Natural Computing
https://doi.org/10.1007/s11047-020-09820-4

=

Check for
updates

A new taxonomy of global optimization algorithms

Jorg Stork' @ - A. E. Eiben? - Thomas Bartz-Beielstein'

Accepted: 6 November 2020
© The Author(s) 2020

Abstract

Surrogate-based optimization, nature-inspired metaheuristics, and hybrid combinations have become state of the art in
algorithm design for solving real-world optimization problems. Still, it is difficult for practitioners to get an overview that
explains their advantages in comparison to a large number of available methods in the scope of optimization. Available
taxonomies lack the embedding of current approaches in the larger context of this broad field. This article presents a
taxonomy of the field, which explores and matches algorithm strategies by extracting similarities and differences in their
search strategies. A particular focus lies on algorithms using surrogates, nature-inspired designs, and those created by
automatic algorithm generation. The extracted features of algorithms, their main concepts, and search operators, allow us to
create a set of classification indicators to distinguish between a small number of classes. The features allow a deeper
understanding of components of the search strategies and further indicate the close connections between the different
algorithm designs. We present intuitive analogies to explain the basic principles of the search algorithms, particularly
useful for novices in this research field. Furthermore, this taxonomy allows recommendations for the applicability of the
corresponding algorithms.

Keywords Metaheuristics - Surrogate - Hybrid optimization - Evolutionary computation - Taxonomy

1 Introduction

Modern applications in industry, business, and information
systems require a tremendous amount of optimization.
Global optimization (GO) tackles various severe problems
emerging from the context of complex physical systems,
business processes, and particular from applications of
artificial intelligence. Challenging problems arise from
industry on the application level, e.g., machines regarding
manufacturing speed, part quality or energy efficiency, or
on the business level, such as optimization of production

< Jorg Stork
joerg.stork @th-koeln.de

A. E. Eiben
a.e.eiben@vu.nl

Thomas Bartz-Beielstein
thomas.bartz-beielstein @th-koeln.de
Technische Hochschule Ko6ln, Steinmiillerallee 1,

51643 Gummersbach, Germany

Vrije Universiteit Amsterdam, 1081 HV Amsterdam,
The Netherlands

Published online: 27 November 2020

plans, purchase, sales, and after-sales. Further, they emerge
from areas of artificial intelligence and information engi-
neering, such as machine learning, e.g., optimization of
standard data models such as neural networks for different
applications. Their complex nature connects all these
problems: they tend to be expensive to solve, and with
unknown objective function properties, as the underlying
mechanisms are often not well described or unknown.

Solving optimization problems of this kind relies nec-
essarily on performing costly computations, such as sim-
ulations, or even real-world experiments, which are
frequently considered being black-box. A fundamental
challenge in such systems is the different costs of function
evaluations. Whether we are probing a real physical sys-
tem, querying the simulator, or creating a new complex
data model, a significant amount of resources is needed to
fulfill these tasks. GO methods for such problems thus need
to fulfill a particular set of requirements. They need to
work with black-box style probes only, so without any
further information on the structure of the problem. Fur-
ther, they must find the best possible improvement within a
limited number of function evaluations.

@ Springer

http://orcid.org/0000-0002-7471-3498
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-020-09820-4&domain=pdf
https://doi.org/10.1007/s11047-020-09820-4

J. Stork et al.

The improvement of computational power in the last
decades has been influencing the development of algo-
rithms. A massive amount of computational power became
available for researchers worldwide through multi-core
desktop machines, parallel computing, and high-perfor-
mance computing clusters. This has contributed to the
following fields of research: firstly, the development of
more complex, nature-inspired, and generally applicable
heuristics, so-called metaheuristics. Secondly, it faciliated
significant progress in the field of accurate, data-driven
approximation models, so-called surrogate models, and
their embodiment in an optimization process. Thirdly, the
upcoming of approaches which combine several opti-
mization algorithms and seek towards automatic combi-
nation and configuration of the optimal optimization
algorithm, known as hyperheuristics. The hyperheuristic
approach shows the close connections between different
named algorithms, in particular in the area of bio-inspired
metaheuristics. Automatic algorithm composition has
shown to be able to outperform available (fixed) opti-
mization algorithms. All these GO algorithms differ
broadly from standard approaches, define new classes of
algorithms, and are not well integrated into available
taxonomies.

Hence, we propose a new taxonomy, which:

1. describes a comprehensive overview of GO algorithms,
including surrogate-based, model-based and hybrid
algorithms,

2. can generalize well and connects GO algorithm classes
to show their similarities and differences,

3. focusses on simplicity, which enables an easy under-
standing of GO algorithms,

4. can be used to provide underlying knowledge and best
practices to select a suitable algorithm for a new
optimization problem.

Our new taxonomy is created based on algorithm key
features and divides the algorithms into a small number of
intuitive classes: Hill-Climbing, Trajectory, Population,
Surrogate, and Hybrid. Further, Exact algorithms are
shortly reviewed, but not an active part of our taxonomy,
which focusses on heuristic algorithms. We further utilize
extended class names as descriptions founded on the
abstracted human behavior in pathfinding. The analogies
Mountaineer, Sightseer, Team, Surveyor create further
understanding by using the image of a single or several
persons hiking a landscape in search of the desired location
(optimum) utilizing the shortest path (e.g., several
iterations).

This utilized abstraction allows us to present compre-
hensible ideas on how the individual classes differ and
moreover, how the respective algorithms perform their
search. Although abstraction is necessary for developing

@ Springer

our results, we will present results that are useful for
practitioners.

This article mainly addresses different kinds of readers:
Beginners will find an intuitive and comprehensive over-
view of GO algorithms, especially concerning common
metaheuristics and developments in the field of surrogate-
based and hybrid and hyperheuristic optimization. For
advanced readers, we also discuss the applicability of the
algorithms to tackle specific problem properties and pro-
vide essential knowledge for reasonable algorithm selec-
tion. We provide an extensive list of references for
experienced users. The taxonomy can be used to create
realistic comparisons and benchmarks for the different
classes of algorithms. It further provides insights for users,
who aim to develop new search strategies, operators, and
algorithms.

In general, most GO algorithms were developed for a
specific search domain, e.g., discrete or continuous. How-
ever, many algorithms and their fundamental search prin-
ciples can be successful for different problem spaces with
reasonably small changes. For example, evolution strate-
gies (ES), which are popular in continuous optimization
(see Hansen et al. 2003), have their origin in the discrete
problem domain. Beyer and Schwefel (2002) describe how
the ES moved from discrete to continuous decision vari-
ables. Based on this consideration, the article is focused but
not limited to illustrating the algorithm variants for the
continuous domain, while they have their origins or are
most successful in the discrete domain.

Moreover, we focused this taxonomy on algorithms for
objective functions without particular characteristics, such
as multi-objective, constrained, noisy, or dynamic. These
function characteristics pose additional challenges to any
algorithm, which are often faced by enhancing available
search schemes with specialized operators or even com-
pletely dedicated algorithms. We included the former as
part of the objective function evaluation in our general
algorithm scheme and provide references to selected
overviews. Dedicated algorithms, e.g., for multi-objective
search, are not discussed in detail. However, their accom-
modation in the presented taxonomy is possible if their
search schemes are related to the algorithms described in
our taxonomy. If further required, we outlined the exclu-
sive applicability of algorithms and search operators to
specific domains or problem characteristics.

