
A new taxonomy of global optimization algorithms

Jörg Stork1 • A. E. Eiben2 • Thomas Bartz-Beielstein1

Accepted: 6 November 2020
� The Author(s) 2020

Abstract
Surrogate-based optimization, nature-inspired metaheuristics, and hybrid combinations have become state of the art in

algorithm design for solving real-world optimization problems. Still, it is difficult for practitioners to get an overview that

explains their advantages in comparison to a large number of available methods in the scope of optimization. Available

taxonomies lack the embedding of current approaches in the larger context of this broad field. This article presents a

taxonomy of the field, which explores and matches algorithm strategies by extracting similarities and differences in their

search strategies. A particular focus lies on algorithms using surrogates, nature-inspired designs, and those created by

automatic algorithm generation. The extracted features of algorithms, their main concepts, and search operators, allow us to

create a set of classification indicators to distinguish between a small number of classes. The features allow a deeper

understanding of components of the search strategies and further indicate the close connections between the different

algorithm designs. We present intuitive analogies to explain the basic principles of the search algorithms, particularly

useful for novices in this research field. Furthermore, this taxonomy allows recommendations for the applicability of the

corresponding algorithms.

Keywords Metaheuristics � Surrogate � Hybrid optimization � Evolutionary computation � Taxonomy

1 Introduction

Modern applications in industry, business, and information

systems require a tremendous amount of optimization.

Global optimization (GO) tackles various severe problems

emerging from the context of complex physical systems,

business processes, and particular from applications of

artificial intelligence. Challenging problems arise from

industry on the application level, e.g., machines regarding

manufacturing speed, part quality or energy efficiency, or

on the business level, such as optimization of production

plans, purchase, sales, and after-sales. Further, they emerge

from areas of artificial intelligence and information engi-

neering, such as machine learning, e.g., optimization of

standard data models such as neural networks for different

applications. Their complex nature connects all these

problems: they tend to be expensive to solve, and with

unknown objective function properties, as the underlying

mechanisms are often not well described or unknown.

Solving optimization problems of this kind relies nec-

essarily on performing costly computations, such as sim-

ulations, or even real-world experiments, which are

frequently considered being black-box. A fundamental

challenge in such systems is the different costs of function

evaluations. Whether we are probing a real physical sys-

tem, querying the simulator, or creating a new complex

data model, a significant amount of resources is needed to

fulfill these tasks. GO methods for such problems thus need

to fulfill a particular set of requirements. They need to

work with black-box style probes only, so without any

further information on the structure of the problem. Fur-

ther, they must find the best possible improvement within a

limited number of function evaluations.

& Jörg Stork

joerg.stork@th-koeln.de

A. E. Eiben

a.e.eiben@vu.nl

Thomas Bartz-Beielstein

thomas.bartz-beielstein@th-koeln.de

1 Technische Hochschule Köln, Steinmüllerallee 1,

51643 Gummersbach, Germany

2 Vrije Universiteit Amsterdam, 1081 HV Amsterdam,

The Netherlands

123

Natural Computing
https://doi.org/10.1007/s11047-020-09820-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7471-3498
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-020-09820-4&domain=pdf
https://doi.org/10.1007/s11047-020-09820-4

The improvement of computational power in the last

decades has been influencing the development of algo-

rithms. A massive amount of computational power became

available for researchers worldwide through multi-core

desktop machines, parallel computing, and high-perfor-

mance computing clusters. This has contributed to the

following fields of research: firstly, the development of

more complex, nature-inspired, and generally applicable

heuristics, so-called metaheuristics. Secondly, it faciliated

significant progress in the field of accurate, data-driven

approximation models, so-called surrogate models, and

their embodiment in an optimization process. Thirdly, the

upcoming of approaches which combine several opti-

mization algorithms and seek towards automatic combi-

nation and configuration of the optimal optimization

algorithm, known as hyperheuristics. The hyperheuristic

approach shows the close connections between different

named algorithms, in particular in the area of bio-inspired

metaheuristics. Automatic algorithm composition has

shown to be able to outperform available (fixed) opti-

mization algorithms. All these GO algorithms differ

broadly from standard approaches, define new classes of

algorithms, and are not well integrated into available

taxonomies.

Hence, we propose a new taxonomy, which:

1. describes a comprehensive overview of GO algorithms,

including surrogate-based, model-based and hybrid

algorithms,

2. can generalize well and connects GO algorithm classes

to show their similarities and differences,

3. focusses on simplicity, which enables an easy under-

standing of GO algorithms,

4. can be used to provide underlying knowledge and best

practices to select a suitable algorithm for a new

optimization problem.

Our new taxonomy is created based on algorithm key

features and divides the algorithms into a small number of

intuitive classes: Hill-Climbing, Trajectory, Population,

Surrogate, and Hybrid. Further, Exact algorithms are

shortly reviewed, but not an active part of our taxonomy,

which focusses on heuristic algorithms. We further utilize

extended class names as descriptions founded on the

abstracted human behavior in pathfinding. The analogies

Mountaineer, Sightseer, Team, Surveyor create further

understanding by using the image of a single or several

persons hiking a landscape in search of the desired location

(optimum) utilizing the shortest path (e.g., several

iterations).

This utilized abstraction allows us to present compre-

hensible ideas on how the individual classes differ and

moreover, how the respective algorithms perform their

search. Although abstraction is necessary for developing

our results, we will present results that are useful for

practitioners.

This article mainly addresses different kinds of readers:

Beginners will find an intuitive and comprehensive over-

view of GO algorithms, especially concerning common

metaheuristics and developments in the field of surrogate-

based and hybrid and hyperheuristic optimization. For

advanced readers, we also discuss the applicability of the

algorithms to tackle specific problem properties and pro-

vide essential knowledge for reasonable algorithm selec-

tion. We provide an extensive list of references for

experienced users. The taxonomy can be used to create

realistic comparisons and benchmarks for the different

classes of algorithms. It further provides insights for users,

who aim to develop new search strategies, operators, and

algorithms.

In general, most GO algorithms were developed for a

specific search domain, e.g., discrete or continuous. How-

ever, many algorithms and their fundamental search prin-

ciples can be successful for different problem spaces with

reasonably small changes. For example, evolution strate-

gies (ES), which are popular in continuous optimization

(see Hansen et al. 2003), have their origin in the discrete

problem domain. Beyer and Schwefel (2002) describe how

the ES moved from discrete to continuous decision vari-

ables. Based on this consideration, the article is focused but

not limited to illustrating the algorithm variants for the

continuous domain, while they have their origins or are

most successful in the discrete domain.

Moreover, we focused this taxonomy on algorithms for

objective functions without particular characteristics, such

as multi-objective, constrained, noisy, or dynamic. These

function characteristics pose additional challenges to any

algorithm, which are often faced by enhancing available

search schemes with specialized operators or even com-

pletely dedicated algorithms. We included the former as

part of the objective function evaluation in our general

algorithm scheme and provide references to selected

overviews. Dedicated algorithms, e.g., for multi-objective

search, are not discussed in detail. However, their accom-

modation in the presented taxonomy is possible if their

search schemes are related to the algorithms described in

our taxonomy. If further required, we outlined the exclu-

sive applicability of algorithms and search operators to

specific domains or problem characteristics.

We organized the remainder of this article as follows:

Sect. 2 presents the development of optimization algo-

rithms and their core concepts. Section 3 motivates a new

taxonomy by reviewing the history of available GO tax-

onomies, illustrates algorithm design aspects, and presents

extracted classification features. Section 4 introduces the

new intuitive classification with examples. Section 5

introduces best practices suggestions regarding the

J. Stork et al.

123

applicability of algorithms. Section 6 summarizes and

concludes the article with the recent trends and challenges

in GO and currently essential research fields.

2 Modern optimization algorithms

This section describes the fundamental principles of mod-

ern search algorithms, particular the elements and back-

grounds of surrogate-based and hybrid optimization.

The goal of global optimization is to find the overall best

solution, i.e., for the common task of minimization, to

discover decision variable values that minimize the

objective function value.

We denote the global search space as compact set S ¼
fx j xl � x� xug with xl; xu 2 Rn being the explicit, finite

lower and upper bounds on x. Given a single-objective

function f: Rn ! R with real-valued input vectors x we

attempt to find the location x� 2 Rn which minimizes the

function: argmin f ðxÞ; x 2 S.

Finding a global optimum is always the ultimate goal

and as such desirable, but for many practical problems, a

solution improving the current best solution in a given

budget of evaluations or time will still be a success. Par-

ticularly, in continuous GO domains an optimum com-

monly cannot be identified exactly; thus, modern heuristics

are designed to spend their resources as efficiently as

possible to find the best possible improvement in the

objective function value while finding a global optimum is

never guaranteed.

Törn and Zilinskas (1989) mention three principles for

the construction of an optimization algorithm:

1. An algorithm utilizing all available a priori information

will outperform a method using less information.

2. If no a priori information is available, the information

is completely based on evaluated candidate points and

their objective values.

3. Given a fixed number of evaluated points, optimization

algorithms will only differ from each other in the

distribution of candidate points.

If a priori information about the function is accessible, it

can significantly support the search and should be consid-

ered during the algorithm design. Current research on

algorithm designs that include structural operators, such as

function decomposition, is known as grey-box optimization

(Whitley et al. 2016; Santana 2017). However, many

modern algorithms focus on handling black-box problems

where the problem includes little or no a priori information.

The principles displayed above lead to the conclusion that

the most crucial design aspect of any black-box algorithm

is to find a strategy to distribute the initial candidates in the

search space and to generate new candidates based on a

variation of solutions. These procedures define the search

strategy, which needs to follow the two competing goals of

exploration and exploitation. The balance between these

two competing goals is usually part of the algorithm con-

figuration. Consequently, any algorithm needs to be adap-

ted to the structure of the problem at hand to achieve

optimal performance. This can be considered during the

construction of an algorithm, before the optimization by

parameter tuning or during the run by parameter con-

trol (Bartz-Beielstein et al. 2005; Eiben et al. 1999). In

general, the main goal of any method is to reach their target

with high efficiency, i.e., to discover optima fast and

accurate with as little resources as possible. Moreover, the

goal is not mandatory finding a global optimum, which is a

demanding and expensive task for many problems, but to

identify a valuable local optimum or to improve the cur-

rently available solution. We will explicitly discuss the

design of modern optimization algorithms in Sect. 3.2.

2.1 Exact algorithms

Exact algorithms also referred to as non-heuristic or com-

plete algorithms (Neumaier 2004), are a special class of

deterministic, systematic or exhaustive optimization tech-

niques. They can be applied in discrete or combinatorial

domains, where the search space has a finite number of

possible solutions or for continuous domains, if an opti-

mum is searched within some given tolerances. Exact

algorithms have a guarantee to find a global optimum with

using a predictable amount of resources, such as function

evaluations or computation time (Neumaier 2004; Fomin

and Kaski 2013; Woeginger 2003). This guarantee often

requires sufficient a priori information about the objective

function, e.g., the best possible objective function value.

Without available a priori information, the stopping crite-

rion needs to be defined by a heuristic approach, which

softens the guarantee of solving to optimality. Well-Known

exact algorithms are based on the branching principle, i.e.,

splitting a known problem into smaller sub-problems,

which each can be solved to optimality. The Branch-and-

bound algorithm is an example for exact algorithms

(Lawler and Wood 1966).

2.2 Heuristics and metaheuristics

In modern computer-aided optimization, heuristics and

metaheuristics are established solution techniques.

