based on their behaviors, which span a new
space, the behavior space. This paper’s primary motivation is to create a better
understanding of this behavior space and develop useful measures for the com-
parisons of agents without knowing the inner details of their policies. Moreover,
these measures could allow us to identify how agents in a learning set differ,
not concerning their reward, but with regard to their behavior. It is particularly
interesting to identify situations (states) in which an agent behaves differently
than expected. As this is a broad topic, we will start by tackling the following
research questions:

Q-1. How does an agent’s behavior with good performance compare to similarly
performing agents or inferior agents?

Q-2. Which input states are important or problematic for the task?
Q-3. Is there a correlation between an agent’s reward and behavior, and how do

changes in the behavior affect their reward?

Comparing agents in the behavior space has some prerequisites: For most
RL environments, individual agents will not visit the entire state space and thus
not learn the optimal action for these unobserved states. Unobserved states are,
for instance, present in environments with continuous state spaces or exclusive
paths. Nevertheless, as we investigate agents that map a policy from state to
action space (i.e., Artificial Neural Network (ANN) policy controllers), we can
compute an agent’s behavior to any state, even if not observed or observable by
the agent itself. This property allows us to compare two agents in the behavior
space on a mutual state set and investigate differences. However, state sets are
usually not initially known but based on processing the RL tasks and discovered
during each agent’s learning process. Thus, the individual state sets’ contents
are based on the state trajectory each agent follows, for example, an absolute
path for a robot in a maze. Each agent in a learning set will likely have different
trajectories, which renders it challenging to select input states to compute a
useful behavior space to compare many agents.

Behavior spaces have previously been investigated in the RL literature. Most
frequently, they were utilized to measure diversity and enforce explorative search
strategies. For instance, Doncieux and Mouret used behavioral similarity mea-
sures to encourage the diversity of evolved agents in an evolutionary search [1].
Ollion and Doncieux suggested to measure and enforce exploration in the behav-
ioral space [12]. Meyerson et al. [9] investigated how behavior characterizations
can be learned automatically for novelty search. Quality diversity algorithms
also depend on effective behavior comparison [13]. Similar directions have been
investigated in the field of surrogate model-based optimization. Here, the term
phenotypic space has been used, defining a space that encompasses behaviors
and outcomes of individuals, rather than their encoding (genotype). Distances
in the phenotypic space are used to train surrogate models. For instance, this has
been investigated in the context of tree-coded genetic programming [5,11,16].
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Similar work focused on graph-coded representations of neural networks. Here,
phenotypic spaces and distance measure have been investigated for tasks like
classification, reinforcement learning, or for evolving neural network controllers
for robotic navigation [4,14].

Unlike these previous investigations, we aim to look at the behavior space not
primarily to improve the performance of optimization or modeling algorithms.
Instead, we aim for the understandability of agents’ behavior. To do so, we utilize
two RL environments, a designed maze with different mutual exclusive paths and
the inverted pendulum, with a large real-valued state space.

2 Methods

2.1 Behavior Space in Reinforcement Learning

The behavior of an RL agent encompasses its (re-)actions, based on its environ-
ment and observed input states. The actions an agent takes for a specific state
s ∈ S is defined by a policy π : S → B. The agents get a reward r ∈ R for each
state transition. The discussed methods apply to a wide range of RL agents. The
only prerequisite is their ability to calculate a behavior for states that have not
been observed by those agents themselves. More precisely, we define the behav-
ior as the set of actions for a set of input states. For an agent A, we denote its
behavior as BA, with BA = πA(S). Here, S is a set containing n input state vec-
tors, πA(S) is the policy function computing the actions of agent A for all states
in S. Consequently, the behavior space B is the set of all possible behaviors (or
the behavior of all possible agents) for a RL task, that is, BA ∈ B.

2.2 Behavior Comparison and State Importance

For the comparison of two agents A and A′, we can calculate the distance of
their behaviors, which can then be denoted by d(BA, BA′). Because the distance
depends on the state space, we consider the distance of two behaviors concerning
the same state set S. The employed distance function can be chosen according
to the data type of BA, BA′ . That is, if they contain continuous values, we
might use the Euclidean distance. If they are ordinal integers, we can choose
the Manhattan distance instead, with d(BA, BA′) =