We organized the remainder of this article as follows:
Sect. 2 presents the development of optimization algo-
rithms and their core concepts. Section 3 motivates a new
taxonomy by reviewing the history of available GO tax-
onomies, illustrates algorithm design aspects, and presents
extracted classification features. Section 4 introduces the
new intuitive classification with examples. Section 5
introduces best practices suggestions regarding the

A new taxonomy of global optimization algorithms

applicability of algorithms. Section 6 summarizes and
concludes the article with the recent trends and challenges
in GO and currently essential research fields.

2 Modern optimization algorithms

This section describes the fundamental principles of mod-
ern search algorithms, particular the elements and back-
grounds of surrogate-based and hybrid optimization.

The goal of global optimization is to find the overall best
solution, i.e., for the common task of minimization, to
discover decision variable values that minimize the
objective function value.

We denote the global search space as compact set . =
{x| x;, <x<x,} with x;,x, € R" being the explicit, finite
lower and upper bounds on X. Given a single-objective
function f: R" — R with real-valued input vectors x we
attempt to find the location x* € R" which minimizes the
function: arg minf(x),x € .

Finding a global optimum is always the ultimate goal
and as such desirable, but for many practical problems, a
solution improving the current best solution in a given
budget of evaluations or time will still be a success. Par-
ticularly, in continuous GO domains an optimum com-
monly cannot be identified exactly; thus, modern heuristics
are designed to spend their resources as efficiently as
possible to find the best possible improvement in the
objective function value while finding a global optimum is
never guaranteed.

Torn and Zilinskas (1989) mention three principles for
the construction of an optimization algorithm:

1. An algorithm utilizing all available a priori information
will outperform a method using less information.

2. If no a priori information is available, the information
is completely based on evaluated candidate points and
their objective values.

3. Given a fixed number of evaluated points, optimization
algorithms will only differ from each other in the
distribution of candidate points.

If a priori information about the function is accessible, it
can significantly support the search and should be consid-
ered during the algorithm design. Current research on
algorithm designs that include structural operators, such as
function decomposition, is known as grey-box optimization
(Whitley et al. 2016; Santana 2017). However, many
modern algorithms focus on handling black-box problems
where the problem includes little or no a priori information.
The principles displayed above lead to the conclusion that
the most crucial design aspect of any black-box algorithm
is to find a strategy to distribute the initial candidates in the
search space and to generate new candidates based on a

variation of solutions. These procedures define the search
strategy, which needs to follow the two competing goals of
exploration and exploitation. The balance between these
two competing goals is usually part of the algorithm con-
figuration. Consequently, any algorithm needs to be adap-
ted to the structure of the problem at hand to achieve
optimal performance. This can be considered during the
construction of an algorithm, before the optimization by
parameter funing or during the run by parameter con-
trol (Bartz-Beielstein et al. 2005; Eiben et al. 1999). In
general, the main goal of any method is to reach their target
with high efficiency, i.e., to discover optima fast and
accurate with as little resources as possible. Moreover, the
goal is not mandatory finding a global optimum, which is a
demanding and expensive task for many problems, but to
identify a valuable local optimum or to improve the cur-
rently available solution. We will explicitly discuss the
design of modern optimization algorithms in Sect. 3.2.

2.1 Exact algorithms

Exact algorithms also referred to as non-heuristic or com-
plete algorithms (Neumaier 2004), are a special class of
deterministic, systematic or exhaustive optimization tech-
niques. They can be applied in discrete or combinatorial
domains, where the search space has a finite number of
possible solutions or for continuous domains, if an opti-
mum is searched within some given tolerances. Exact
algorithms have a guarantee to find a global optimum with
using a predictable amount of resources, such as function
evaluations or computation time (Neumaier 2004; Fomin
and Kaski 2013; Woeginger 2003). This guarantee often
requires sufficient a priori information about the objective
function, e.g., the best possible objective function value.
Without available a priori information, the stopping crite-
rion needs to be defined by a heuristic approach, which
softens the guarantee of solving to optimality. Well-Known
exact algorithms are based on the branching principle, i.e.,
splitting a known problem into smaller sub-problems,
which each can be solved to optimality. The Branch-and-
bound algorithm is an example for exact algorithms
(Lawler and Wood 1966).

2.2 Heuristics and metaheuristics

In modern computer-aided optimization, heuristics and
metaheuristics are established solution techniques.
Although presenting solutions that are not guaranteed to be
optimal, their general applicability and ability to present
fast sufficient solutions make them very attractive for
applied optimization. Their inventors built them upon the
principle of systematic search, where solution candidates
are evaluated and rewarded with a fitness. The term fitness

@ Springer

J. Stork et al.

has its origins in evolutionary computation, where the fit-
ness describes the competitive ability of an individual in
the reproduction process. The fitness is in its purest form
the objective function value y = f(x) concerning the opti-
mization goal, e.g., in a minimization problem, smaller
values have higher fitness than larger values. Moreover, it
can be part of the search strategy, e.g., scaled or adjusted
by additional functions, particular for multi-objective or
constrained optimization.

Heuristics can be defined as problem-dependent algo-
rithms, which are developed or adapted to the particulari-
ties of a specific optimization problem or problem
instance (Pearl 1985). Typically, heuristics systematically
perform evaluations, although utilizing stochastic ele-
ments. Heuristics use this principle to provide fast, not
necessarily exact (i.e., not optimal) numerical solutions to
optimization problems. Moreover, heuristics are often
greedy to provide fast solutions but get trapped in local
optima and fail to find a global optimum.

Metaheuristics can be defined as problem independent,
general-purpose optimization algorithms. They apply to a
wide range of problems and problem instances. The term
meta describes the higher-level general methodology,
which is utilized to guide the underlying heuristic strat-
egy (Talbi 2009).

They share the following characteristics (Boussaid et al.
2013):

e The algorithms are nature-inspired; they follow certain
principles from natural phenomena or behaviors (e.g.,
biological evolution, physics, social behavior).

e The search process involves stochastic parts; it utilizes
probability distributions and random processes.

e As they are meant to be generally applicable solvers,
they include a set of control parameters to adjust the
search strategy.

e They do not rely on the information of the process
which is available before the start of the optimization
run, so-called a priori information. Still, they can
benefit from such information (e.g., to set up control
parameters)

During the remainder of this article, we will focus on
heuristic, respectively, metaheuristic algorithms.

2.3 Surrogate-based optimization algorithms

Surrogate-based optimization algorithms are designed to
process expensive and complex problems, which arise from
real-world applications and sophisticated computational
models. These problems are commonly black-box, which
means that they only provide very sparse domain knowl-
edge. Consequently, problem information needs to be
exploited by experiments or function evaluations.

@ Springer

Surrogate-based optimization is intended to model avail-
able, i.e., evaluated, information about candidate solutions
to utilize it to the full extent. A surrogate model is an
approximation which substitutes the original expensive
objective function, real-world process, physical simulation,
or computational process during the optimization. In gen-
eral, surrogates are either simplified physical or numerical
models based on knowledge about the physical system, or
empirical functional models based on knowledge acquired
from evaluations and sparse sampling of the parameter
space (Sgndergaard et al. 2003). In this work, we focus on
the latter, so-called data-driven models. The terms surro-
gate model, meta-model, response surface model and also
posterior distribution are used synonymously in the com-
mon literature (Mockus 1974; Jones 2001; Bartz-Beielstein
and Zaefferer 2017). We will briefly refer to a surrogate
model as a surrogate. Furthermore, we assume that it is
crucial to distinguish between the use of an explicit sur-
rogate of the objective function and general model-based
optimization (Zlochin et al. 2004), which additionally
refers to methods, where a statistical model is used to
generate new candidate solutions (cf. Sect. 3.2). We thus
distinguish between the two different terms surrogate-
based and model-based to avoid confusion. Another term
present in the literature is surrogate-assisted optimization,
which mostly refers to the application of surrogates in
combination with population-based evolutionary compu-
tation (Jin 2011).