Although presenting solutions that are not guaranteed to be

optimal, their general applicability and ability to present

fast sufficient solutions make them very attractive for

applied optimization. Their inventors built them upon the

principle of systematic search, where solution candidates

are evaluated and rewarded with a fitness. The term fitness

A new taxonomy of global optimization algorithms

123

has its origins in evolutionary computation, where the fit-

ness describes the competitive ability of an individual in

the reproduction process. The fitness is in its purest form

the objective function value y ¼ f ðxÞ concerning the opti-

mization goal, e.g., in a minimization problem, smaller

values have higher fitness than larger values. Moreover, it

can be part of the search strategy, e.g., scaled or adjusted

by additional functions, particular for multi-objective or

constrained optimization.

Heuristics can be defined as problem-dependent algo-

rithms, which are developed or adapted to the particulari-

ties of a specific optimization problem or problem

instance (Pearl 1985). Typically, heuristics systematically

perform evaluations, although utilizing stochastic ele-

ments. Heuristics use this principle to provide fast, not

necessarily exact (i.e., not optimal) numerical solutions to

optimization problems. Moreover, heuristics are often

greedy to provide fast solutions but get trapped in local

optima and fail to find a global optimum.

Metaheuristics can be defined as problem independent,

general-purpose optimization algorithms. They apply to a

wide range of problems and problem instances. The term

meta describes the higher-level general methodology,

which is utilized to guide the underlying heuristic strat-

egy (Talbi 2009).

They share the following characteristics (Boussaı̈d et al.

2013):

• The algorithms are nature-inspired; they follow certain

principles from natural phenomena or behaviors (e.g.,

biological evolution, physics, social behavior).

• The search process involves stochastic parts; it utilizes

probability distributions and random processes.

• As they are meant to be generally applicable solvers,

they include a set of control parameters to adjust the

search strategy.

• They do not rely on the information of the process

which is available before the start of the optimization

run, so-called a priori information. Still, they can

benefit from such information (e.g., to set up control

parameters)

During the remainder of this article, we will focus on

heuristic, respectively, metaheuristic algorithms.

2.3 Surrogate-based optimization algorithms

Surrogate-based optimization algorithms are designed to

process expensive and complex problems, which arise from

real-world applications and sophisticated computational

models. These problems are commonly black-box, which

means that they only provide very sparse domain knowl-

edge. Consequently, problem information needs to be

exploited by experiments or function evaluations.

Surrogate-based optimization is intended to model avail-

able, i.e., evaluated, information about candidate solutions

to utilize it to the full extent. A surrogate model is an

approximation which substitutes the original expensive

objective function, real-world process, physical simulation,

or computational process during the optimization. In gen-

eral, surrogates are either simplified physical or numerical

models based on knowledge about the physical system, or

empirical functional models based on knowledge acquired

from evaluations and sparse sampling of the parameter

space (Søndergaard et al. 2003). In this work, we focus on

the latter, so-called data-driven models. The terms surro-

gate model, meta-model, response surface model and also

posterior distribution are used synonymously in the com-

mon literature (Mockus 1974; Jones 2001; Bartz-Beielstein

and Zaefferer 2017). We will briefly refer to a surrogate

model as a surrogate. Furthermore, we assume that it is

crucial to distinguish between the use of an explicit sur-

rogate of the objective function and general model-based

optimization (Zlochin et al. 2004), which additionally

refers to methods, where a statistical model is used to

generate new candidate solutions (cf. Sect. 3.2). We thus

distinguish between the two different terms surrogate-

based and model-based to avoid confusion. Another term

present in the literature is surrogate-assisted optimization,

which mostly refers to the application of surrogates in

combination with population-based evolutionary compu-

tation (Jin 2011).

Important publications featuring overviews or surveys

on surrogates and surrogate-based optimization were pre-

sented by Sacks et al. (1989), Jones (2001), Queipo et al.

(2005), Forrester and Keane (2009). Surrogate-based

optimization is commonly defined for but not limited to the

case of complex real-world optimization applications. We

define a typical surrogate-based optimization process by

three layers, where the first two are considered as problem

layers, while the latter one is the surrogate, i.e., an

approximation of the problem layers. We could transfer the

defined layers to different computational problems with

expensive function evaluations, such as complex algo-

rithms or machine learning tasks.

Each layer can be the target of optimization or used to

retrieve information to guide the optimization process.

Figure 1 illustrates the different layers of objective func-

tions and the surrogate-based optimization process for real-

world problems. In this case, the objective function layers,

from the bottom up, are:

L1 The real-world application f1ðxÞ, given by the

physical process itself or a physical model. Direct

optimization is often expensive or even impossible,

due to evaluations involving resource-demanding

prototype building or even dangerous experiments.

J. Stork et al.

123

L2 The computational model f2ðxÞ, given by a simula-

tion of the physical process or a complex computa-

tional model, e.g., a computational fluid dynamics

model or structural dynamics model. A single

computation may take minutes, hours, or even weeks

to compute.

L3 The surrogate sðxÞ, given by a data-driven regression

model. The accuracy heavily depends on the under-

lying surrogate type and amount of available infor-

mation (i.e., function evaluations). The optimization

is, compared to the other layers, typically cheap.

Surrogates are constructed either for the real-world

application f1ðxÞ or the computational model f2ðxÞ.
Furthermore, the surrogate-based optimization cycle

includes the optimization process itself, which is given by

an adequate optimization algorithm for the selected

objective function layer. No surrogate-based optimization

is performed, if the optimization is directly applied to f1ðxÞ
or f2ðxÞ. The surrogate-based optimization uses f1ðxÞ or

f2ðxÞ for verification of promising solution candidates.

Moreover, the control parameters of the optimization

algorithm or even the complete optimization cycle,

including the surrogate modeling process, can be tuned.

Each layer imposes different evaluation costs and

fidelities: the real-world problem is the most expensive to

evaluate, but has the highest fidelity, while the surrogate is

the cheapest to evaluate, but has a lower fidelity. The main

benefit of using surrogates is thus the reduction of needed

expensive function evaluations on the objective function

f1ðxÞ or f2ðxÞ during the optimization. The studies by

Loshchilov et al. (2012), Marsden et al. (2004), Ong et al.

(2005) and Won and Ray (2004) feature benchmark com-

parisons of surrogate-based optimization. Nevertheless, the

model construction and updating of the surrogates also

require computational resources, as well as evaluations for

verification on the more expensive function layers. An

advantage of surrogate-based optimization is the avail-

ability of the surrogate model, which can be utilized to gain

further global insight into the problem, which is particu-

larly valuable for black-box problems. The surrogate can

be utilized to identify important decision variables or

visualize the nature of the problem, i.e., the fitness

landscape.

2.4 Meta-optimization and hyperheuristics

Meta-optimization or parameter tuning (Mercer and

Sampson 1978) describes the process of finding the optimal

parameter set for an optimization algorithm. It is also an

optimization process itself, which can become very costly

in terms of objective function evaluations, as they are

required to evaluate the parameter set of a specific algo-

rithm. Hence, particular surrogate-model based algorithms

have become very successful meta-optimizer (Bartz-

Beielstein et al. 2005). Figure 1 shows where the meta-

optimization is situated in an optimization process. If the

algorithm adapts parameters during the active run of opti-

mization, it is called parameter control (Eiben et al. 1999).

Algorithm parameter tuning and control is further dis-

cussed in Sect. 3.2.

A hyperheuristic (Cowling et al. 2000, 2002) is a high-

level approach that selects and combines low-level

approaches (i.e., heuristics, elements from metaheuristics),

to solve a specific problem or problem class. It is an

optimization algorithm that automates the algorithm design

process by searching an ample space of pre-defined algo-

rithm components. A hyperheuristic can also be utilized in

an online fashion, e.g., trying to find the most suitable al-

gorithm at each state of a search process (Vermetten et al.

(optional)
meta-

optimization

optimization algorithm

s(x)s(x) surrogate model
data-driven model

f1(x)f1(x) real world process
device / business task

(optional) approximation / data stream

f2(x)f2(x) computational model
expert model / data platform

(optional) parameter tuning (optional) optimization

robot
behavioral

model

 industrial robot

physics
simulator

market sales

business data
platform

prediction
model

fast
heuristic

global
metaheuristic

ExamplesArchitecture

Fig. 1 A surrogate-based optimization process with the different

objective function layers: real-world process, computational model,

and surrogate. The arrows mark different possible data/application

streams. Dotted arrows are in the background, i.e., they pass through

elements; each connection always terminates with an arrow. Surro-

gates are typically either models for the simulation or real-world

function. Direct optimization of the problem layers is also possible.

Two examples of processes are given to outline the use of the

architecture in a business data and robot control task

A new taxonomy of global optimization algorithms

123

2019). We regard hyperheuristics as hybrid algorithms (cf.

Sect. 4.5).

3 A new taxonomy

The term taxonomy is defined as a consistent procedure or

classification scheme for separating objects into classes or

categories based on specific features. The term taxonomy is

mainly present in natural science for establishing hierar-

chical classifications. A taxonomy fulfills the task of dis-

tinction and order; it provides explanations and a greater

understanding of the research area through the identifica-

tion of coherence and the differences between the classes.

Several reasons drive our motivation for a new taxon-

omy: the first reason (I) is that considering available GO

taxonomies (Sect. 3.1, cf. Fig. 2), we can conclude that

during the last decades, several authors developed new

taxonomies for optimization algorithms. However, new

classes of algorithms have become state-of-the-art in

modern algorithm design, particularly model-based, sur-

rogate-based, and hybrid algorithms dominate the field.

Existing taxonomies of GO algorithms do not reflect this

situation. Although there are surveys and books which

handle the broad field of optimization and give general

taxonomies, they are outdated and lack the integration of

the new designs. Available up-to-date taxonomies often

address a particular subfield of algorithms and discuss them

in detail. However, a generalized taxonomy, which

includes the above-described approaches and allows to

connect these optimization strategies, is missing.

This gap motivated our second reason (II) the develop-

ment of a generalization scheme for algorithms. We argue

that the search concepts of many algorithms are built upon

each other and are related. While the algorithms have

apparent differences in their strategies, they are not overall

different. Many examples for similar algorithms can be

found in different named nature-inspired metaheuristics

that follow the same search concepts. However, certain

elements are characteristic of algorithms, which allow us to

define classes based on their search elements. Even dif-

ferent classes share a large amount of these search ele-

ments. Thus our new taxonomy is based on a generalized

scheme of five crucial algorithm design elements

(Sect. 3.2, cf. Fig. 3), which allows us to take a bottom to

top approach to differentiate, but also connect the different

algorithm classes. The recent developments in hybrid

algorithms drive the urge to generalize search strategies,

where we no longer use specific, individual algorithms, but

combinations of search elements and operators of different

classes to find and establish new strategies, which cannot

merely be categorized.

Our third reason (III) is the importance of simplicity.

Our new taxonomy is not only intended to divide the

algorithms into classes, but also to provide an intuitive

understanding of the working mechanisms of each algo-

rithm to a broad audience. To support these ideas, we will

draw analogies between the algorithm classes and the

behavior of a human-like individual in each of the

descriptive class sections.

Our last reason (IV) is that we intend our taxonomy to

be helpful in practice. A common issue is the selection of

an adequate optimization algorithm if faced with a new

problem. Our algorithm classes are connected by individual

properties, which allows us to utilize the new taxonomy to

propose suitable algorithm classes based on a small set of

problem features. These suggestions, in detail discussed in

Sect. 5 and illustrated in Fig. 4 shall help users to find best

practices for new problems.