∑n
i |πA(Si)−πA′(Si)|. The

comparison of actions for individual states can provide interesting insights into
the specific behavior of an agent and further the importance of that state for
the task. In particular, we analyze the effects of unobserved states (UOS), which
are not present in the state set of a specific agent, and the influence of states
with degrees of freedom (DFS), where several actions lead to the same or similar
reward. In general, we consider a state as important (or problematic), if the
correct action for this state is essential for getting a good reward (or challenging
to learn, e.g., a majority of agents in a learning set fails to learn the correct
action). For the impact of states on the reward, we utilize the Action Reward
Rank : For each state, all performed actions of the agents are compared, and the
best ranking agent who took this action is outlined. Hence, this action is related
to the final best performing agent in the set.
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2.3 Reward Behavior Correlation

To understand the benefits of comparisons in the behavior space, the correla-
tion between reward distance and behavior distance is interesting. Therefore, we
investigate a set of m agents {A1, ..., Am}, their behaviors {BA1 , ..., BAm

}, and
their accumulated rewards {RA1 , ..., RAm

}. We compute the Reward Behavior
Correlation (RBC) for all pairwise comparisons

RBCall = cor
(
d
({BA1 , ..., BAm

})
,d

({RA1 , ..., RAm
}))

.

Here, d
({BA1 , ..., BAm

})
calculates all pairwise distances of the present agents

using the behavioral distance d(BAi
, BAj

). Correspondingly, d
({RA1 , ..., RAm

})

calculates all pairwise distances of the present agents using a distance of their
accumulated rewards d(RAi

, RAj
). The correlation cor(., .) may be computed

rank-based, if desired, or with standard linear correlation (Pearson correlation).
Similarly to RBCall, we can also compare each agent to the optimum agent Aopt

(the agent with the largest reward), instead of performing all pairwise compar-
isons. We denote this as RBCopt. A large RBC means that small/substantial dif-
ferences in reward coincide with small/significant differences in behavior. Hence,
a large RBC is a good indicator that the behavior space is easier to traverse for
search algorithms and easier to learn for surrogate models.

This property has a close connection to the Fitness Distance Correlation
(FDC) used in evolutionary computation to rate problem difficulty [6]. There, dif-
ferences in fitness are correlated with distances in the search space. RBCall consid-
ers all pairwise distances while RBCopt and FDC consider distances only between
candidate solutions and the global optimum (or best-known solution [7]).

3 Experiments

3.1 Deterministic Maze

The deterministic maze was designed with mazelab [17] as a comprehensible
problem where correct actions are known, and behavior is manually rateable.
The environment, visualized in Fig. 1(a), consists of a 10 × 7 matrix (shown in
figures as 9 × 6, excluding external walls) with different encoding for accessible
ways, walls, the agent and goal. The target is to find the shortest path to the
goal. The agent is allowed to take only deterministic actions for each observed
agent position in each cardinal direction. Thus they can get stuck against a
wall. Agents get a small negative reward for each movement, a larger negative
reward if running against a wall or moving backward, and a positive reward for
reaching the goal. The maximum step size of each agent is fixed to 30, whereas
only 11 are needed to follow the shortest path. We manually designed the maze
to feature DFS and UOS: The maze has a total of four paths to the goal and
22 unique agent positions, but these are partly exclusive, and successful agents
have always UOS. Moreover, the lower fork is a DFS, while the upper one is not.
The intention was to construct a problem where agents with the same reward
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(a) Deterministic Maze (b) Inverted Pendulum

Fig. 1. Environments. For the maze environment, external walls are not displayed.
Different ways: A and B are equal in reward, while D is slightly worse than C.

can have different behavior, cause of the forks, and different paths. Moreover,
to analyze the effect of different exclusive paths and the UOS on the pairwise
behavior comparison.

3.2 Continuous Inverted Pendulum

The inverted pendulum is a time-dependent physics simulator with a continuous
input space (Fig. 1(b)). The target is to balance the pendulum on a car in the
upright position for most time steps, starting at a random downwards position
by moving the car. The environment is evaluated over 500 timesteps but dis-
continues if the base car moves out of designated limits. The action space was
made deterministic for more comprehensible behavior comparisons. The pendu-
lum environment has no exclusive paths, i.e., all states are observable, but agents
will have an enormous number of UOS because of the real-valued input space.
We also consider the environment to include multiple DFS, e.g., multiple correct
behaviors are possible. The environment allows a large number of behaviors and
different sized sets of observed states per agent.