Important publications featuring overviews or surveys
on surrogates and surrogate-based optimization were pre-
sented by Sacks et al. (1989), Jones (2001), Queipo et al.
(2005), Forrester and Keane (2009). Surrogate-based
optimization is commonly defined for but not limited to the
case of complex real-world optimization applications. We
define a typical surrogate-based optimization process by
three layers, where the first two are considered as problem
layers, while the latter one is the surrogate, i.e., an
approximation of the problem layers. We could transfer the
defined layers to different computational problems with
expensive function evaluations, such as complex algo-
rithms or machine learning tasks.

Each layer can be the target of optimization or used to
retrieve information to guide the optimization process.
Figure 1 illustrates the different layers of objective func-
tions and the surrogate-based optimization process for real-
world problems. In this case, the objective function layers,
from the bottom up, are:

L1 The real-world application fi(x), given by the
physical process itself or a physical model. Direct
optimization is often expensive or even impossible,
due to evaluations involving resource-demanding
prototype building or even dangerous experiments.

A new taxonomy of global optimization algorithms

Architecture Examples
" (optional)
: meta- ;
“..._optimization -
o . ,/ fast ,'/ global \\\
(optimization algorithm A heuristic \ metaheuristic /
""" profit | robot |
s>
@ Zu;'rodgate moge/l prediction behavioral |
ala-anven moae i ~____model |} __model |]
f2(z) computational model business data physics 5
expert model / data platform platform simulator]

fi(2) real world process
device / business task

(optional) approximation / data stream

(optional) parameter tuning @(optional) optimization

Fig. 1 A surrogate-based optimization process with the different
objective function layers: real-world process, computational model,
and surrogate. The arrows mark different possible data/application
streams. Dotted arrows are in the background, i.e., they pass through
elements; each connection always terminates with an arrow. Surro-
gates are typically either models for the simulation or real-world
function. Direct optimization of the problem layers is also possible.
Two examples of processes are given to outline the use of the
architecture in a business data and robot control task

L2 The computational model f>(x), given by a simula-
tion of the physical process or a complex computa-
tional model, e.g., a computational fluid dynamics
model or structural dynamics model. A single
computation may take minutes, hours, or even weeks
to compute.

L3 The surrogate s(x), given by a data-driven regression
model. The accuracy heavily depends on the under-
lying surrogate type and amount of available infor-
mation (i.e., function evaluations). The optimization
is, compared to the other layers, typically cheap.
Surrogates are constructed either for the real-world
application fi (x) or the computational model f>(x).

Furthermore, the surrogate-based optimization cycle
includes the optimization process itself, which is given by
an adequate optimization algorithm for the selected
objective function layer. No surrogate-based optimization

is performed, if the optimization is directly applied to fi (x)
or f>(x). The surrogate-based optimization uses fi(x) or
f2(x) for verification of promising solution candidates.
Moreover, the control parameters of the optimization
algorithm or even the complete optimization cycle,
including the surrogate modeling process, can be tuned.

Each layer imposes different evaluation costs and
fidelities: the real-world problem is the most expensive to
evaluate, but has the highest fidelity, while the surrogate is
the cheapest to evaluate, but has a lower fidelity. The main
benefit of using surrogates is thus the reduction of needed
expensive function evaluations on the objective function
fi(x) or fo(x) during the optimization. The studies by
Loshchilov et al. (2012), Marsden et al. (2004), Ong et al.
(2005) and Won and Ray (2004) feature benchmark com-
parisons of surrogate-based optimization. Nevertheless, the
model construction and updating of the surrogates also
require computational resources, as well as evaluations for
verification on the more expensive function layers. An
advantage of surrogate-based optimization is the avail-
ability of the surrogate model, which can be utilized to gain
further global insight into the problem, which is particu-
larly valuable for black-box problems. The surrogate can
be utilized to identify important decision variables or
visualize the nature of the problem, i.e., the fitness
landscape.

2.4 Meta-optimization and hyperheuristics

Meta-optimization or parameter tuning (Mercer and
Sampson 1978) describes the process of finding the optimal
parameter set for an optimization algorithm. It is also an
optimization process itself, which can become very costly
in terms of objective function evaluations, as they are
required to evaluate the parameter set of a specific algo-
rithm. Hence, particular surrogate-model based algorithms
have become very successful meta-optimizer (Bartz-
Beielstein et al. 2005). Figure 1 shows where the meta-
optimization is situated in an optimization process. If the
algorithm adapts parameters during the active run of opti-
mization, it is called parameter control (Eiben et al. 1999).
Algorithm parameter tuning and control is further dis-
cussed in Sect. 3.2.

A hyperheuristic (Cowling et al. 2000, 2002) is a high-
level approach that selects and combines low-level
approaches (i.e., heuristics, elements from metaheuristics),
to solve a specific problem or problem class. It is an
optimization algorithm that automates the algorithm design
process by searching an ample space of pre-defined algo-
rithm components. A hyperheuristic can also be utilized in
an online fashion, e.g., trying to find the most suitable al-
gorithm at each state of a search process (Vermetten et al.

@ Springer

J. Stork et al.

2019). We regard hyperheuristics as hybrid algorithms (cf.
Sect. 4.5).

3 A new taxonomy

The term taxonomy is defined as a consistent procedure or
classification scheme for separating objects into classes or
categories based on specific features. The term taxonomy is
mainly present in natural science for establishing hierar-
chical classifications. A taxonomy fulfills the task of dis-
tinction and order; it provides explanations and a greater
understanding of the research area through the identifica-
tion of coherence and the differences between the classes.

Several reasons drive our motivation for a new taxon-
omy: the first reason (I) is that considering available GO
taxonomies (Sect. 3.1, cf. Fig. 2), we can conclude that
during the last decades, several authors developed new
taxonomies for optimization algorithms. However, new
classes of algorithms have become state-of-the-art in
modern algorithm design, particularly model-based, sur-
rogate-based, and hybrid algorithms dominate the field.
Existing taxonomies of GO algorithms do not reflect this
situation. Although there are surveys and books which
handle the broad field of optimization and give general
taxonomies, they are outdated and lack the integration of
the new designs. Available up-to-date taxonomies often
address a particular subfield of algorithms and discuss them
in detail. However, a generalized taxonomy, which
includes the above-described approaches and allows to
connect these optimization strategies, is missing.

This gap motivated our second reason (II) the develop-
ment of a generalization scheme for algorithms. We argue
that the search concepts of many algorithms are built upon
each other and are related. While the algorithms have
apparent differences in their strategies, they are not overall
different. Many examples for similar algorithms can be
found in different named nature-inspired metaheuristics
that follow the same search concepts. However, certain
elements are characteristic of algorithms, which allow us to
define classes based on their search elements. Even dif-
ferent classes share a large amount of these search ele-
ments. Thus our new taxonomy is based on a generalized
scheme of five crucial algorithm design elements
(Sect. 3.2, cf. Fig. 3), which allows us to take a bottom to
top approach to differentiate, but also connect the different
algorithm classes. The recent developments in hybrid
algorithms drive the urge to generalize search strategies,
where we no longer use specific, individual algorithms, but
combinations of search elements and operators of different
classes to find and establish new strategies, which cannot
merely be categorized.

@ Springer

Our third reason (III) is the importance of simplicity.
Our new taxonomy is not only intended to divide the
algorithms into classes, but also to provide an intuitive
understanding of the working mechanisms of each algo-
rithm to a broad audience. To support these ideas, we will
draw analogies between the algorithm classes and the
behavior of a human-like individual in each of the
descriptive class sections.