3.1 History of taxonomies

In the literature, one can find several taxonomies trying to

shed light on the vast field of optimization algorithms. The

identified classes are often named by a significant feature

of the algorithms in the class, with the names either being

informative or descriptive. For example, Leon (1966)

presented one of the first overviews on global optimization.

It classified algorithms into three categories: 1. Blind

search, 2. Local search 3. Non-local search. In this con-

text, blind search refers to simple search strategies that

select the candidates at random over the entire search

space, but following a built-in sequential selection strategy.

During the local search, new candidates are selected only

in the immediate neighborhood of the previous candidates,

which leads to a trajectory of small steps. Finally, non-

local search allows to escape from local optima and thus

enables a global search. Archetti and Schoen (1984)

extends the above scheme by also adding the class of de-

terministic algorithms, i.e., those who are guaranteed to

find the global optimum with a defined budget. Further-

more, the paper stands out in establishing a taxonomy,

which for the first time includes the concepts to construct

surrogates, as they describe probabilistic methods based on

statistical models, which are iteratively utilized to perform

the search. Törn and Zilinskas (1989) reviewed existing

classification schemes and presented their classifications.

They made that the most crucial distinction between two

non-overlapping main classes, namely those methods with

or without guaranteed accuracy. The main new feature of

their taxonomy is the clear separation of the heuristic

methods in those with direct and indirect objective func-

tion evaluation. Mockus (1974) also discussed the use of

Bayesian optimization. Today’s high availability of com-

putational power did not exist; therefore, Törn and

J. Stork et al.

123

Zilinskas (1989) concluded the following regarding Baye-

sian models and their applicability for (surrogate-based)

optimization:

Even if it is very attractive, theoretically it is too

complicated for algorithmic realization. Because of

the fairly cumbersome computations involving oper-

ations with the inverse of the covariance matrix and

complicated auxiliary optimization problems the

resort has been to use simplified models.

2010 Burke Hyperheuristic

2002 Talbi

1966 Leon Blind search

1995 Arora

2004 Zlochin

2001 Jones

2004 Neumaier

1984 Archetti

and ilinskas

1992 ilinskas

Guaranteed
accuracy

Indirect
methods

Approximating
objective
function

Clustering
methods

Covering
methods

Deterministic
methods

Random
sampling

Random search methods
Stochastic

model
Covering
methods

Random search methods

Non-Heuristic
Surrogate

Optimization

Direct methods

Heuristic and Metaheuristic

Single-Solution
Population-

Based

Interpolating
or Non-

Interpolating

Instance-Based Model-Based

Complete and
rigorous

Deterministic Stochastic

Incomplete and Asymptotically Complete

Probabilistic methods

Local search
Non-local

search

Hyperheuristic
and Hybrid

2019 Stork Exact
Hill-Climber Trajectory SurrogatePopulation Hybrid

HybridExact Heuristic and Metaheuristic

2011 Jin Surrogate-Assisted

Fig. 2 Global optimization taxonomy history. Information from Leon

(1966), Archetti and Schoen (1984), Törn and Zilinskas (1989),Arora

et al. (1995), Jones (2001), Talbi (2002), Neumaier (2004), Zlochin

et al. (2004),Burke et al. (2010), Jin (2011) and Boussaı̈d et al. (2013)

are illustrated and compared. Different distinctions between the large

set of algorithms were drawn. A comprehensive taxonomy is missing

and introduced by our new taxonomy, which concludes the diagram

and is further presented in Sect. 3

A new taxonomy of global optimization algorithms

123

Still, we find the scheme of dividing algorithms into non-

heuristic (or exact), random (or stochastic) and further

surrogate-based frequently. Several following taxonomies

added different algorithm features to their taxonomies,

such as metaheuristic approaches (Arora et al. 1995),

surrogate-based optimization (Jones 2001), non-heuristic

methods (Neumaier 2004), hybrid methods (Talbi 2002),

direct search methods (Audet 2014; Kolda et al. 2003),

model-based optimization (Zlochin et al. 2004), hyper-

heuristics (Burke et al. 2010), surrogate-assisted algo-

rithms (Jin 2011), nature-inspired methods (Rozenberg

et al. 2011), or population-based approaches (Boussaı̈d

et al. 2013). We created an overview of different selected

taxonomies and put them into the comparison in Fig. 2.

3.2 The four elements of algorithm design

Any modern optimization algorithm, as defined in Sect. 2,

can be reduced to the four key search strategy elements

Initialization, Generation and Selection. A fourth element

controls all these key elements: the Control of the different

functions and operators in each element. The underlying

sophisticated
initialization, population,

variation, selection,
adaptive, self-adaptive,

online control

single candidate
chosen at random or by function

knowledge

single/multiple candidates
based on last best/selected

improving the
best

single best
candidate

for next iterate

basic
initialization,

variation,
adaptive

weighted/
constrained best

single best
selected

candidate for next
iterate

advanced
initialization,

variation step size,
adaptive,

selection function

set of candidates
chosen at random or by function knowledge or by design of experiments

population
based on selected set

distribution
based on adaptive model

surrogate
based on

optimization of

surrogate

 multi-stage
single /

distribution /
surrogate /

algorithm components

best set
selected due to
(probabilistic)

selection function

sophisticated
sampling methods, population,
variation, adaptive, surrogate
selection, optimizer selection

most sophisticated
requires algorithm control

hyper-control parameters for
every selected algorithm

component

combined set
improving, predicted, selected

set

best predicted
 based

criteria for the
surrogate

Initialization

Generation

Selection

Control

Hill-Climber Trajectory Population HybridSurrogate
Class

population or
distribution

combined with

surrogate

best and
predicted set

 surrogate-
assisted
selection
function

algorithm
components

chosen at random

Fig. 3 Overview of defining algorithm features per search element and class. Overlapping features indicate the close connection between the

individual classes

Hill-Climber
Line Search,

Quasi-Newton,
Iterative Hill Climber

Trajectory
Simulated Annealing,

Tabu-Search,
Neighborhood Search

Surrogate
Bayesian Optimization,

E cient Global
Optimization

Population
 Evolutionary Algorithms,

Particle Swarm Optimization,
Estimation of Distribution

Hybrid
Memetic

Algorithms,
Hyperheuristics

very low

known / obtainable known / unknown / black box

computational
complexity

and
algorithm

complexity

landscape
properties

function
properties

unimodal multi-modal,
dynamic

uni/multi-modal, noisy,
multi-objective,

available
evaluation

budget

low to medium medium to high
high to extremely

high
medium to

extremly high

small medium to high high to very high very smallsmall to high

+ expensive

Fig. 4 Algorithm selection guideline. The figure connects landscape and function properties, as well as the available budget to a

suitable algorithm class and outlines their computational complexity

J. Stork et al.

123

terminology is generic and based on typical concepts from

the field of evolutionary algorithms. We could easily

exchange it with wording from other standard algorithm

classes (e.g., evaluate = test/trial, generate=produce/vari-

ate). Algorithm 3.1 displays the principal elements and the

abstracted fundamental structure of optimization algo-

rithms (Bartz-Beielstein and Zaefferer 2017). We could

map this structure and elements to any modern optimiza-

tion algorithm. Even if the search strategy is inherently

different or elements do not follow the illustrated order or

appear multiple times per iteration.

The initialization of the search defines starting locations

or a schema for the initial candidate solutions. Two com-

mon strategies exist:

1. If there is no available a priori knowledge about the

problem and its search space, the best option is to use

strategically randomized starting points. The initial

distribution target is often exploration, i.e., a broad

distribution of the starting points if possible. Particu-

larly interesting for surrogate-based optimization are

systematic initialization schemes by methods from the

field of design of experiments (Crombecq et al. 2011;

Bossek et al. 2020).

2. Suppose domain knowledge or other a priori informa-

tion is available, such as information from the data or

process from previous optimization runs. In that case, it

is beneficial to utilize this information, e.g., by using a

selection of these solutions, such as these with the best

fitness. However, known solutions can also bias the

search towards them. Thus, e.g., restart strategies

intentionally discard them. In surrogate-based opti-

mization, the initial modeling can use available data.

The initial candidates have a large impact on the balance

between exploration and exploitation. Space-filling designs

with large amounts of random candidates or sophisticated

design of experiments methods will lead to an initial

exploration of the search space. Starting with a single

candidate will presumably lead to an exploitation of the

neighborhood of the selected candidate location. Hence,

algorithms using several candidates are in general more

robust, while a single candidate algorithms are sensitive to

the selection of the starting candidate, particular in multi-

modal landscapes. Multi-start strategies can further

increase the robustness and are particularly common for

single-candidate algorithms, and also frequently recom-

mended for population-based algorithms (Hansen et al.

2010b).

The generation during the search process defines the

methods for finding new candidates, with particular regard

on how they use available or obtained information about

the objective function. A standard approach is the variation

of existing observations, as it utilizes, and to a certain

extent preserves, the information of previous iterations.

Even by the simplest hill-climber class algorithms, which

do not require any global information or stored knowledge

of former iterations (Sect. 4.1), use the last obtained

solution to generate new candidate(s). Sophisticated algo-

rithms generate new candidates based on exploited and

stored global knowledge about the objective function and

fitness landscape. This knowledge is stored by either

keeping an archive of all available or selected observations

or implicitly by using distribution or data models of

available observations. Another option to generate new

candidates is combining information of multiple candidates

by dedicated functions or operators, particular present in

the trajectory class (Sect. 4.2). The exact operators for

generation and variation of candidate solutions are various

and an essential aspect of keeping the balance between

exploration and exploitation in a search strategy.

The selection defines the principle of choosing the

solutions for the next iteration. We use the term selection,

which has its origins in evolutionary computation. Besides

the most straightforward strategy of choosing the solu-

tion(s) with the best fitness, advanced selection strategies

have emerged, which are mainly present in metaheuris-

tics (Boussaı̈d et al. 2013). These selection strategies are

A new taxonomy of global optimization algorithms

123

particularly common in algorithms with several candidates

per generation step; thus, evolutionary computation intro-

duced the most sophisticated selection methods (Eiben and

Smith 2015). The use of absolute differences in fitness or

their relative difference is the most common strategy and

called ranked selection, i.e., based on methods such as

truncation, tournament or proportional selection.

The Control parameters determine how the search can

be adapted and improved by controlling the above men-

tioned key elements. We distinguish between internal and

external parameters: External parameters, also known as

offline parameters, can be adjusted by the user and need to

be set a priori to the optimization run. Typical external

parameters include the number of candidates and settings

influencing the above mentioned key elements. Besides

standard theory-based defaults (Schwefel 1993), they are

usually set by either utilizing available domain knowledge,

extensive a priori benchmark experiments (Gämperle et al.

2002), or educated guessing. Sophisticated meta-opti-

mization methods were developed to exploit the right

parameter settings in an automated fashion. Well-known

examples are sequential parameter tuning (Bartz-Beielstein

et al. 2005), iterated racing for automatic algorithm tun-

ing (López-Ibáñez et al. 2016), bonesa (Smit and Eiben

2011) or SMAC (Hutter et al. 2011). In comparison to

external parameters, internal ones are not meant to be

changed by the user. They are either fixed to an absolute

value, which is usually based on physical constants or

extensive testing by the authors of the algorithm, or are

adaptive, or even self-adaptive. Adaptive parameters are

changed during the search process based on fixed strategies

and exploited problem information (Eiben et al. 1999)

without user influence. Self-Adaptive parameters are opti-

mized during the run, e.g., by including them into the

candidate vector x as an additional decision value. Algo-

rithms using adaptive schemes tend to have better gener-

alization abilities than those with fixed parameters. Thus,

they are especially successful for black-box problems,

where no prior information about the objective function

properties is available to setup parameters in advance (-

Hansen et al. 2003). In general, the settings of algorithm

control parameters directly affect the balance between

exploration and exploitation during the search and are

crucial for the search strategies and their performance.