3.3 Generating Reinforcement Learning Agents by Neuroevolution

The RL agents’ policies are created and trained by utilizing Neuroevolution
to learn ANN policies in an evolutionary process. The underlying algorithm is
the graph-based cartesian genetic programming CGP by A. Turner1 [8,15]. For
the maze problem, ANNs with 70 inputs and 4 outputs were evolved, where
the softmax function computes the resulting action. The pendulum ANN has 6
inputs (5 + 1 bias) and a single output. For an output value >0.5, the action is
drive left, otherwise, drive right. The ANNs are evolved in terms of connection
weights and structure, i.e., the number and placing of connections, nodes, and
transfer functions. The maximum number of nodes and connections for each
ANN was set to 100 (maze) and 1000 (pendulum). This leads to a vast amount
1 http://www.cgplibrary.co.uk - v2.4 - accessed: 2018-01-12.

http://www.cgplibrary.co.uk
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Table 1. Parameters and results of the neuroevolution run for both environments

maze pendulum maze pendulum

repeated runs 12 1 total agents 48e3 4020
evaluations per run 4020 4020 × 30 unique agents 43 3648
observed states per agent 30 max 15e3 unique states 22 30e6

of different ANN topologies. The inner workings of the ANNs are complex and
very difficult to compare [3,14]. Thus, only the reward and the behavior of the
agents using these ANNs are considered observable.

Table 1 summarizes the parameters and outcomes of the Neuroevolution. The
pendulum agents’ rewards were aggregated over 30 different instances for reduc-
ing the impact of the random start positions; all states and actions from these
instances are included in the agents’ state sets. The agents of each environ-
ment were merged into one data set. Agents with equal state-input sets (i.e.,
those following precisely the same path) were filtered to acquire a feasibly sized
data set. Due to the small number of input states for the maze environment,
its amount of agents is significantly reduced. Conversely, the majority of tra-
jectories in the pendulum experiment is unique. The cleaned-up data for each
environment consist of all unique agents; the input states they observed, the
corresponding actions, and their rewards. The agents were ranked, where equal
performance leads to a shared rank. The maze problem has two best-ranked
(rank 1) agents. For the following experiments, we arbitrarily chose one of these
two as a reference agent (denoted as “best agent”).

3.4 Experimental Setup for Analyzing the Behavior Measures

Behavior Comparison: First, explorative data analysis is conducted to analyze
the behaviors and visualize them in the environment. We analyze the behavior
for individual input states in particular for the maze problem, as we can manually
identify wrong actions and understand their impact on the reward. Furthermore,
we use a one-to-one comparison of agents with similar rewards to see the influence
of UOS and DFS. For the pendulum problem, we analyze and reveal different
behavior based on specific inputs and compare the influence of using different
state sets as input for the behavior comparison. The denoted “best agent” for
this problem is the best found.

State Importance: The maze environment has designed DFS and UOS, i.e., the
forks with different importance and different exclusive paths to reach the goal.
The goal of the importance analysis is to discover these states by comparing the
behavior of all agents. We take a best-ranked agent as the reference for correct
actions and calculate the percentage of different actions for each state by one-
to-many comparisons, weighted by the difference in rank for these agents, by
d(BA, BA′)×d(rankA, rankA′)/sum(rankA, rankA′). Further, we calculate and
visualize the action reward rank (Sect. 2.2) for each state.
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Fig. 2. One-to-one behavior comparison of the best agent against all agents, computed
with different state input sets (a) and two selected examples (b,c) Green: differences
on Input set C (BEST). Blue: differences on Input set D (BOTH, includes C). Red:
differences on Input set B (ALL, includes C and D). Grey cells: agents act the same.
a) Summary of behavior distance of best against all. Shaded areas illustrate the input
set differences. b) Trajectories: best rank 1 (white) vs. another rank 1 (yellow) c)
Trajectories: best (white) vs. Rank 13 (yellow) (Color figure online)

Reward Behavior Correlation: The main challenge in computing the RBCall and
RBCopt is selecting a suitable state set to compare the behavior. With the pre-
vious experiments’ experience, we defined different options to select a suitable
state set and analyze which of them leads to the best overall RBC:

– Input set A: Random states sampled from all known states of all agents.
– Input set B: All known states of an environment.
– Input set C: The observed states of the best agent.
– Input set D: The observed states of both compared agents.
– Input set E: The observed states of one compared agent.

For the pendulum problem, we calculate the RBCall on an equidistant sampled
(each 15th) subset of agents to significantly reduce the computation time.

4 Results and Discussion

4.1 Behavior Comparison

The comparison of the best agent against all and selected inferior agents for
the maze environment on different state sets (B, C, D) is illustrated in Fig. 2.
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Interestingly, the best agent does not choose the best action in all states. It only
chooses correctly for the states it observed by itself. The agent would run into
walls if placed in certain positions (e.g., 5,5 or 4,9).