Our last reason (IV) is that we intend our taxonomy to
be helpful in practice. A common issue is the selection of
an adequate optimization algorithm if faced with a new
problem. Our algorithm classes are connected by individual
properties, which allows us to utilize the new taxonomy to
propose suitable algorithm classes based on a small set of
problem features. These suggestions, in detail discussed in
Sect. 5 and illustrated in Fig. 4 shall help users to find best
practices for new problems.

3.1 History of taxonomies

In the literature, one can find several taxonomies trying to
shed light on the vast field of optimization algorithms. The
identified classes are often named by a significant feature
of the algorithms in the class, with the names either being
informative or descriptive. For example, Leon (1966)
presented one of the first overviews on global optimization.
It classified algorithms into three categories: 1. Blind
search, 2. Local search 3. Non-local search. In this con-
text, blind search refers to simple search strategies that
select the candidates at random over the entire search
space, but following a built-in sequential selection strategy.
During the local search, new candidates are selected only
in the immediate neighborhood of the previous candidates,
which leads to a trajectory of small steps. Finally, non-
local search allows to escape from local optima and thus
enables a global search. Archetti and Schoen (1984)
extends the above scheme by also adding the class of de-
terministic algorithms, i.e., those who are guaranteed to
find the global optimum with a defined budget. Further-
more, the paper stands out in establishing a taxonomy,
which for the first time includes the concepts to construct
surrogates, as they describe probabilistic methods based on
statistical models, which are iteratively utilized to perform
the search. Torn and Zilinskas (1989) reviewed existing
classification schemes and presented their classifications.
They made that the most crucial distinction between two
non-overlapping main classes, namely those methods with
or without guaranteed accuracy. The main new feature of
their taxonomy is the clear separation of the heuristic
methods in those with direct and indirect objective func-
tion evaluation. Mockus (1974) also discussed the use of
Bayesian optimization. Today’s high availability of com-
putational power did not exist; therefore, Térn and

A new taxonomy of global optimization algorithms

Surrogate Hyperheuristic
Non-Heuristic Heuristic and Metaheuristic Optimization and Hybrid
. Non-local
1966 Leon Blind search Local search search
DEterml® Probabilistic methods \
methods /
1984 Archetti
Covering Randqm Random search methods Stochastic
methods sampling model
@ranteed . Indirect
1989 Térn accuracy Direct methods methods
and Zilinskas
1992 Zilinskas imati
Covering Clustering Apprquatmg
Random search methods objective
methods methods § N
unction
1995 Arora @ermi@(Stochastic >
Interpolating
2001 Jones or Non-
Interpolating
2002 Talbi Exac> Heuristic and MetaheurD Hybrid

5

Incomplete and Asymptotically Complete

2004 Neumaier C°”?p'e‘@
!IQOI’OUS

2004 Zlochin Qance—BaMel—Based

2010 Burke

2011 Jin @ate—Assisted

. . . Population-
2013 Boussaid (&lngIe—SquJB%e d

Hill-Climber Trajectory Population Surrogate Hybrid
2019IStork Exact “_ “Mountaineer” “Sightseer” “Team” “Surveyor” “Chimera”
Fig. 2 Global optimization taxonomy history. Information from Leon are illustrated and compared. Different distinctions between the large

(1966), Archetti and Schoen (1984), Térn and Zilinskas (1989),Arora set of algorithms were drawn. A comprehensive taxonomy is missing
et al. (1995), Jones (2001), Talbi (2002), Neumaier (2004), Zlochin and introduced by our new taxonomy, which concludes the diagram

et al. (2004),Burke et al. (2010), Jin (2011) and Boussaid et al. (2013) and is further presented in Sect. 3

Zilinskas (1989) concluded the following regarding Baye- the fairly cumbersome computations involving oper-
sian models and their applicability for (surrogate-based) ations with the inverse of the covariance matrix and
optimization: complicated auxiliary optimization problems the

resort has been to use simplified models.

Even if it is very attractive, theoretically it is too
complicated for algorithmic realization. Because of

J. Stork et al.

algorithm
o single candidate set of candidates components
Initialization| chosen at random or by function y . . chosen at random
chosen at random or by function knowledge or by design of experiments .
knowledge or predefined
population population or| surrogate multi-stage
) single/multiole candidates based on selected set distribution based on single /
Generation bage d on la SF; best/selected distribution combined with | optimization of distribution /
based on adaptive model fitted globally fitted surrogate /
fitted to set surrogate surrogate algorithm components
improving the we:gﬁted/ be.St and best predicted
constrained best best set predicted set .
best . based combined set
. . single best selected due to surrogate- . . .)
Selection single best P X onselected infill improving, predicted, selected
. selected (probabilistic) assisted Y
candidate . iy ; s criteria for the set
. candidate for next selection function selection
for next iterate . . surrogate
iterate function
B advanced . S.OP hlstlcated . o most sophisticated
basic e initialization, population, sophisticated) .
R initialization, e . . . requires algorithm control
initialization, . . variation, selection, sampling methods, population,
Control o variation step size, . . - X hyper-control parameters for
variation, X adaptive, self-adaptive, variation, adaptive, surrogate .
. adaptive, - ; . . every selected algorithm
adaptive ; . online control selection, optimizer selection
selection function component
Class Hill-Climber Trajectory Population Surrogate Hybrid
“Mountaineer” “Sightseer” “Team” “Surveyor” “Chimera”

Fig. 3 Overview of defining algorithm features per search element and class.

individual classes

Overlapping features indicate the close connection between the

landscap © (known / obtainable > < known / unknown / black box >
properties
function e uni/multi-modal, noisy,
;" i unimodal L(Jj multi-objective, + expensive
properties y 2t complex fitness landscapes / \
available
evaluation small medium to high high to very high small to high very small
budget
' v v
Hill-Climber Trajectory Population Hybrid Surrogate
Line Search, Simulated Annealing, Evolutionary Algorithms, Memetic Bayesian Optimization,
Quasi-Newton, Tabu-Search, Particle Swarm Optimization, Algorithms, Efficient Global
i Iterative Hill Climber Neighborhood Search Estimation of Distribution Hyperheuristics Optimization
computational
complexity . :
and very low low to medium medium to high (S tto ligfii e (‘extremely
. extremly high high
algorithm
complexity

Fig. 4 Algorithm selection guideline. The figure connects landscape and function properties, as well as the available budget to a

suitable algorithm class and outlines their computational complexity

Still, we find the scheme of dividing algorithms into non-
heuristic (or exact), random (or stochastic) and further
surrogate-based frequently. Several following taxonomies
added different algorithm features to their taxonomies,
such as metaheuristic approaches (Arora et al. 1995),
surrogate-based optimization (Jones 2001), non-heuristic
methods (Neumaier 2004), hybrid methods (Talbi 2002),
direct search methods (Audet 2014; Kolda et al. 2003),
model-based optimization (Zlochin et al. 2004), hyper-
heuristics (Burke et al. 2010), surrogate-assisted algo-
rithms (Jin 2011), nature-inspired methods (Rozenberg

@ Springer

et al. 2011), or population-based approaches (Boussaid
et al. 2013). We created an overview of different selected
taxonomies and put them into the comparison in Fig. 2.