Further, the evaluation step computes the fitness of the

candidates. The evaluation is a crucial aspect, as it defines

how and which information about any candidate solution is

gathered by querying the objective function, which can

significantly influence the search strategy and also the

utilized search operators. However, as important aspects of

the evaluation are mostly problem-dependent, such as

noise, constraints and multiple objectives. The handling of

these aspects sometimes requires unique strategies,

operators, or even specialized algorithm designs. These

unique algorithms will not be covered in our taxonomy.

However, often strategies for handling these particular

characteristics are enhanced versions of in this taxonomy

presented algorithms, e.g., for handling multiple objectives.

Multi-objective problems include several competing goals,

i.e., an improvement in one objective leads to a deterio-

ration in another objective. Thus, no single optimal solu-

tion is available, but a set of equivalent quality, the non-

dominated solutions, or so-called Pareto-set, where rea-

sonable solutions need to be selected from (Fonseca and

Fleming 1993; Naujoks et al. 2005). A so-called decision-

maker is needed to select the final solutions, which is often

the user himself. Further, Multi-objective algorithms can

include special search operators, such as hyper-volume-

based selection or non-dominated sorting for rank-based

selection (Deb et al. 2002; Beume et al. 2007). While most

computer experiments are deterministic, i.e., iterations

using the same value set for the associated decision vari-

ables should deliver the same results, real-world problems

are often non-deterministic. They include non-observable

disturbance variables and stochastic noise. Typical noise

handling techniques include multiple evaluations of solu-

tions to reduce the standard deviation and special sampling

techniques. The interested reader can find a survey on noise

handling by Arnold and Beyer (2003). Moreover, opti-

mization problems frequently include different constraints,

which we need to consider during the optimization process.

Constraint handling techniques can be directly part of the

optimization algorithm, but most algorithms are designed

to minimize the objective function and add constraint

handling on top. Thus, algorithms integrate it by adjusting

the fitness, e.g., by penalty terms. Different techniques for

constraint handling are discussed by Coello (2002) and

Arnold and Hansen (2012).

4 The definition of intuitive algorithm
classes

In his work about evolution strategies, Rechenberg (1994)

illustrated a visual approach to an optimization process: a

mountaineer in an alpine landscape, attempting to find and

climb the highest mountain. The usage of analogies to the

natural world is a valuable method to explain the behavior

of search algorithms. In the area of metaheuristics, the

behavior of the nature and animals inspired the search

procedure of the algorithms: Evolutionary algorithms fol-

low the evolution theory (Rechenberg 1994; Eiben and

Smith 2015); particle swarm optimization (Kennedy and

Eberhart 1995; Shi and Eberhart 1998) utilizes a strategy

similar to the movement of bird flocks; ant colony opti-

mization (Dorigo et al. 2006) mimics, as the name

J. Stork et al.

123

suggests, the ingenious pathfinding and food search prin-

ciples of ant populations.

We take up the idea of optimization processes being

human-like individuals and use it in the definition of our

extended class names: the mountaineer, sightseer, team,

surveyor and chimera. This additional naming shall

accomplish the goal of presenting an evident and

straightforward idea of the search strategies of the algo-

rithms in the associated class.

4.1 Hill-climbing class: ‘‘The Mountaineer’’

Intuitive Description 1 (The Mountaineer) The moun-

taineer is a single individual who hikes through a land-

scape, concentrating on achieving his ultimate goal: finding

and climbing the highest mountain. He is utterly focussed

on his goal to climb up that mountain. So while he checks

different paths, he will always choose the ascending way

and not explore the whole landscape.

Hill-Climbing algorithms focus their search strategy on

greedy exploitation with minimal exploration. Hence, this

class encompasses fundamental optimization algorithms

with direct search strategies, which include gradient-based

algorithms as well as deterministic or stochastic hill-

climbing algorithms. Gradient-based algorithms, also

known as first-order methods, are in first case applicable to

differentiable functions, where the gradient information is

available. If the gradient is not directly available, it can be

approximated or estimated, for example, by stochastic

gradient descent (SGD) algorithms (Ruder 2016).

These algorithms have, by design, fast convergence to a

local optimum situated in a region of attraction and com-

monly no explicit strategy for exploration. Overviews of

associated algorithms were presented by Lewis et al.

(2000) and Kolda et al. (2003). Common algorithms

include the quasi-Newton Broyden-Fletcher–Goldfarb-

Shanno algorithm (Shanno 1970), conjugate gradients

(CG) (Fletcher 1976), the direct search algorithm Nelder-

Mead (Nelder and Mead 1965), and stochastic hill climbers

such as the (1?1)-Evolution Strategy (Rechenberg 1973;

Schwefel 1977).

Famous SGD algorithms are adaptive moment estima-

tion (ADAM) (Kingma and Ba 2014) and the adaptive

gradient algorithm (AdaGrad) (Duchi et al. 2011). They

are frequently applied in machine learning, particularly for

optimizing neural network weights with up to millions of

parameters.

As this class defines fundamental search strategies, hill-

climbers are often part of sophisticated algorithms as a fast-

converging local optimizer. Hill-climbers do not utilize

individual operators for the initialization of the single

starting point. Thus, it is typically selected at random in the

valid search space or based on prior knowledge.

The variation of the last observed selected candidate

generates new candidates, commonly in the current solu-

tion’s vicinity. For example, the stochastic hill climber

utilizes random variation with a small step size compared

to the range of the complete search interval. Gradient-

based methods directly compute or approximate the gra-

dients of the objective function to find the best direction

and strength for the variation. Algorithms such as Nelder-

Mead create new candidates by computing a search

direction using simplexes.

The most common selection methods are elitist strate-

gies, which evaluate the new candidate, compare it to the

old solution, and keep the one with the best fitness as a new

solution. Always selecting the best is known as a greedy

search strategy, as it tries to improve as fast as possible.

This greedy strategy leads to the outlined hill-climbing

search which performs a trajectory of small, fitness-im-

proving steps, which forms in the ideal case a direct line to

the nearest optimum. In general, these algorithms search

locally for an optimum and do not exploit or use global

function information.

The most critical control parameter is the variation step

size, which directly influences the speed of convergence.

As a result of this, the state of the art is to use an adaptive

variation step size that changes online during the search,

often based on previous successful steps, for example as

defined in the famous 1/5 success rule (Rechenberg 1973).

4.2 Trajectory class: ‘‘The Sightseer’’

Intuitive Description 2 (The Sightseer) The intuitive idea

of this class is a single hiker looking for interesting places.

During the search, the sightseer takes into account that

multiple places of interest exist. It thus explores the search

space or systematically visits areas to gather information

about multiple locations and utilizes this to find the most

desired ones.

Trajectory class algorithms still focus on exploitation

but are supported by defined exploration methods. This

class encompasses algorithms that utilize information from

consecutive function evaluations.

They are the connecting link between the hill-climbing

and population class. While trajectory algorithms are a step

towards population algorithms and also allow the sampling

of several solutions in one iteration, they use the principle

of initializing and maintaining a single solution. This

solution is the basis for variation in each iteration. Again,

this variation forms a trajectory in the search space over

consecutive iterations, similar to the hill-climbing class.

Thus these methods are known as trajectory methods

A new taxonomy of global optimization algorithms

123

(Boussaı̈d et al. 2013). While the initialization and gener-

ation of the trajectory class are similar to those of the hill-

climbing class, the main differences can be found during

the selection, as they utilize operators to guide the search

process in a global landscape in specific directions. Two

different strategies can be differentiated, which define two

subclasses:

(i) The exploring trajectory class utilizes functions to

calculate a probability of accepting a candidate as

the (current) solution.

(ii) The systematic trajectory class utilizes a separation

of the search space into smaller sub-spaces to guide

the search into specific directions.

These different strategies are susceptible to the correct

parametrization, which need to be selected adequate to the

underlying objective function.

4.2.1 Exploring trajectory algorithms

The exploring trajectory subclass encompasses algorithms

that implement selection operators to balance exploration

and exploitation to enable global optimization. The intro-

duction of selection functions that allow to expand the

search space and escape the region of attraction of a local

optimum achieves exploration. Simulated annealing

(SANN) (Kirkpatrick et al. 1983), which is known to be a

fundamental contribution to the field of metaheuristic

search algorithms, exemplifies this class. The continuous

version (Goffe et al. 1994; Siarry et al. 1997; Van

Groenigen and Stein 1998) of the SANN algorithm extends

the iterated stochastic hill-climber. It includes a new ele-

ment for the selection, the so-called acceptance function. It

determines the probability of accepting an inferior candi-

date as a solution by utilizing a parameter called temper-

ature, in analogy to metal annealing procedures. This

dynamic selection allows escaping local optima steps by

accepting movement in the opposite direction of

improvement, which is the fundamental difference to a hill-

climber and ultimately allows the global search. At the end

of each iteration, a so-called cooling operator adapts the

temperature. This operator can be used to further balance

the amount of exploration and exploitation during the

search (Henderson et al. 2003). A common approach is to

start with a high temperature and steadily reduce T

according to the number of iterations or to utilize an

exponential decay of T. This steady reduction of T leads to

a phase of active movement and thus exploring in the early

iterations, while with decreasing T, the probability of

accepting inferior candidates reduces. With approaching a

T value of zero, the behavior becomes similar to an itera-

tive hill-climber. Modern SANN implementations integrate

self-adaptive cooling-schemes which use alternating phases

of cooling and reheating (Locatelli 2002). These allow

alternating phases of exploration and exploitation but

require sophisticated control.

4.2.2 Systematic trajectory algorithms

This subclass encompasses algorithms, which base their

search on a space partitioning utilizing the exposed

knowledge of former iterations. They create sub-spaces

that are excluded from generation and selection, or at-

tractive sub-spaces, where the search is focused on. These

search space partitions guide the search by pushing can-

didate generation to new promising or previous unexplored

parts of the search space. An outstanding paradigm for this

class is Tabu Search (Glover 1989). A so-called tabu list

contains the last successful candidates and defines a sub-

space of all evaluated solutions. In the continuous version,

Siarry and Berthiau (1997), Hu (1992) and Chelouah and

Siarry (2000), small (hypersphere or hyperrectangle)

regions around the candidates are utilized. The algorithm

will consider these solutions or areas as forbidden for

future searches, i.e., it selects no candidates situated in

these regions as solutions. This process shall ensure to

move away from known solutions and prevents identical

cycling of candidates and getting stuck in local optima. The

definition of the tabu list parameters can control explo-

ration and exploitation by, e.g., by the number of elements

or size of areas.

The areas of search can also be pre-defined, such as in

variable neighborhood search (VNS) (Hansen and Mlade-

novic 2003; Hansen et al. 2010c; Mladenović et al. 2008).

The search strategy of VNS is to perform sequential local

searches in these sub-spaces to exploit their local optima.

The idea behind this search strategy is that by using an

adequate set of sub-spaces, the chance of exploiting a local

optimum, which is near the global optimum, increases.

4.3 Population class: ‘‘The Team’’

Intuitive Description 3 (The Team) The intuitive idea of

this class is a group of individuals, which team up to

achieve their mutual goal together. They split up to explore

different locations and share their knowledge with other

members of the team.