The behavior distance is amplified by different actions for states that were
not observed by the compared agents, i.e., UOS lead to a larger distance, in
particular visible in Fig. 2(b) and (c), where red cells highlight the UOS. If the
state input set of both agents are used instead of all, the influence of UOS is
smaller, as at least one of the agent has observed these states (blue line/cells).
However, it is still evident for the higher ranks. A remarkable observation is
shown in Fig. 2(c), for a comparison between the best agent and a medium-rank
agent (rank 13). They have a behavior distance of only 1 if compared on their
mutual state set and 4 with UOS considered. Their behavior on their mutual
state set is nearly identical, despite the significant difference in rank.
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(a) Trajectory from best,
total difference is 33%
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Fig. 3. Behavior comparison for the pendulum. The behavior difference from best
versus rank 1000 is shown (Green cross = same action, red dot = different action)
for the angular speed value over the first 1000 states of state sets from best, rank
2000, and rank 3500. As visible, the behavior difference is influenced by the state sets.
Particularly, the dissimilarity in (c) is smaller. (Color figure online)

The number of acquired states for the pendulum is enormous and not suitable
for complete comparisons as we visualized for the maze. However, we computed
behavior differences of smaller state subsets and visualized them using a selected
input, the angular speed of the pendulum, which is nearly zero if the pendulum
is balanced in the upright position. Fig. 3(a) shows the behavior of the best
agent against the rank 1000 (of 3648) agent by calculating it on best, as well as
on rank 2.000 (b) and rank 3500 (c) input sets. Fig. 3(a) shows that for time-
steps 250–300 and 750–800, the rank 1000 agent behaves consequently differently.
These time-steps illustrate a situation of a falling pendulum, shortly after it was
balanced. While the best agent countersteers this movement, the rank 1000 agent
accelerates it. Consequently, we were able to identify a situation where the lower-
ranked agent fails to learn the correct actions. However, as the actions are based
on all inputs and the angular speed is just one of them, finding these situations
manually remains challenging. Figure 3(c) shows what happens if the behavior of
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the two agents is compared on the input set of a distant ranked agent. The state
input set of the rank 3500 is considerably different: Each recorded trajectory is
only some time steps long, presumably caused by the agent quickly driving the
base car to the horizontal limit, which leads to termination. For such extreme
situations, both compared agents (best vs. rank 1000) seem to behave similarly.
Conversely, their difference in reward seems to be related to smaller differences
in critical situations. We can summarize these observations to identify some
properties of the behavior space:

I) Agents with the same reward/rank can have a considerable behavior dis-
tance, mainly if compared on state input sets with UOS and DFS.

II) Small behavior differences (e.g., d < 3) can cause significant rank changes.
III) The input set has a huge impact on the behavioral distance comparison.

These observations reflect a central challenge of behavioral comparisons: We
need to find important states and a suitable state set for conducting behavior
comparisons. We argue that comparing the behavior on input sets with UOS can
help distinguish between agents of similar reward, but is presumably overesti-
mating their behavior distance on task level and further influenced by significant
variances due to random actions in UOS. Moreover, comparing agents on state
sets of other agents, even without considering the influence of UOS, might not
reveal useful behavior distances, as these states represent situations not suitable
for telling apart good behavior.

4.2 State Importance

For the state importance, we illustrate the percentage of agents with behavior
differing from the best agent for each state, weighted by their differences in rank.
In case of the maze, Fig. 4(a) shows this statistic only for agents reaching the
goal, while Fig. 4(b) concerns all agents. Here, highly valued states are consid-
ered to be more important, as most agents behave dissimilarly to the presumed
‘correct‘ action. For the comparison between the best agents, many states show
no importance, i.e., similar behavior in this set. The maze was designed such
that the importance of the DFS fork in (4,3), should be less than the no-DFS
fork in (4,7). This is represented by our importance measure, as (4,7) has a
twice as high value in Fig. 4(a) and (b). However, the importance measure also
provides other states with a high importance value, particularly visible in the
maze’s upper part. This can be explained by the type of behavior comparison
(all states) and the influence of UOS for each agent. Agents can have ‘wrong’
behavior for these states, even if they can solve the environment. This is observ-
able in Fig. 4(c), where for each state, the best agent choosing a specific action
is shown. While for the state (4,3) and also for (4,7), we see a correct identi-
fication of different ways, (5,5), (4,9), and (5,9) give the wrong idea of correct
actions, as the supposedly best-outlined action is surprisingly to run against a
wall. This effect of UOS is amplified if all agents are considered. For example,
the lowest-ranked agent runs directly against a wall. However, we compute and
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Fig. 4. (a) State importance calculated using either the best agents or (b) all agents.
Higher values depict higher importance, colored by value quarters for easier comparison.
(c) Action reward rank. Shows the best rank choosing each action for each state. Green
= rank 1, blue = rank 3, red = worst action rank. The two rank 1 agents choose different
actions in (4,3) and (5,5). (4,3) is DFS, and (5,5) an UOS for the best agent. (Color
figure online)