3.2 The four elements of algorithm design

Any modern optimization algorithm, as defined in Sect. 2,
can be reduced to the four key search strategy elements
Initialization, Generation and Selection. A fourth element
controls all these key elements: the Control of the different
functions and operators in each element. The underlying

A new taxonomy of global optimization algorithms

terminology is generic and based on typical concepts from
the field of evolutionary algorithms. We could easily
exchange it with wording from other standard algorithm
classes (e.g., evaluate = test/trial, generate=produce/vari-
ate). Algorithm 3.1 displays the principal elements and the
abstracted fundamental structure of optimization algo-
rithms (Bartz-Beielstein and Zaefferer 2017). We could

neighborhood of the selected candidate location. Hence,
algorithms using several candidates are in general more
robust, while a single candidate algorithms are sensitive to
the selection of the starting candidate, particular in multi-
modal landscapes. Multi-start strategies can further
increase the robustness and are particularly common for
single-candidate algorithms, and also frequently recom-

Algorithm 3.1: General Optimization Algorithm

1 set initial control parameters

2 begin

3 t=0

4 initialize candidate(s)

5 evaluate initial candidate(s)

6 while not termination-condition do

7 t=t+1

8 generate new candidate(s)

9 evaluate new candidate(s)

10 select solution(s) for next iteration
11 optional: update control parameters
12 end
13 end

map this structure and elements to any modern optimiza-
tion algorithm. Even if the search strategy is inherently
different or elements do not follow the illustrated order or
appear multiple times per iteration.

The initialization of the search defines starting locations
or a schema for the initial candidate solutions. Two com-
mon strategies exist:

1. If there is no available a priori knowledge about the
problem and its search space, the best option is to use
strategically randomized starting points. The initial
distribution target is often exploration, i.e., a broad
distribution of the starting points if possible. Particu-
larly interesting for surrogate-based optimization are
systematic initialization schemes by methods from the
field of design of experiments (Crombecq et al. 2011;
Bossek et al. 2020).

2. Suppose domain knowledge or other a priori informa-
tion is available, such as information from the data or
process from previous optimization runs. In that case, it
is beneficial to utilize this information, e.g., by using a
selection of these solutions, such as these with the best
fitness. However, known solutions can also bias the
search towards them. Thus, e.g., restart strategies
intentionally discard them. In surrogate-based opti-
mization, the initial modeling can use available data.

The initial candidates have a large impact on the balance
between exploration and exploitation. Space-filling designs
with large amounts of random candidates or sophisticated
design of experiments methods will lead to an initial
exploration of the search space. Starting with a single
candidate will presumably lead to an exploitation of the

mended for population-based algorithms (Hansen et al.
2010b).

The generation during the search process defines the
methods for finding new candidates, with particular regard
on how they use available or obtained information about
the objective function. A standard approach is the variation
of existing observations, as it utilizes, and to a certain
extent preserves, the information of previous iterations.
Even by the simplest hill-climber class algorithms, which
do not require any global information or stored knowledge
of former iterations (Sect. 4.1), use the last obtained
solution to generate new candidate(s). Sophisticated algo-
rithms generate new candidates based on exploited and
stored global knowledge about the objective function and
fitness landscape. This knowledge is stored by either
keeping an archive of all available or selected observations
or implicitly by using distribution or data models of
available observations. Another option to generate new
candidates is combining information of multiple candidates
by dedicated functions or operators, particular present in
the trajectory class (Sect. 4.2). The exact operators for
generation and variation of candidate solutions are various
and an essential aspect of keeping the balance between
exploration and exploitation in a search strategy.

The selection defines the principle of choosing the
solutions for the next iteration. We use the term selection,
which has its origins in evolutionary computation. Besides
the most straightforward strategy of choosing the solu-
tion(s) with the best fitness, advanced selection strategies
have emerged, which are mainly present in metaheuris-
tics (Boussaid et al. 2013). These selection strategies are

@ Springer

J. Stork et al.

particularly common in algorithms with several candidates
per generation step; thus, evolutionary computation intro-
duced the most sophisticated selection methods (Eiben and
Smith 2015). The use of absolute differences in fitness or
their relative difference is the most common strategy and
called ranked selection, i.e., based on methods such as
truncation, tournament or proportional selection.

The Control parameters determine how the search can
be adapted and improved by controlling the above men-
tioned key elements. We distinguish between internal and
external parameters: External parameters, also known as
offline parameters, can be adjusted by the user and need to
be set a priori to the optimization run. Typical external
parameters include the number of candidates and settings
influencing the above mentioned key elements. Besides
standard theory-based defaults (Schwefel 1993), they are
usually set by either utilizing available domain knowledge,
extensive a priori benchmark experiments (Géamperle et al.
2002), or educated guessing. Sophisticated meta-opti-
mization methods were developed to exploit the right
parameter settings in an automated fashion. Well-known
examples are sequential parameter tuning (Bartz-Beielstein
et al. 2005), iterated racing for automatic algorithm tun-
ing (Lopez-Ibafiez et al. 2016), bonesa (Smit and Eiben
2011) or SMAC (Hutter et al. 2011). In comparison to
external parameters, internal ones are not meant to be
changed by the user. They are either fixed to an absolute
value, which is usually based on physical constants or
extensive testing by the authors of the algorithm, or are
adaptive, or even self-adaptive. Adaptive parameters are
changed during the search process based on fixed strategies
and exploited problem information (Eiben et al. 1999)
without user influence. Self-Adaptive parameters are opti-
mized during the run, e.g., by including them into the
candidate vector x as an additional decision value. Algo-
rithms using adaptive schemes tend to have better gener-
alization abilities than those with fixed parameters. Thus,
they are especially successful for black-box problems,
where no prior information about the objective function
properties is available to setup parameters in advance (-
Hansen et al. 2003). In general, the settings of algorithm
control parameters directly affect the balance between
exploration and exploitation during the search and are
crucial for the search strategies and their performance.

Further, the evaluation step computes the fitness of the
candidates. The evaluation is a crucial aspect, as it defines
how and which information about any candidate solution is
gathered by querying the objective function, which can
significantly influence the search strategy and also the
utilized search operators. However, as important aspects of
the evaluation are mostly problem-dependent, such as
noise, constraints and multiple objectives. The handling of
these aspects sometimes requires unique strategies,

@ Springer

operators, or even specialized algorithm designs. These
unique algorithms will not be covered in our taxonomy.
However, often strategies for handling these particular
characteristics are enhanced versions of in this taxonomy
presented algorithms, e.g., for handling multiple objectives.
Multi-objective problems include several competing goals,
i.e., an improvement in one objective leads to a deterio-
ration in another objective. Thus, no single optimal solu-
tion is available, but a set of equivalent quality, the non-
dominated solutions, or so-called Pareto-set, where rea-
sonable solutions need to be selected from (Fonseca and
Fleming 1993; Naujoks et al. 2005). A so-called decision-
maker is needed to select the final solutions, which is often
the user himself. Further, Multi-objective algorithms can
include special search operators, such as hyper-volume-
based selection or non-dominated sorting for rank-based
selection (Deb et al. 2002; Beume et al. 2007). While most
computer experiments are deterministic, i.e., iterations
using the same value set for the associated decision vari-
ables should deliver the same results, real-world problems
are often non-deterministic. They include non-observable
disturbance variables and stochastic noise. Typical noise
handling techniques include multiple evaluations of solu-
tions to reduce the standard deviation and special sampling
techniques. The interested reader can find a survey on noise
handling by Arnold and Beyer (2003). Moreover, opti-
mization problems frequently include different constraints,
which we need to consider during the optimization process.
Constraint handling techniques can be directly part of the
optimization algorithm, but most algorithms are designed
to minimize the objective function and add constraint
handling on top. Thus, algorithms integrate it by adjusting
the fitness, e.g., by penalty terms. Different techniques for
constraint handling are discussed by Coello (2002) and
Arnold and Hansen (2012).