Population class algorithms utilize distributed explo-

ration and exploitation. The idea of initializing, variation,

and selection of several contemporary candidate solutions

defines this class. The algorithms are commonly meta-

heuristics, whose search concepts follow processes found

in nature. Moreover, it includes algorithms building upon

the population-based concept by utilizing models of the

underlying candidate distributions. Due to utilizing a

J. Stork et al.

123

population, the generation and selection strategies of these

algorithms differ significantly from the hill-climber und

trajectory class. We subdivide this class into the regular

population and model-based population algorithms, which

particularly differ in how they generate new candidates

during the search:

(i) The regular population (Sect. 4.3.1) generate and

maintain several candidates with specific popula-

tion-based operators.

(ii) The model-based population (Sect. 4.3.2) generate

and adapt models to store and process information.

4.3.1 Regular population algorithms

Well-known examples of this class are particle swarm

optimization (PSO) (Kennedy and Eberhart 1995; Shi and

Eberhart 1998) and different evolutionary algorithms (EA).

We regard EAs as state of the art in population-based

optimization, as their search concepts are dominating for

this field. Nearly all other population-based algorithms use

similar concepts and are frequently associated with EAs.

Fleming and Purshouse (2002) go as far to state:

In general, any iterative, population-based approach

that uses selection and random variation to generate

new solutions can be regarded as an EA.

Evolutionary algorithms follow the idea of evolution,

reproduction, and the natural selection concept of survival

of the fittest. In general, the field of EAs goes back to four

distinct developments, evolution strategies (ES) (Rechen-

berg 1973; Schwefel 1977), evolutionary programming

(Fogel et al. 1966), genetic algorithms (Holland 1992), and

genetic programming (Koza 1992). The naming of the

methods and operators matches with their counterparts

from biology: candidates are individuals who can be

selected to take the role of parents, mate and recombine to

give birth to offspring. The population of individuals is

evolved (varied, evaluated, and selected) over several

iterations, so-called generations, to improve the solutions.

Different overview articles shed light on the vast field of

evolutionary algorithms (Back et al. 1997; Eiben and

Smith 2003, 2015).

EAs generate new solutions typically by variation of a

selected subset of the entire population. Typically, com-

petition-based strategies, which also often includes proba-

bilistic elements, select the subsets. Either random

variation of this subpopulation or recombination by

crossover, which is the outstanding concept of EAs, gen-

erates new candidates. Recombination partly swaps the

variables of two or more candidates, aggregated or com-

bined to create new candidate solutions.

The population-based selection strategies allow picking

solutions with inferior fitness for the variation process,

which allows exploration of the search space. Several

selection strategies exist. For instance, in roulette wheel

selection, the chance of being selected is proportional to

the ranking while all chances sum up to one. A spin of the

roulette wheel chooses each candidate, where the individ-

ual with the highest fitness also has the highest chance of

being selected. Alternatively, in tournament selection,

different small subsets of the population are randomly

drawn for several tournaments. Within these tournaments,

the candidates with the best fitness are selected based on

comparisons to their competitors. This competition-based

selection also allows inferior candidates to win their small

tournament and participate in the variation.

EAs usually have several parameters, such as the

selection intensity (i.e., the percent of truncation), variation

step size, or recombination probability. Parameter settings,

in particular adaptive and self-adaptive control for evolu-

tionary algorithms is discussed in Angelin (1995), Eiben

et al. (1999), Lobo et al. (2007), Doerr et al. (2020) and

Papa and Doerr (2020).

4.3.2 Model-based population algorithms

The model-based population class encompasses algorithms

that explicitly use mathematical or statistical models of the

underlying candidates. These algorithms generally belong

to the broad field of EAs (Sect. 4.3.1), and use similar

terminology and also operators.

Estimation of distribution algorithms (EDAs) are a well-

known example for this class (Larrañaga and Lozano 2001;

Hauschild and Pelikan 2011). Compared to a regular pop-

ulation-based approach, a distribution model of selected

promising candidates is learned in each iteration, which is

then utilized to sample new candidates. The sampling

distribution will improve and likely converge to generate

only optimal or near-optimal solutions over the iterations.

EDAs utilize models from univariate, over bivariate to

multivariate distributions, e.g., modeled by Bayesian net-

works or Gaussian distributions with typical parameters,

such as mean, variance, and covariance of the modeled

population. The search principle of EDAs was first defined

for discrete domains and later successfully extended for

continuous domains (Hauschild and Pelikan 2011). Popular

examples for EDAs are population-based incremental

learning (PBIL) (Baluja 1994; Gallagher et al. 1999), the

estimation of Gaussian networks algorithm (EGNA) (Lar-

rañaga et al. 1999), the extended compact genetic algo-

rithm (eCGA) (Harik 1999), and the iterated density

estimation evolutionary algorithm (IDEA) (Bosman and

Thierens 2000). The surrogate class distinction is that the

underlying learned distribution models are directly utilized

A new taxonomy of global optimization algorithms

123

to sample new candidates, instead of substituting the

objective function.

A well-known and successful model-based algorithm is

the covariance matrix adaption—evolution strategy (CMA-

ES) (Hansen et al. 2003). While it also utilizes a distribu-

tion model, its central idea extends the EDA approach by

learning a multivariate Gaussian distribution model of

candidate steps, i.e., their changes over iterations, instead

of current locations (Hansen 2006). Moreover, instead of

creating a new distribution model of selected candidates in

each iteration, the model is kept and updated. This prin-

ciple of updating the model is similar to applying evolu-

tionary variation operators, such as recombination or

mutation, to the candidates in a regular population-based

algorithm. However, in the CMA-ES, the variation opera-

tors’ target is the distribution model and not individual

candidates.

Again, this class has several control parameters, which

are often designed to be adaptive or self-adaptive. For

example, the CMA-ES utilizes a sophisticated step-size

control and adapts the mutation parameters during each

iteration following the history of prior successful iterations,

the so-called evolution paths. These evolution paths are

exponentially smoothed sums for each distribution

parameter over the consecutive prior iterative steps.

4.4 Surrogate class: ‘‘The Surveyor’’

Intuitive Description 4 (The Surveyor) The intuitive idea

of the surveyor is a specialist who systematically measures

a landscape by taking samples of the height to create a

topological map. This map resembles the real landscape

with a given approximation accuracy and is typically exact

at the sampled locations and models the remaining land-

scape by regression. It can then be examined and utilized to

approximate the quality of an unknown point and further be

updated if new information is acquired. Ultimately it can

be used to guide an individual to the desired location.

Surrogate class algorithms utilize distributed explo-

ration and exploitation by explicitly relying on landscape

information and a landscape model. These algorithms dif-

fer from all other defined classes in their focus on acquir-

ing, gathering, and utilizing information about the fitness

landscape. They utilize evaluated, acquired information to

approximate the landscape and also predict the fitness of

new candidates.

As illustrated in Sect. 2.3, the surrogates depict the maps

of the fitness landscape of an objective function in an

algorithmic framework. A surrogate algorithm utilizes

them for an efficient indirect search, instead of performing

multiple, direct, or localized search steps. We divide this

class into two subclasses:

• Surrogate-based algorithms utilize a global surrogate

model for variation and selection.

• Surrogate-assisted algorithms utilize surrogates to sup-

port the search.

The distinction between the two subclasses is motivated by

the different use of the surrogate model. While a surrogate-

based algorithm generates new candidates solely by opti-

mizing/prediction of the surrogate, surrogate-assisted

algorithms use it to support their search by individual

operators (i.e., for the selection of candidates).

For both classes, the surrogate model is a core element

of the variation and selection process during optimization

and essential for their performance. A perfect surrogate

provides an excellent fit to observations, while ideally

possessing superior interpolation and extrapolation abili-

ties. However, a large number of available surrogate

models all have significantly differing characteristics,

advantages, and disadvantages. Model selection is thus a

complicated and challenging task. If no domain knowledge

is available, such as in real black-box optimization, it is

often inevitable to test different surrogates for their

applicability.

Common models are: linear, quadratic or polynomial

regression, Gaussian processes (also known as Kriging)

(Sacks et al. 1989; Forrester et al. 2008), regression trees

(Breiman et al. 1984), artificial neural networks and radial

basis function networks (Haykin 2004; Hornik et al. 1989)

including deep learning networks (Collobert and Weston

2008; Hinton et al. 2006, 2012) and symbolic regression

models (Augusto and Barbosa 2000; Flasch et al. 2010;

McKay et al. 1995), which are usually optimized by

genetic programming (Koza 1992).

Further, much effort in current studies is to research the

benefits of model ensembles, which combine several dis-

tinct models (Goel et al. 2007; Müller and Shoemaker

2014; Friese et al. 2016). The goal is to create a sophisti-

cated predictor that surpasses the performance of a single

model. A well-known example is random forest regres-

sion(Freund and Schapire 1997), which uses bagging to fit

a large number of decision trees (Breiman 2001). We

regard ensemble modeling as the state of the art of current

research, as they can combine the advantages of different

models to generate outstanding results in both classification

and regression. The drawback of these ensemble method-

ologies is that they are computationally expensive and pose

a severe problem concerning efficient model selection,

evaluation, and combination.

4.4.1 Surrogate-based algorithms

Surrogate-based algorithms explicitly utilize a global

approximation surrogate in their optimization cycle by

J. Stork et al.

123

following the concept of efficient global optimization

(EGO) (Jones et al. 1998) and Bayesian Optimization (BO)

(Mockus 1974, 1994, 2012). They are either fixed algo-

rithms designed around a specific model, such as Kriging,

or algorithmic frameworks with a choice of possible sur-

rogates and optimization methods sequential parameter

optimization (Bartz-Beielstein et al. 2005; Bartz-Beielstein

2010). Further well-known examples for continuous

frameworks are the surrogate management framework

(SMF) (Booker et al. 1999) and the surrogate modeling

toolbox (SMT) (Bouhlel et al. 2019). Versions for discrete

search spaces are mixed integer surrogate optimization

(MISO) (Müller 2016) and efficient global optimization for

combinatorial problems (CEGO) (Zaefferer et al. 2014).

The basis for our descriptions of surrogate-based algo-

rithms is mainly EGO, and it is to note that the terminology

of BO differs partly from our utilized terminology.

A general surrogate-based algorithm can be described as

follows (Cf. Sect. 2.3):

1. The initialization is done by sampling the objective

function at k positions with yi ¼ f ðxiÞ; 1� i� k to

generate a set of observations

Dt ¼ fðxi; yiÞ; 1� i� kg. The sampling design plan is

commonly selected according to the surrogate.

2. Selecting a suitable surrogate. The selection of the

correct surrogate type can be a computational demand-

ing step in the optimization process, as often no prior

information indicating the best type is available.

3. Constructing the surrogate sðxÞ using the observations.

4. Utilizing the surrogate sðxÞ to predict n new promising

candidates fx�1:ng, e.g., by optimization of the infill

function with a suitable algorithm. For example, it is

reasonable to use algorithms that require a large

number of evaluations as the surrogate itself is

(comparatively) very cheap to evaluate.

5. Evaluating the new candidates with the objective

function y�i ¼ f ðx�i Þ; 1� i� n.

6. If the stopping criterion is not met: Updating the

surrogate with the new observations

Dtþ1 ¼ Dt [fðx�i ; y�i Þ; 1� i� ng, and repeating the

optimization cycle (4.-6.)