compare its behavior (intensified by its low rank) on all states. We assume that
if we compare a broad set of agents, the UOS, with their presumably random
actions, do not affect the importance as strongly. Thus, the shown importance is
presumably higher in the states of the upper part of the maze, as only a minority
of agents reach this part of the maze. For the rest, we are just comparing their
behavior on UOS. Thus, our importance measures could also help identify states
of an environment rarely reached by any agent in a set.

4.3 Reward Behavior Correlation

For the RBC analysis, the previous results have shown that it is essential to
choose a suitable state set for each pairwise comparison. The results are displayed
in Fig. 5 and Table 2. Figure 5(a) and (b) shows the resulting RBCall and RBCopt

values, respectively. For both, the overall correlation is notably positive. In 5(b)
it differs between good agents (rank 1–800), medium agents (800–3100), and
poor agents (3100–3600). The other input sets (A, B, C, and E) lead to an
inferior RBCopt for both problems. Moreover, set D and E lead to the highest
RBCall, with a very significant difference for the maze problem. We assume that
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Fig. 5. (a) RBCall plot for the maze environment (b) RBCopt plot for the pendulum
problem. Computed on input set E and D, respectively. A decent correlation is visible.

the best correlation would be achieved if agents are compared in their mutual
behavior space. The presumed cause for the higher RBCall is the reduction of
the influence of unobserved states in the comparison. In particular, the maze
environment agents have less UOS where they likely act random, if set D or E
are considered. Including UOS in a comparison does thus not lead to a more
detailed behavior distance, but one with higher overall variance, thus leading
to an inferior RBC. This is visible for the pendulum, which for all sets, has a
large amount of UOS due to the continuous state space, which leads to a smaller
difference in the variants to compute the RBCall. The overall positive RBCall

outlines the high potential of agent comparisons in the behavior space to improve
the search for good ranking agents.

Table 2. RBCall of all agents for different input sets

environment A) random B) all C) reference D) both observed E) one observed

maze 0.27 0.29 0.28 0.62 0.72
pendulum 0.36 na 0.34 0.45 0.36

5 Conclusion

In this work, we investigated the properties of the behavior space of RL agents
and how this space can help to compare agents in learning sets to gain valuable
insights. Regarding our research questions, we can conclude for Q-1, that even
small changes in the behavior can have considerable effects on the reward. At the
same time, agents achieving the same reward can show quite different behavior.
We believe that focusing only on the reward of an agent might not be the optimal
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choice. Instead, the agents’ behavior can give valuable insights into how agents
achieve that reward. This can reveal agents with surprising behavior or help to
improve the learning process. For instance, reward functions can be designed to
enforce or suppress specific behavior.

The analysis of Q-2 has shown that accessing the variable importance is
challenging and highly dependent on the underlying set of agents and the envi-
ronment. These challenges are mainly caused by comparing an agent on states,
which were not observed by it, or are even not observable by this agent due
to environment restrictions, e.g., mutually exclusive paths. For these cases, an
agent’s behavior can be random, even for the ones with the best reward. A
comparison of behavior on these states might deliver misleading results. Only if
multiple agents observed states, we could access their real importance.

This finding is further stressed when considering Q-3. The RBC is highest
if we consider pairwise behavior comparisons on those states that have been
observed by both compared agents. The reasonable positive RBC shows that
the behavior space is a promising concept. We suggest that searching in that
space may be beneficial.

For future work, we aim to take a close look at how the understanding of
behavioral spaces can be exploited, e.g., by new reward measures, direct search
in the behavior-space, and specialized search operators:

Reward Measures: Ideally, reward measures help to steer the search into desirable
areas of the search space. Understanding which states are critical to receiving a
good match between behavior and reward may help design better reward mea-
sures. The importance of developing useful reward measures for RL is stressed
in a review by Doncieux and Mouret [2].