4 The definition of intuitive algorithm
classes

In his work about evolution strategies, Rechenberg (1994)
illustrated a visual approach to an optimization process: a
mountaineer in an alpine landscape, attempting to find and
climb the highest mountain. The usage of analogies to the
natural world is a valuable method to explain the behavior
of search algorithms. In the area of metaheuristics, the
behavior of the nature and animals inspired the search
procedure of the algorithms: Evolutionary algorithms fol-
low the evolution theory (Rechenberg 1994; Eiben and
Smith 2015); particle swarm optimization (Kennedy and
Eberhart 1995; Shi and Eberhart 1998) utilizes a strategy
similar to the movement of bird flocks; ant colony opti-
mization (Dorigo et al. 2006) mimics, as the name

A new taxonomy of global optimization algorithms

suggests, the ingenious pathfinding and food search prin-
ciples of ant populations.

We take up the idea of optimization processes being
human-like individuals and use it in the definition of our
extended class names: the mountaineer, sightseer, team,
surveyor and chimera. This additional naming shall
accomplish the goal of presenting an evident and
straightforward idea of the search strategies of the algo-
rithms in the associated class.

4.1 Hill-climbing class: “The Mountaineer”

Intuitive Description 1 (The Mountaineer) The moun-
taineer is a single individual who hikes through a land-
scape, concentrating on achieving his ultimate goal: finding
and climbing the highest mountain. He is utterly focussed
on his goal to climb up that mountain. So while he checks
different paths, he will always choose the ascending way
and not explore the whole landscape.

Hill-Climbing algorithms focus their search strategy on
greedy exploitation with minimal exploration. Hence, this
class encompasses fundamental optimization algorithms
with direct search strategies, which include gradient-based
algorithms as well as deterministic or stochastic hill-
climbing algorithms. Gradient-based algorithms, also
known as first-order methods, are in first case applicable to
differentiable functions, where the gradient information is
available. If the gradient is not directly available, it can be
approximated or estimated, for example, by stochastic
gradient descent (SGD) algorithms (Ruder 2016).

These algorithms have, by design, fast convergence to a
local optimum situated in a region of attraction and com-
monly no explicit strategy for exploration. Overviews of
associated algorithms were presented by Lewis et al.
(2000) and Kolda et al. (2003). Common algorithms
include the quasi-Newton Broyden-Fletcher—Goldfarb-
Shanno algorithm (Shanno 1970), conjugate gradients
(CG) (Fletcher 1976), the direct search algorithm Nelder-
Mead (Nelder and Mead 1965), and stochastic hill climbers
such as the (/41)-Evolution Strategy (Rechenberg 1973;
Schwefel 1977).

Famous SGD algorithms are adaptive moment estima-
tion (ADAM) (Kingma and Ba 2014) and the adaptive
gradient algorithm (AdaGrad) (Duchi et al. 2011). They
are frequently applied in machine learning, particularly for
optimizing neural network weights with up to millions of
parameters.

As this class defines fundamental search strategies, hill-
climbers are often part of sophisticated algorithms as a fast-
converging local optimizer. Hill-climbers do not utilize
individual operators for the initialization of the single

starting point. Thus, it is typically selected at random in the
valid search space or based on prior knowledge.

The variation of the last observed selected candidate
generates new candidates, commonly in the current solu-
tion’s vicinity. For example, the stochastic hill climber
utilizes random variation with a small step size compared
to the range of the complete search interval. Gradient-
based methods directly compute or approximate the gra-
dients of the objective function to find the best direction
and strength for the variation. Algorithms such as Nelder-
Mead create new candidates by computing a search
direction using simplexes.

The most common selection methods are elitist strate-
gies, which evaluate the new candidate, compare it to the
old solution, and keep the one with the best fitness as a new
solution. Always selecting the best is known as a greedy
search strategy, as it tries to improve as fast as possible.
This greedy strategy leads to the outlined hill-climbing
search which performs a trajectory of small, fitness-im-
proving steps, which forms in the ideal case a direct line to
the nearest optimum. In general, these algorithms search
locally for an optimum and do not exploit or use global
function information.

The most critical control parameter is the variation step
size, which directly influences the speed of convergence.
As a result of this, the state of the art is to use an adaptive
variation step size that changes online during the search,
often based on previous successful steps, for example as
defined in the famous /5 success rule (Rechenberg 1973).

4.2 Trajectory class: “The Sightseer”

Intuitive Description 2 (The Sightseer) The intuitive idea
of this class is a single hiker looking for interesting places.
During the search, the sightseer takes into account that
multiple places of interest exist. It thus explores the search
space or systematically visits areas to gather information
about multiple locations and utilizes this to find the most
desired ones.

Trajectory class algorithms still focus on exploitation
but are supported by defined exploration methods. This
class encompasses algorithms that utilize information from
consecutive function evaluations.

They are the connecting link between the hill-climbing
and population class. While trajectory algorithms are a step
towards population algorithms and also allow the sampling
of several solutions in one iteration, they use the principle
of initializing and maintaining a single solution. This
solution is the basis for variation in each iteration. Again,
this variation forms a trajectory in the search space over
consecutive iterations, similar to the hill-climbing class.
Thus these methods are known as trajectory methods

@ Springer

J. Stork et al.

(Boussaid et al. 2013). While the initialization and gener-
ation of the trajectory class are similar to those of the hill-
climbing class, the main differences can be found during
the selection, as they utilize operators to guide the search
process in a global landscape in specific directions. Two
different strategies can be differentiated, which define two
subclasses:

(i) The exploring trajectory class utilizes functions to
calculate a probability of accepting a candidate as
the (current) solution.

(i) The systematic trajectory class utilizes a separation
of the search space into smaller sub-spaces to guide
the search into specific directions.

These different strategies are susceptible to the correct
parametrization, which need to be selected adequate to the
underlying objective function.

4.2.1 Exploring trajectory algorithms

The exploring trajectory subclass encompasses algorithms
that implement selection operators to balance exploration
and exploitation to enable global optimization. The intro-
duction of selection functions that allow to expand the
search space and escape the region of attraction of a local
optimum achieves exploration. Simulated annealing
(SANN) (Kirkpatrick et al. 1983), which is known to be a
fundamental contribution to the field of metaheuristic
search algorithms, exemplifies this class. The continuous
version (Goffe et al. 1994; Siarry etal. 1997; Van
Groenigen and Stein 1998) of the SANN algorithm extends
the iterated stochastic hill-climber. It includes a new ele-
ment for the selection, the so-called acceptance function. It
determines the probability of accepting an inferior candi-
date as a solution by utilizing a parameter called temper-
ature, in analogy to metal annealing procedures. This
dynamic selection allows escaping local optima steps by
accepting movement in the opposite direction of
improvement, which is the fundamental difference to a hill-
climber and ultimately allows the global search. At the end
of each iteration, a so-called cooling operator adapts the
temperature. This operator can be used to further balance
the amount of exploration and exploitation during the
search (Henderson et al. 2003). A common approach is to
start with a high temperature and steadily reduce T
according to the number of iterations or to utilize an
exponential decay of T. This steady reduction of T leads to
a phase of active movement and thus exploring in the early
iterations, while with decreasing T, the probability of
accepting inferior candidates reduces. With approaching a
T value of zero, the behavior becomes similar to an itera-
tive hill-climber. Modern SANN implementations integrate
self-adaptive cooling-schemes which use alternating phases

@ Springer

of cooling and reheating (Locatelli 2002). These allow
alternating phases of exploration and exploitation but
require sophisticated control.