For the initialization, the model building requires a suit-

able sampling of the search space. The initial sampling has

a significant impact on the performance and should be

carefully selected. Thus, the initialization commonly uses

candidates following different information criteria and

suitable experimental designs. For example, it is common

to built linear regression models with factorial designs and

preferably couple Gaussian process models with space-

filling designs, such as Latin hypercube sampling (Mont-

gomery et al. 1984; Sacks et al. 1989).

The generation has two aspects: the first is the choice of

surrogate itself, as it is used to find a new candidate. The

accuracy of a surrogate strongly relies on the selection of

the correct model type to approximate the objective func-

tion. By selecting a particular surrogate, the user makes

certain assumptions regarding the characteristics of the

objective function, i.e., modality, continuity, and smooth-

ness (Forrester and Keane 2009). Most surrogates are

selected to provide continuous, low-modal, and smooth

landscapes, which renders the optimization process com-

putationally inexpensive and straightforward. The second

aspect is the optimizer which variates the candidates for the

search on the surrogate and the approximated fitness

landscape. As the surrogates are often fast to evaluate,

exhaustive exact search strategies, such as branch and

bound in EGO Jones et al. (1998) or multi-start hill-clim-

bers, are often utilized, but it is also common to use

sophisticated population-based algorithms.

The surrogate prediction for the expected best solution is

the basis of the selection of the next candidate solution.

Instead of a simple mean fitness prediction, it is common to

define an infill criterion or acquisition function. Typical

choices include the probability of improvement (Kushner

1964), expected improvement (Jones et al. 1998) and

confidence bounds (Cox and John 1997). Expected

improvement is a common infill criterion because it is a

balance of exploration and exploitation by utilizing both

the predicted best mean value of the model, as well as the

model uncertainty. The optimization of this infill criterion

then selects the candidate. Typically, in each iteration for

evaluation and the model update, the algorithm selects only

a single candidate. Multi-infill selection strategies are also

possible.

Surrogate-based algorithms include a large number of

control elements, starting with necessary components of

such an algorithm, including the initialization strategy, the

choice of surrogate and optimizer. In particular, the infill

criteria, as part of the selection strategy, has an enormous

impact on the performance. Even for a fixed algorithm, the

amount of (required) control is extensive. The most

important are the model parameters of the surrogate.

4.4.2 Surrogate-assisted algorithms

Surrogate-assisted algorithms utilize s search strategy

similar to the population class, but employ a surrogate

particular in the selection step to preselect candidate

solutions based on their approximated fitness and assist the

evolutionary search strategy (Ong et al. 2005; Jin 2005;

Emmerich et al. 2006; Lim et al. 2010; Loshchilov et al.

2012). Commonly, only parts of the new candidates are

preselected utilizing the surrogate, while another part fol-

lows a direct selection and evaluation process. The

A new taxonomy of global optimization algorithms

123

generation and selection of a new candidate are thus not

based on an optimization of the surrogate landscape, which

is the main difference to the surrogate-based algorithms.

The surrogate can be built on the archive of all solutions, or

locally on the current solution candidates. An overview of

surrogate-assisted optimization is given by Jin (2011),

including several examples for real-world applications, or

by Haftka et al. (2016) and Rehbach et al. (2018), with

focus on parallelization.

4.5 Hybrid class: ‘‘The Chimera’’

Intuitive Description 5 (The Chimera) A chimera is an

individual, which is a mixture, composition, or crossover of

other individuals. It is an entirely new being formed out of

original parts from existing species and utilizes their

strengths to be versatile.

We describe the explicit combination of algorithms or

their components as the hybrid class. Hybrid algorithms

utilize existing components and concepts, which have their

origin in an algorithm from one of the other classes, in new

combinations. They are particularly present in current

research regarding the automatic composition or opti-

mization of algorithms to solve a certain problem or a

problem class. Hyperheuristic algorithms also belong to

this class. Overviews of hybrid algorithms were presented

by Talbi (2002), Blum et al. (2011) and Burke et al.

(2013). There are two kinds of hybrid algorithms:

1. Predetermined Hybrids (Sect. 4.5.1) have a fixed

algorithm design, which is composed of certain

algorithms or their components.

2. Automated Hybrids (Sect. 4.5.2) use optimization or

machine learning to search for an optimal algorithm

design or composition.

The hybrid class contains a large number of algorithms and

it can be difficult to draw a distinction to a certain class.

However, particularly the predetermined hybrids can be

additionally described by their main components, so that

their origin remains clear, e.g., an evolutionary algorithm

coupled with simulated annealing could be defined as

population-trajectory hybrid. For automated hybrids this

definition is not longer possible, as they couple a large

amount of different components and also the algorithms

structure is part of their search, so the final algorithm

structure can differ for each problem.

4.5.1 Predetermined hybrid algorithms

The search strategies of this class improve or tackle algo-

rithm weaknesses or amplify their strengths. The algo-

rithms are often given distinctive roles of exploration and

exploitation, as they are combinations of an explorative

global search method paired with a local search algorithm.

For example, population-based algorithms with remarkable

exploration abilities pair with local algorithms with fast

convergence. This approach gives some benefits, as the

combined algorithms can be adapted or tuned to fulfill their

distinct tasks. Also well known are Memetic algorithms, as

defined by Moscato et al. (1989), which are a class of

search methods that combine population-based algorithms

with local hill-climbers. An extensive overview of memetic

algorithms is given by Molina et al. (2010). They describe

how different hybrid algorithms can be constructed by

looking at suitable local search algorithms with particular

regard to their convergence abilities.

4.5.2 Automated hybrid algorithms

Automated hybrids are a special kind of algorithms, which

do not use predetermined search strategies, but a pool of

different algorithms or algorithm components, where the

optimal strategy can be composed of (Lindauer et al. 2015;

Bezerra et al. 2014). Hyperheuristics belong to this class,

particularly those that generate new heuristics (Burke et al.

2010; Martin and Tauritz 2013). Automated algorithm

selection tries to find the most suitable algorithm for a

specific problem based on machine learning and problem

information, such as explorative landscape analysis (Ker-

schke and Trautmann 2019). Instead of selecting individual

algorithms, it is tried to select different types of operators

for, e.g., generation or selection, to automatically compose

a new, best-performing algorithm for a particular problem

(Richter and Tauritz 2018). Similar to our defined ele-

ments, search operators or components of algorithms are

identified, extracted, and then again combined to a new

search strategy.

Generation, variation, and selection focus in this class

on algorithm components, instead of candidate solutions.

The search strategies on this upper level are similar to the

presented algorithms; hence, for example, evolutionary or

Bayesian techniques are common (Guo 2003; van Rijn

et al. 2017).

4.6 Taxonomy: summary and examples

Figure 3 illustrates an overview of all classes and con-

nected features. It outlines initialization, generation,

selection, and control of the individual components for

each class. The algorithm features are partly distinct and

define their class, while others are shared. The figure shows

the strong relationship between the algorithm classes; for

example, the hill-climbing and trajectory class share sim-

ilar characteristics. The algorithms of these classes are

similar in their search strategy and built upon each other.

J. Stork et al.

123

The presented scheme is intended to cover most concepts.

However, available algorithms can also have characteris-

tics of different classes and do not fit the presented scheme.

For example, some components of the more complex

classes can also be utilized in the less complex classes, e.g.,

self-adaptive control schemes also apply for hill-climbers,

but are typically found in the population class. Table 1

describes examples for each of the defined algorithm

classes and outlines their specific features. Again, the

table is not intended to present a complete overview,

instead, for each class and subclass, at least one example is

given to present the working scheme. Other algorithms can

be easily classified utilizing the scheme presented in Fig. 3.

5 Algorithm selection guideline

The selection of the best-suited algorithm poses a common

problem for practitioners, even if experienced. In general,

it is nearly impossible to predict the performance of any

algorithm for a new, unknown problem. We thus recom-

mend first to gather all available information about the

problem if confronted with a new optimization problem.

The features of a problem can be an excellent guideline to

select at least an adequate algorithm class, where the users’

choice and experience can select a concrete

implementation.

Our guideline is strongly connected to the idea of ex-

ploratory landscape analysis (ELA) (Mersmann et al.

2011), which aims to derive problem features with the final

goal of relating those features to suitable algorithm classes.

For example, these features include information about

convexity, multi-modality, the global structure of the

problem, problem separability, and variable scaling. ELA’s

final goal is to provide the best-suited algorithms to pre-

vious unknown optimization problems based on the derived

landscape features. This goal requires rigorous experi-

mentation and benchmarking to match algorithms or

algorithm classes to the landscape features (Kerschke and

Trautmann 2019). As this information is not yet available,

we extracted a small, high-level set of these features for our

guideline, considering mainly the multi-modality and

unique function properties, as being expensive to evaluate.

Moreover, our selection is based on the available

resources, both in terms of available evaluations and

computational resources. To help with the selection, we

developed a small decision graph which builds upon these

significant features. The provided guideline is experience-

Table 1 Summary of example algorithms for each class of the presented taxonomy

Name Class Specifics

1 ? 1-evolution strategy (Rechenberg 1973; Schwefel 1977) Hill-climber Probabilistic, adaptive mutation rates

L-BFGS (Liu and Nocedal 1989), CG (Fletcher 1976) Hill-climber Approximating gradient

Variable neighborhood search (Hansen and Mladenovic 2003) Trajectory

(systematic)

Separation of search space in individually searched

sub-spaces

Tabu search (Glover 1989; Siarry and Berthiau 1997) Trajectory

(systematic)

Tabu-list of search restricted solutions/areas

Simulated annealing (Kirkpatrick et al. 1983) Trajectory

(exploring)

Control variable: temperature to define exploration

strength

Evolutionary algorithms (Back 1996; Eiben and Smith 2003, 2015) Population

(regular)

different variation and selection strategies, general

framework

Particle swarm optimization (Kennedy and Eberhart 1995) Population

(regular)

Exploration and exploitation strategy based on

behavior in swarms

Estimation of distribution algorithms (Larrañaga and Lozano 2001;

Hauschild and Pelikan 2011)

Population

(model)

probabilistic distribution model of underlying

population

Covariance matrix adaption—ES (Hansen et al. 2003) Population

(model)

Modeling search steps, adaptive or pre-defined

parameters

Efficient global optimization (Jones et al. 1998) Surrogate (based) Kriging models, expected improvement

Bayesian optimization (Mockus 1974, 1994, 2012) Surrogate (based) general framework,

Surrogate-assisted EAs (Ong et al. 2005; Lim et al. 2010) Surrogate

(assisted)

General framework, assisting evolutionary

algorithms with surrogates

Memetic algorithms (Moscato et al. 1989) Hybrid

(predetermined)

Combining EAs with hill-climber class unimodal

search algorithms

Hyperheuristics (Burke et al. 2003) Hybrid

(automated)

Automatic selection of entire heuristics or

individual search operators

A new taxonomy of global optimization algorithms

123

based and utilizes basic concepts; it is not intended to serve

as an absolute policy; instead, as the first recommendation

if a new problem is considered. The graph is outlined in

Fig. 4.

A hill-climbing algorithm is in the first place suitable for

unimodal functions or to exploit local optima or for cases

where gradient information can be derived from the

objective function. Gradient-based algorithms are incredi-

bly successful in optimizing large scale optimization

problems, such as frequently found in AI. However, they

always have a high risk of getting stuck in local optima. It

can be applied for global optimization to multimodal

landscapes if an adequate multi-start strategy is employed.

These multi-start strategies typically demand a high num-

ber of function evaluations and are most reasonable to be

used if objective functions are not expensive.

Exploring trajectory algorithms are suitable for searches

in unimodal and multimodal problems. As they do not rely

on stored information of former iterations during their

search, they are also an excellent choice to handle dynamic

objective functions (Carson and Maria 1997; Corana et al.