Search in Behavior Space: The usage of agents’ behavior distance as an addi-
tional search criterion seems very attractive. It can be used to preserve diversity
in evolutionary search procedures [1]. Further, the search for a specific behav-
ior may be of interest, independent or in addition to reward-driven search, e.g.,
by modeling the reward to behavior space with surrogate models. An example
application would be inverse reinforcement learning [10]. The search in behavior
space allows the use of completely different agent topologies or even comparing
agents trained by different algorithms.

Search Operators: Finally, a good understanding of the latent, behavioral space
may help to define better search operators. For instance, search operators could
be designed to search directly in the behavior space, rather than the policy or
topology space.

References

1. Doncieux, S., Mouret, J.: Behavioral diversity measures for evolutionary robotics.
In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

2. Doncieux, S., Mouret, J.-B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014). https://doi.
org/10.1007/s12065-014-0110-x

https://doi.org/10.1007/s12065-014-0110-x
https://doi.org/10.1007/s12065-014-0110-x


160 J. Stork et al.

3. Gaier, A., Asteroth, A., Mouret, J.-B.: Data-efficient neuroevolution with kernel-
based surrogate models. In: Genetic and Evolutionary Computation Conference
(GECCO) (2018)

4. Hagg, A., Zaefferer, M., Stork, J., Gaier, A.: Prediction of neural network perfor-
mance by phenotypic modeling. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion - GECCO 2019, Prague, Czech Republic, pp.
1576–1582. ACM (2019)

5. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

6. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In: Proceedings of the 6th International Conference
on Genetic Algorithms, Pittsburgh, PA, USA, July 1995, pp. 184–192. Morgan
Kaufmann (1995)

7. Kallel, L., Schoenauer, M.: Fitness distance correlation for variable length repre-
sentations. Technical Report 363, CMAP, Ecole Polytechnique (1996)

8. Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using cartesian
genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1–8,
July 2010

9. Meyerson, E., Lehman, J., Miikkulainen, R.: Learning behavior characterizations
for novelty search. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, GECCO 2016, pp. 149–156. Association for Computing Machin-
ery, New York (2016)

10. Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement learning. In:
Icml vol. 1, pp. 663–670 (2000)

11. Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted genetic programming with
simplified models for automated design of dispatching rules. IEEE Trans. Cybern.
47(9), 2951–2965 (2016)

12. Ollion, C., Doncieux, S.: Why and how to measure exploration in behavioral space.
In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2011, pp. 267–274. Association for Computing Machinery, New
York (2011)

13. Pugh, J.K., Soros, L.B., Stanley, K.O.: Searching for quality diversity when diver-
sity is unaligned with quality. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez,
M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 880–889.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 82

14. Stork, J., Zaefferer, M., Bartz-Beielstein, T., Eiben, A.E.: Surrogate models for
enhancing the efficiency of neuroevolution in reinforcement learning. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference - GECCO 2019,
Prague, Czech Republic, pp. 934–942. ACM (2019)

15. Turner, A.J., Miller, J.F.: Cartesian genetic programming encoded artificial neural
networks: a comparison using three benchmarks. In: Proceedings of the GECCO
2013, pp. 1005–1012. ACM (2013)

16. Zaefferer, M., Stork, J., Flasch, O., Bartz-Beielstein, T.: Linear combination of
distance measures for surrogate models in genetic programming. In: Auger, A.,
Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN
2018. LNCS, vol. 11102, pp. 220–231. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99259-4 18

17. Zuo, X.: mazelab: a customizable framework to create maze and gridworld envi-
ronments (2018). https://github.com/zuoxingdong/mazelab

https://doi.org/10.1007/978-3-319-45823-6_82
https://doi.org/10.1007/978-3-319-99259-4_18
https://doi.org/10.1007/978-3-319-99259-4_18
https://github.com/zuoxingdong/mazelab

	Understanding the Behavior of Reinforcement Learning Agents
	1 Introduction
	2 Methods
	2.1 Behavior Space in Reinforcement Learning
	2.2 Behavior Comparison and State Importance
	2.3 Reward Behavior Correlation

	3 Experiments
	3.1 Deterministic Maze
	3.2 Continuous Inverted Pendulum
	3.3 Generating Reinforcement Learning Agents by Neuroevolution
	3.4 Experimental Setup for Analyzing the Behavior Measures

	4 Results and Discussion
	4.1 Behavior Comparison
	4.2 State Importance
	4.3 Reward Behavior Correlation

	5 Conclusion
	References