4.2.2 Systematic trajectory algorithms

This subclass encompasses algorithms, which base their
search on a space partitioning utilizing the exposed
knowledge of former iterations. They create sub-spaces
that are excluded from generation and selection, or at-
tractive sub-spaces, where the search is focused on. These
search space partitions guide the search by pushing can-
didate generation to new promising or previous unexplored
parts of the search space. An outstanding paradigm for this
class is Tabu Search (Glover 1989). A so-called tabu list
contains the last successful candidates and defines a sub-
space of all evaluated solutions. In the continuous version,
Siarry and Berthiau (1997), Hu (1992) and Chelouah and
Siarry (2000), small (hypersphere or hyperrectangle)
regions around the candidates are utilized. The algorithm
will consider these solutions or areas as forbidden for
future searches, i.e., it selects no candidates situated in
these regions as solutions. This process shall ensure to
move away from known solutions and prevents identical
cycling of candidates and getting stuck in local optima. The
definition of the tabu list parameters can control explo-
ration and exploitation by, e.g., by the number of elements
or size of areas.

The areas of search can also be pre-defined, such as in
variable neighborhood search (VNS) (Hansen and Mlade-
novic 2003; Hansen et al. 2010c; Mladenovi¢ et al. 2008).
The search strategy of VNS is to perform sequential local
searches in these sub-spaces to exploit their local optima.
The idea behind this search strategy is that by using an
adequate set of sub-spaces, the chance of exploiting a local
optimum, which is near the global optimum, increases.

4.3 Population class: “The Team”

Intuitive Description 3 (The Team) The intuitive idea of
this class is a group of individuals, which feam up to
achieve their mutual goal together. They split up to explore
different locations and share their knowledge with other
members of the team.

Population class algorithms utilize distributed explo-
ration and exploitation. The idea of initializing, variation,
and selection of several contemporary candidate solutions
defines this class. The algorithms are commonly meta-
heuristics, whose search concepts follow processes found
in nature. Moreover, it includes algorithms building upon
the population-based concept by utilizing models of the
underlying candidate distributions. Due to utilizing a

A new taxonomy of global optimization algorithms

population, the generation and selection strategies of these
algorithms differ significantly from the hill-climber und
trajectory class. We subdivide this class into the regular
population and model-based population algorithms, which
particularly differ in how they generate new candidates
during the search:

(i) The regular population (Sect. 4.3.1) generate and
maintain several candidates with specific popula-
tion-based operators.

(i) The model-based population (Sect. 4.3.2) generate
and adapt models to store and process information.

4.3.1 Regular population algorithms

Well-known examples of this class are particle swarm
optimization (PSO) (Kennedy and Eberhart 1995; Shi and
Eberhart 1998) and different evolutionary algorithms (EA).
We regard EAs as state of the art in population-based
optimization, as their search concepts are dominating for
this field. Nearly all other population-based algorithms use
similar concepts and are frequently associated with EAs.
Fleming and Purshouse (2002) go as far to state:

In general, any iterative, population-based approach
that uses selection and random variation to generate
new solutions can be regarded as an EA.

Evolutionary algorithms follow the idea of evolution,
reproduction, and the natural selection concept of survival
of the fittest. In general, the field of EAs goes back to four
distinct developments, evolution strategies (ES) (Rechen-
berg 1973; Schwefel 1977), evolutionary programming
(Fogel et al. 1966), genetic algorithms (Holland 1992), and
genetic programming (Koza 1992). The naming of the
methods and operators matches with their counterparts
from biology: candidates are individuals who can be
selected to take the role of parents, mate and recombine to
give birth to offspring. The population of individuals is
evolved (varied, evaluated, and selected) over several
iterations, so-called generations, to improve the solutions.

Different overview articles shed light on the vast field of
evolutionary algorithms (Back et al. 1997; Eiben and
Smith 2003, 2015).

EAs generate new solutions typically by variation of a
selected subset of the entire population. Typically, com-
petition-based strategies, which also often includes proba-
bilistic elements, select the subsets. Either random
variation of this subpopulation or recombination by
crossover, which is the outstanding concept of EAs, gen-
erates new candidates. Recombination partly swaps the
variables of two or more candidates, aggregated or com-
bined to create new candidate solutions.

The population-based selection strategies allow picking
solutions with inferior fitness for the variation process,
which allows exploration of the search space. Several
selection strategies exist. For instance, in roulette wheel
selection, the chance of being selected is proportional to
the ranking while all chances sum up to one. A spin of the
roulette wheel chooses each candidate, where the individ-
ual with the highest fitness also has the highest chance of
being selected. Alternatively, in tournament selection,
different small subsets of the population are randomly
drawn for several tournaments. Within these tournaments,
the candidates with the best fitness are selected based on
comparisons to their competitors. This competition-based
selection also allows inferior candidates to win their small
tournament and participate in the variation.

EAs usually have several parameters, such as the
selection intensity (i.e., the percent of truncation), variation
step size, or recombination probability. Parameter settings,
in particular adaptive and self-adaptive control for evolu-
tionary algorithms is discussed in Angelin (1995), Eiben
et al. (1999), Lobo et al. (2007), Doerr et al. (2020) and
Papa and Doerr (2020).

4.3.2 Model-based population algorithms

The model-based population class encompasses algorithms
that explicitly use mathematical or statistical models of the
underlying candidates. These algorithms generally belong
to the broad field of EAs (Sect. 4.3.1), and use similar
terminology and also operators.

Estimation of distribution algorithms (EDAs) are a well-
known example for this class (Larraiaga and Lozano 2001;
Hauschild and Pelikan 2011). Compared to a regular pop-
ulation-based approach, a distribution model of selected
promising candidates is learned in each iteration, which is
then utilized to sample new candidates. The sampling
distribution will improve and likely converge to generate
only optimal or near-optimal solutions over the iterations.
EDAs utilize models from univariate, over bivariate to
multivariate distributions, e.g., modeled by Bayesian net-
works or Gaussian distributions with typical parameters,
such as mean, variance, and covariance of the modeled
population. The search principle of EDAs was first defined
for discrete domains and later successfully extended for
continuous domains (Hauschild and Pelikan 2011). Popular
examples for EDAs are population-based incremental
learning (PBIL) (Baluja 1994; Gallagher et al. 1999), the
estimation of Gaussian networks algorithm (EGNA) (Lar-
rafiaga et al. 1999), the extended compact genetic algo-
rithm (eCGA) (Harik 1999), and the iterated density
estimation evolutionary algorithm (IDEA) (Bosman and
Thierens 2000). The surrogate class distinction is that the
underlying learned distribution models are directly utilized

@ Springer

J. Stork et al.

to sample new candidates, instead of substituting the
objective function.

A well-known and successful model-based algorithm is
the covariance matrix adaption—evolution strategy (CMA-
ES) (Hansen et al. 2003). While it also utilizes a distribu-
tion model, its central idea extends the EDA approach by
learning a multivariate Gaussian distribution model of
candidate steps, i.e., their changes over iterations, instead
of current locations (Hansen 2006). Moreover, instead of
creating a new distribution model of selected candidates in
each iteration, the model is kept and updated. This prin-
ciple of updating the model is similar to applying evolu-
tionary variation operators, such as recombination or
mutation, to the candidates in a regular population-based
algorithm. However, in the CMA-ES, the variation opera-
tors’ target is the distribution model and not individual
candidates.

Again, this class has several control parameters, which
are often designed to be adaptive or self-adaptive. For
example, the CMA-ES utilizes a sophisticated step-size
control and adapts the mutation parameters during each
iteration following the history of prior successful iterations,
the so-called evolution paths. These evolution paths are
exponentially smoothed sums for each distribution
parameter over the consecutive prior iterative steps.