1987; Faber et al. 2005). However, the rather simplistic

utilization of exploited global information renders them not

efficient for challenging and expensive optimization prob-

lems. Moreover, the control parameters have a significant

effect on the performance of these algorithms. We thus

advise to tune them in an offline or online fashion.

The central concept of systematic trajectory algorithms

is to use the information of evaluated solutions and to

direct the search to former unknown regions to avoid early

convergence to a non-global optimum. The strategic use of

sub-spaces allows precise control of exploration and

exploitation and mainly ensures a high level of exploration.

They include a large number of parameters, such as the

number or size of sub-spaces, which makes them very

vulnerable to false setups and less good universal solvers.

If correctly tuned, algorithms from this class are suit-

able and efficient for multimodal problems. Algorithms

using a pre-defined separation of the search space, such as

VNS, can utilize domain knowledge for the initial defini-

tion of the sub-spaces. This pre-defined separation renders

them useful for problems where the region of the global

optimum is roughly known, but not particularly suitable for

black-box problems.

Population-based algorithms are very flexible in their

implementation and adaptable by tuning. They are robust

and suitable to solve a large class of problems, including

multimodal, multi-objective, dynamic and black-box

problems, even with noise or discontinuities in the fitness

landscape (Jin and Branke 2005; Marler and Arora 2004).

Further, they have successfully been applied to a large

number of different industrial problems (Fleming and

Purshouse 2002) but typically require a relatively large

number ð� 100� dimÞ of function evaluations to be suc-

cessful. This inefficiency makes them not the first choice

for expensive problems, where the number of evaluations is

sharply limited. Different mechanisms and strategies for

controlling the balance between exploration and exploita-

tion cause flexibility and robustness. A good overview is

presented in the survey by Črepinšek et al. (2013). The

detailed survey classifies the different available evolu-

tionary approaches and presents an intensive discussion on

which mechanisms influence exploration and exploitation.

Theoretical aspects of evolutionary operators are discussed

by Beyer (2013). Parameter tuning and control influence

the performance of EAs, e.g., by the setting of population

size, mutation strength, and selection probability. An

extensive overview of the different on- and offline tuning

approaches for parameter control in EAs was published by

Eiben et al. (1999). Further common strategies of con-

trolling exploration and exploitation and multimodal opti-

mization are so-called niching strategies, which utilize sub-

populations to maintain the diversity of the population,

investigate several regions of the search space in parallel or

conduct defined tasks of exploring and exploiting (Shir and

Bäck 2005; Filipiak and Lipinski 2014).

One step further, model-based algorithms try to combine

the benefits of statistical models and their capability of

storing and processing information with population-based

search operators. They are high-level metaheuristics and

advanced EAs which intended to be flexible, robust, and

applicable to a large class of problems, particularly those

with unknown function properties. This generalizability

makes them very successful in popular black-box bench-

marks (Hansen et al. 2010b). For example, the design of

the CMA-ES seeks to make the algorithm performance

robust and not dependent on the objective function or

tuning. The various control parameters of the algorithm

were pre-defined based on theoretical aspects and practical

benchmarks.

Surrogate-based algorithms were created to solve

expensive problems with the help of a surrogate. Their

focus on high evaluation efficiency renders them particu-

larly suitable for problems were only a small number of

function evaluations are possible, such as real-world opti-

mization or physical simulations. The downside of surro-

gate modeling is that it can impose a high computational

complexity in the surrogate fitting and prediction process.

This cost is usually low compared to the resource cost of a

real-world function or an expensive simulation, but it can

get significant compared to a cheap (i.e., fast to evaluate,

low cost) objective function. For problems that need very

fast optimizations or allow large numbers of functions

evaluations ð� 100� nÞ, a surrogate-based approach is

not the best choice. Moreover, solving high-dimensional

problems or those with a large amount of samples require

J. Stork et al.

123

unique strategies or specialized models (Regis and Shoe-

maker 2013). In general, the selection of an adequate

model, experimental design, and optimizer requires both

domain knowledge and expertise. Forrester and Keane

(2009) and Bartz-Beielstein and Zaefferer (2017) give

overviews of surrogate-based optimization, different sur-

rogate models and infill criteria and match surrogates to

problem classes and give hints about their applicability.

Surrogate-based optimization was successfully applied to

different applications, including expensive optimization

problems (Lizotte 2008; Khan et al. 2002) and machine

learning (Snoek et al. 2012; Swersky et al. 2013; Stork

et al. 2019; Gaier et al. 2018) Surrogate-assisted opti-

mization is more flexible, as it combines the strength of

population-based algorithms with the evaluation efficiency

of the surrogate.

Hybrid algorithms apply to a large class of problems,

dependent on the origin of their algorithms or components.

The most recent algorithms from this hybrid class search

for the best algorithm design and composition automati-

cally, even at different problem stages or search stages. The

method of automatic algorithm selection has shown to be

able to outperform a single algorithm on a set of bench-

mark functions (van Rijn et al. 2017; Vermetten et al.

2019). However, this procedure also requires either a large

amount of function knowledge or a large evaluation budget

and computation time. Their immense complexity includes

the risk that the automatic composition does not lead to

improved performance, due to the problematic balancing

and required tuning of the distinct algorithms. Further, their

sophisticated search strategies with a large number of

control parameters can make them difficult to tune. For the

automatic algorithm selection, numerous operators influ-

ence the convergence behavior, and the search strategy

itself becomes a black-box that is challenging to

comprehend.

The guideline can be utilized in the following way: If

features of the objective function are known (e.g., it is

unimodal as the sphere function), a suitable algorithm can

be selected based on these features, e.g., a hill-climber. If

no information about the function is known, e.g., it is a

complete black-box, we recommend using algorithms with

a high generalization ability, e.g., a CMA-ES. Another

essential decision regards the number of possible function

evaluations and the costs of the objective function. If the

number of available function evaluations is low, and the

objective function is costly, surrogate-based optimization

algorithms are a robust choice. Recent algorithms based on

automated algorithm selection aim to optimize this selec-

tion process by extracting problem features while opti-

mizing and adapting the search strategy to them (van Rijn

et al. 2017; Kerschke and Trautmann 2019).

6 Concluding remarks

We presented a new comprehensive overview of global

optimization algorithms by creating a new taxonomy in this

work. We set a particular focus on covering a broad range

of optimization algorithms, including surrogates, meta-

heuristics, and algorithm combinations, because existing

taxonomies do not well cover these.

Based on a generalized algorithm scheme we defined

four characteristic elements of optimization algorithms,

i.e., how they initialize, generate, and select solutions, how

these solutions are evaluated, and finally, how these algo-

rithms can be parametrized and controlled. With these

elements, we created a generalized view on optimization

algorithms by identifying their specific components. These

components were then used to divide algorithms in the hill-

climber, trajectory, population, surrogate and hybrid class

and to identify similarities and differences in their search

strategies.

We can conclude that most algorithms and algorithm

classes have a close connection and share similar compo-

nents, operators, and a large part of their search strategies.

Current research for the automated design of algorithms

builds upon this fact. It generalizes algorithms by breaking

them down to their components and again combining these

components to algorithms. This design process can be fully

automatic, selecting components based on known features

of the problem. Recent research aims in this direction

(Lindauer et al. 2015; Kerschke and Trautmann 2019;

Bezerra et al. 2014; van Rijn et al. 2017). These automatic

methods can benefit from classifications of algorithms to

build their design spaces of suitable algorithms classes. Our

classes and identified elements can be utilized to create a

design scheme for each class. For example, employ an

algorithm generator for hill-climbers or population-based

algorithms. Thus, our taxonomy is particularly useful for

these automatic methods, as it includes a broad set of

current developments in the presented classification

scheme.

Our set of accompanying analogies, based on the human

behavior in pathfinding, mainly helps novices comprehend

the algorithm search strategies’ fundamentals. We further

outlined an algorithm selection guideline with best prac-

tices for more advanced practitioners, which can support

them if they face a new problem and have to choose a

suitable class of optimization algorithms.

Our taxonomy has several limitations, which are part of

future work: the first is that our current taxonomy cannot

cover all available algorithms, particularly those who

handle specific problem characteristics, e.g., multi-objec-

tive, noisy, or dynamic objective functions. The second

limitation concerns the missing benchmarking evidence for

A new taxonomy of global optimization algorithms

123

our algorithms selection guideline: There are excellent

structured collections of (test) problems, e.g., the black-box

optimization benchmark (BBOB) (Hansen et al. 2010a).

Here we offer a system for algorithms providing a struc-

tured way of positioning algorithms. The combination of

the two facilitates systematic empirical studies on problem

(type) and algorithm (type) combination. In other words,

systematic benchmarking: To enable fair comparisons,

each algorithm from a selected algorithm class has to be

compared to several algorithms not belonging to this class.

This implies a large amount of work on a long term done

by the research communities, going far beyond this paper’s

scope.

Exciting challenges for future algorithm design arise

from problems in several categories. The first is industry

4.0. Digitalization in manufacturing and engineering, par-

ticularly the rapid development of communicating sensors

and machines in engineering, requires new designs.

Suitable optimization algorithms need to be directly

included in the production cycle, adapting to generate

robust solutions in challenging dynamic environments in

an online manner, robustly improving themselves over a

long-time period in the field. The second category is

machine learning techniques, particularly the training of

models with a massive amount of parameters, such as deep

learning networks. They require algorithm designs that

combine sampling and computation time efficiency, which

is a challenging optimization problem. Further, the field of

structural optimization or hyper-parameter optimization of

neural networks is advancing. In this area, interesting

research is dedicated to neuroevolution (Stanley et al.

2019) or population-based training (Jaderberg et al. 2017).

Moreover, surrogate-based algorithms are considered to

optimize neural networks (Gaier et al. 2018; Stork et al.

2019). Finally, algorithms arising from new computing

paradigms, such as quantum computing (Pittenger 2012) or

neuromorphic computing(Schuman et al. 2017), might

completely change our current perspective on how opti-

mization algorithms work.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Angeline PJ (1995) Adaptive and self-adaptive evolutionary compu-

tations. In: Computational intelligence: a dynamic systems

perspective. Citeseer

Archetti F, Schoen F (1984) A survey on the global optimization

problem: general theory and computational approaches. Ann

Oper Res 1(2):87–110

Arnold DV, Beyer HG (2003) A comparison of evolution strategies

with other direct search methods in the presence of noise.