4.4 Surrogate class: “The Surveyor”

Intuitive Description 4 (The Surveyor) The intuitive idea
of the surveyor is a specialist who systematically measures
a landscape by taking samples of the height to create a
topological map. This map resembles the real landscape
with a given approximation accuracy and is typically exact
at the sampled locations and models the remaining land-
scape by regression. It can then be examined and utilized to
approximate the quality of an unknown point and further be
updated if new information is acquired. Ultimately it can
be used to guide an individual to the desired location.

Surrogate class algorithms utilize distributed explo-
ration and exploitation by explicitly relying on landscape
information and a landscape model. These algorithms dif-
fer from all other defined classes in their focus on acquir-
ing, gathering, and utilizing information about the fitness
landscape. They utilize evaluated, acquired information to
approximate the landscape and also predict the fitness of
new candidates.

As illustrated in Sect. 2.3, the surrogates depict the maps
of the fitness landscape of an objective function in an
algorithmic framework. A surrogate algorithm utilizes
them for an efficient indirect search, instead of performing
multiple, direct, or localized search steps. We divide this
class into two subclasses:

@ Springer

e Surrogate-based algorithms utilize a global surrogate
model for variation and selection.

e Surrogate-assisted algorithms utilize surrogates to sup-
port the search.

The distinction between the two subclasses is motivated by
the different use of the surrogate model. While a surrogate-
based algorithm generates new candidates solely by opti-
mizing/prediction of the surrogate, surrogate-assisted
algorithms use it to support their search by individual
operators (i.e., for the selection of candidates).

For both classes, the surrogate model is a core element
of the variation and selection process during optimization
and essential for their performance. A perfect surrogate
provides an excellent fit to observations, while ideally
possessing superior interpolation and extrapolation abili-
ties. However, a large number of available surrogate
models all have significantly differing characteristics,
advantages, and disadvantages. Model selection is thus a
complicated and challenging task. If no domain knowledge
is available, such as in real black-box optimization, it is
often inevitable to test different surrogates for their
applicability.

Common models are: linear, quadratic or polynomial
regression, Gaussian processes (also known as Kriging)
(Sacks et al. 1989; Forrester et al. 2008), regression trees
(Breiman et al. 1984), artificial neural networks and radial
basis function networks (Haykin 2004; Hornik et al. 1989)
including deep learning networks (Collobert and Weston
2008; Hinton et al. 2006, 2012) and symbolic regression
models (Augusto and Barbosa 2000; Flasch et al. 2010;
McKay et al. 1995), which are usually optimized by
genetic programming (Koza 1992).

Further, much effort in current studies is to research the
benefits of model ensembles, which combine several dis-
tinct models (Goel et al. 2007; Miiller and Shoemaker
2014; Friese et al. 2016). The goal is to create a sophisti-
cated predictor that surpasses the performance of a single
model. A well-known example is random forest regres-
sion(Freund and Schapire 1997), which uses bagging to fit
a large number of decision trees (Breiman 2001). We
regard ensemble modeling as the state of the art of current
research, as they can combine the advantages of different
models to generate outstanding results in both classification
and regression. The drawback of these ensemble method-
ologies is that they are computationally expensive and pose
a severe problem concerning efficient model selection,
evaluation, and combination.

4.4.1 Surrogate-based algorithms

Surrogate-based algorithms explicitly utilize a global
approximation surrogate in their optimization cycle by

A new taxonomy of global optimization algorithms

following the concept of efficient global optimization
(EGO) (Jones et al. 1998) and Bayesian Optimization (BO)
(Mockus 1974, 1994, 2012). They are either fixed algo-
rithms designed around a specific model, such as Kriging,
or algorithmic frameworks with a choice of possible sur-
rogates and optimization methods sequential parameter
optimization (Bartz-Beielstein et al. 2005; Bartz-Beielstein
2010). Further well-known examples for continuous
frameworks are the surrogate management framework
(SMF) (Booker et al. 1999) and the surrogate modeling
toolbox (SMT) (Bouhlel et al. 2019). Versions for discrete
search spaces are mixed integer surrogate optimization
(MISO) (Miiller 2016) and efficient global optimization for
combinatorial problems (CEGO) (Zaefferer et al. 2014).
The basis for our descriptions of surrogate-based algo-
rithms is mainly EGO, and it is to note that the terminology
of BO differs partly from our utilized terminology.

A general surrogate-based algorithm can be described as
follows (Cf. Sect. 2.3):

1. The initialization is done by sampling the objective
function at k positions with y;, = f(x;),1 <i<k to
generate a set of observations
2. = {(x1,y;),1 <i<k}. The sampling design plan is
commonly selected according to the surrogate.

2. Selecting a suitable surrogate. The selection of the
correct surrogate type can be a computational demand-
ing step in the optimization process, as often no prior
information indicating the best type is available.

3. Constructing the surrogate s(x) using the observations.

4. Utilizing the surrogate s(x) to predict n new promising
candidates {x},}, e.g., by optimization of the infill
function with a suitable algorithm. For example, it is
reasonable to use algorithms that require a large
number of evaluations as the surrogate itself is
(comparatively) very cheap to evaluate.

5. Evaluating the new candidates with the objective
function y! =f(x}),1 <i<n.

6. If the stopping criterion is not met: Updating the
surrogate with the new observations
D1 = 2, U{(x},y7),1<i<n}, and repeating the
optimization cycle (4.-6.)

For the initialization, the model building requires a suit-
able sampling of the search space. The initial sampling has
a significant impact on the performance and should be
carefully selected. Thus, the initialization commonly uses
candidates following different information criteria and
suitable experimental designs. For example, it is common
to built linear regression models with factorial designs and
preferably couple Gaussian process models with space-
filling designs, such as Latin hypercube sampling (Mont-
gomery et al. 1984; Sacks et al. 1989).

The generation has two aspects: the first is the choice of
surrogate itself, as it is used to find a new candidate. The
accuracy of a surrogate strongly relies on the selection of
the correct model type to approximate the objective func-
tion. By selecting a particular surrogate, the user makes
certain assumptions regarding the characteristics of the
objective function, i.e., modality, continuity, and smooth-
ness (Forrester and Keane 2009). Most surrogates are
selected to provide continuous, low-modal, and smooth
landscapes, which renders the optimization process com-
putationally inexpensive and straightforward. The second
aspect is the optimizer which variates the candidates for the
search on the surrogate and the approximated fitness
landscape. As the surrogates are often fast to evaluate,
exhaustive exact search strategies, such as branch and
bound in EGO Jones et al. (1998) or multi-start hill-clim-
bers, are often utilized, but it is also common to use
sophisticated population-based algorithms.

The surrogate prediction for the expected best solution is
the basis of the selection of the next candidate solution.
Instead of a simple mean fitness prediction, it is common to
define an infill criterion or acquisition function. Typical
choices include the probability of improvement (Kushner
1964), expected improvement (Jones et al. 1998) and
confidence bounds (Cox and John 1997). Expected
improvement is a common infill criterion because it is a
balance of exploration and exploitation by utilizing both
the predicted best mean value of the model, as well as the
model uncertainty. The optimization of this infill criterion
then selects the candidate. Typically, in each iteration for
evaluation and the model update, the algorithm selects only
a single candidate. Multi-infill selection strategies are also
possible.

Surrogate-based algorithms include a large number of
control elements, starting with necessary components of
such an algorithm, including the initialization strategy, the
choice of surrogate and optimizer. In particular, the infill
criteria, as part of the selection strategy, has an enormous
impact on the performance. Even for a fixed algorithm, the
amount of (required) control is extensive. The most
important are the model parameters of the surrogate.

4.4.2 Surrogate-assisted algorithms