Comput Optim Appl 24(1):135–159

Arnold DV, Hansen N (2012) A (1 ? 1)-CMA-ES for constrained

optimisation. In: Proceedings of the 14th annual conference on

genetic and evolutionary computation. ACM, pp 297–304

Arora J, Elwakeil O, Chahande A, Hsieh C (1995) Global optimiza-

tion methods for engineering applications: a review. Struct

Optim 9(3–4):137–159

Audet C (2014) A survey on direct search methods for blackbox

optimization and their applications. In: Mathematics without

boundaries. Springer, pp 31–56

Augusto DA, Barbosa HJ (2000) Symbolic regression via genetic

programming. In: Sixth Brazilian symposium on neural net-

works, 2000. Proceedings. IEEE, pp 173–178

Back T (1996) Evolutionary algorithms in theory and practice:

evolution strategies, evolutionary programming, genetic algo-

rithms. Oxford University Press, Oxford

Back T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary

computation. IOP Publishing Ltd, Bristol

Baluja S (1994) Population-based incremental learning: a method for

integrating genetic search based function optimization and

competitive learning

Bartz-Beielstein T (2010) SPOT: an R package for automatic and

interactive tuning of optimization algorithms by sequential

parameter optimization. arXiv preprint arXiv:10064645

Bartz-Beielstein T, Zaefferer M (2017) Model-based methods for

continuous and discrete global optimization. Appl Soft Comput

55:154–167

Bartz-Beielstein T, Lasarczyk CW, Preuß M (2005) Sequential

parameter optimization. In: The 2005 IEEE Congress on

evolutionary computation, 2005, vol 1. IEEE, pp 773–780

Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiob-

jective selection based on dominated hypervolume. Eur J Oper

Res 181(3):1653–1669

Beyer HG (2013) The theory of evolution strategies. Springer, Berlin

Beyer HG, Schwefel HP (2002) Evolution strategies: a comprehen-

sive introduction. Nat Comput 1(1):3–52

Bezerra LC, López-Ibánez M, Stützle T (2014) Automatic design of

evolutionary algorithms for multi-objective combinatorial opti-

mization. In: International conference on parallel problem

solving from nature. Springer, pp 508–517

Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics

in combinatorial optimization: a survey. Appl Soft Comput

11(6):4135–4151

J. Stork et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/10064645

Booker AJ, Dennis J Jr, Frank PD, Serafini DB, Torczon V, Trosset

MW (1999) A rigorous framework for optimization of expensive

functions by surrogates. Struct Optim 17(1):1–13

Bosman PAN, Thierens D (2000) Continuous iterated density

estimation evolutionary algorithms within the idea framework

Bossek J, Doerr C, Kerschke P (2020) Initial design strategies and

their effects on sequential model-based optimization: an

exploratory case study based on BBOB. In: Proceedings of the

2020 genetic and evolutionary computation conference, GECCO

’20. Association for Computing Machinery, New York,

pp 778–786. https://doi.org/10.1145/3377930.3390155

Bouhlel MA, Hwang JT, Bartoli N, Lafage R, Morlier J, Martins JR

(2019) A python surrogate modeling framework with deriva-

tives. Adv Eng Softw 135:102662

Boussaı̈d I, Lepagnot J, Siarry P (2013) A survey on optimization

metaheuristics. Inf Sci 237:82–117

Breiman L (2001) Random forests. Mach Learn 45(1):5–32

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification

and regression trees. CRC Press, Boca Raton

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003)

Hyper-heuristics: an emerging direction in modern search

technology. In: Handbook of metaheuristics. Springer,

pp 457–474

Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR

(2010) A classification of hyper-heuristic approaches. In:

Handbook of metaheuristics. Springer, pp 449–468

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu

R (2013) Hyper-heuristics: a survey of the state of the art. J Oper

Res Soc 64(12):1695–1724

Carson Y, Maria A (1997) Simulation optimization: methods and

applications. In: Proceedings of the 29th conference on Winter

simulation. IEEE Computer Society, pp 118–126

Chelouah R, Siarry P (2000) Tabu search applied to global

optimization. Eur J Oper Res 123(2):256–270

Coello CAC (2002) Theoretical and numerical constraint-handling

techniques used with evolutionary algorithms: a survey of the

state of the art. Comput Methods Appl Mech Eng

191(11):1245–1287

Collobert R, Weston J (2008) A unified architecture for natural

language processing: deep neural networks with multitask

learning. In: Proceedings of the 25th international conference

on Machine learning. ACM, pp 160–167

Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing

multimodal functions of continuous variables with the ‘‘simu-

lated annealing’’ algorithm. ACM Trans Math Softw (TOMS)

13(3):262–280

Cowling P, Kendall G, Soubeiga E (2000) A hyperheuristic approach

to scheduling a sales summit. In: International conference on the

practice and theory of automated timetabling. Springer,

pp 176–190

Cowling P, Kendall G, Soubeiga E (2002) Hyperheuristics: a tool for

rapid prototyping in scheduling and optimisation. In: Workshops

on applications of evolutionary computation. Springer, pp 1–10

Cox DD, John S (1997) SDO: a statistical method for global

optimization. In: Multidisciplinary design optimization: state of

the art, pp 315–329

Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation

in evolutionary algorithms: a survey. ACM Comput Surv

(CSUR) 45(3):35

Crombecq K, Gorissen D, Deschrijver D, Dhaene T (2011) A novel

hybrid sequential design strategy for global surrogate modeling

of computer experiments. SIAM J Sci Comput 33(4):1948–1974

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol

Comput 6(2):182–197

Doerr B, Doerr C, Yang J (2020) Optimal parameter choices via

precise black-box analysis. Theor Comput Sci 801:1–34

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.

IEEE Comput Intell Mag 1(4):28–39

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for

online learning and stochastic optimization. J Mach Learn Res

12(7):2121–2159

Eiben AE, Smith JE (2003) Introduction to evolutionary computing,

vol 53. Springer, Berlin

Eiben AE, Smith JE (2015) Introduction to evolutionary computing,

2nd edn. Springer, Berlin

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in

evolutionary algorithms. IEEE Trans Evolut Comput

3(2):124–141

Emmerich MT, Giannakoglou KC, Naujoks B (2006) Single-and

multiobjective evolutionary optimization assisted by Gaussian

random field metamodels. IEEE Trans Evolut Comput

10(4):421–439

Faber R, Jockenhövel T, Tsatsaronis G (2005) Dynamic optimization

with simulated annealing. Comput Chem Eng 29(2):273–290

Filipiak P, Lipinski P (2014) Infeasibility driven evolutionary

algorithm with feed-forward prediction strategy for dynamic

constrained optimization problems. In: Applications of evolu-

tionary computation. Springer, pp 817–828

Flasch O, Mersmann O, Bartz-Beielstein T (2010) RGP: an open

source genetic programming system for the R environment. In:

Proceedings of the 12th annual conference companion on genetic

and evolutionary computation, GECCO ’10. ACM, New York,

pp 2071–2072. https://doi.org/10.1145/1830761.1830867

Fleming PJ, Purshouse RC (2002) Evolutionary algorithms in control

systems engineering: a survey. Control Eng Pract

10(11):1223–1241

Fletcher R (1976) Conjugate gradient methods for indefinite systems.

In: Numerical analysis. Springer, pp 73–89

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through

simulated evolution. Wiley, Hoboken

Fomin FV, Kaski P (2013) Exact exponential algorithms. Commun

ACM 56(3):80–88. https://doi.org/10.1145/2428556.2428575
Fonseca CM, Fleming PJ et al (1993) Genetic algorithms for

multiobjective optimization: formulation, discussion and gener-

alization. ICGA 93:416–423

Forrester AI, Keane AJ (2009) Recent advances in surrogate-based

optimization. Prog Aerosp Sci 45(1):50–79

Forrester A, Sobester A, Keane A (2008) Engineering design via

surrogate modelling: a practical guide. Wiley, Hoboken

Freund Y, Schapire RE (1997) A decision-theoretic generalization of

on-line learning and an application to boosting. J Comput Syst

Sci 55(1):119–139

Friese M, Bartz-Beielstein T, Emmerich MTM (2016) Building

ensembles of surrogates by optimal convex combination. In:

Mernik M, Papa G (eds) Bioinspired optimization methods and

their applications, pp 131–144

Gaier A, Asteroth A, Mouret JB (2018) Data-efficient neuroevolution

with kernel-based surrogate models. In: Proceedings of the

genetic and evolutionary computation conference, pp 85–92

Gallagher M, Frean MR, Downs T (1999) Real-valued evolutionary

optimization using a flexible probability density estimator.

GECCO 99:840–846

Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study

for differential evolution. Adv Intell Syst Fuzzy Syst Evolut

Comput 10:293–298

Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206

Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of

surrogates. Struct Multidiscip Optim 33(3):199–216

A new taxonomy of global optimization algorithms

123

https://doi.org/10.1145/3377930.3390155
https://doi.org/10.1145/1830761.1830867
https://doi.org/10.1145/2428556.2428575

Goffe WL, Ferrier GD, Rogers J (1994) Global optimization of

statistical functions with simulated annealing. J Econom

60(1):65–99

Guo H (2003) A Bayesian approach for automatic algorithm

selection. In: Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI03), workshop on AI and

autonomic computing, Acapulco, Mexico, pp 1–5

Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-

assisted global optimization with expensive functions—a survey.

Struct Multidiscip Optim 54(1):3–13

Hansen N, Auger A, Finck S, Ros R (2010) Real-parameter black-box

optimization benchmarking 2010: experimental setup. Research

report no: RR-7215

Hansen P, Mladenovic N (2003) Variable neighbourhood search.

Handbook of metaheuristics. Kluwer Academic Publishers,

Dordrecht

Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time

complexity of the derandomized evolution strategy with covari-

ance matrix adaptation (CMA-ES). Evolut Comput 11(1):1–18

Hansen N, Auger A, Finck S, Ros R (2010a) Real-parameter black-

box optimization benchmarking 2010: experimental setup

Hansen N, Auger A, Ros R, Finck S, Pošı́k P (2010b) Comparing

results of 31 algorithms from the black-box optimization

benchmarking bbob-2009. In: Proceedings of the 12th annual

conference companion on Genetic and evolutionary computa-

tion. ACM, pp 1689–1696

Hansen P, Mladenović N, Pérez JAM (2010c) Variable neighbour-

hood search: methods and applications. Ann Oper Res

175(1):367–407

Harik G et al (1999) Linkage learning via probabilistic modeling in

the ECGA. IlliGAL report 99010

Hauschild M, Pelikan M (2011) An introduction and survey of

estimation of distribution algorithms. Swarm Evolut Comput

1(3):111–128

Haykin S (2004) A comprehensive foundation. Neural Netw 2:41

Henderson D, Jacobson SH, Johnson AW (2003) The theory and

practice of simulated annealing. In: Handbook of metaheuristics.

Springer, pp 287–319

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for

deep belief nets. Neural Comput 18(7):1527–1554

Hinton G, Deng L, Yu D, Dahl GE, Ar M, Jaitly N, Senior A,

Vanhoucke V, Nguyen P, Sainath TN et al (2012) Deep neural

networks for acoustic modeling in speech recognition: the shared

views of four research groups. IEEE Signal Process Mag

29(6):82–97

Holland JH (1992) Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and

artificial intelligence. MIT Press

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward

networks are universal approximators. Neural Netw

2(5):359–366

Hu N (1992) Tabu search method with random moves for globally

optimal design. Int J Numer Methods Eng 35(5):1055–1070

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based

optimization for general algorithm configuration. LION

5:507–523

Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J,

Razavi A, Vinyals O, Green T, Dunning I, Simonyan K et al

(2017) Population based training of neural networks. arXiv

preprint arXiv:171109846

Jin Y (2005) A comprehensive survey of fitness approximation in

evolutionary computation. Soft Comput Fusion Found Methodol

Appl 9(1):3–12

Jin Y (2011) Surrogate-assisted evolutionary computation: recent

advances and future challenges. Swarm Evolut Comput

1(2):61–70

Jin Y, Branke J (2005) Evolutionary optimization in uncertain

environments—a survey. IEEE Trans Evolut Comput

9(3):303–317

Jones DR (2001) A taxonomy of global optimization methods based

on response surfaces. J Glob Optim 21(4):345–383

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimiza-

tion of expensive black-box functions. J Glob Optim

13(4):455–492

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE

international conference on neural networks, 1995. Proceedings,

vol 4. IEEE, pp 1942–1948

Kerschke P, Trautmann H (2019) Automated algorithm selection on

continuous black-box problems by combining exploratory land-

scape analysis and machine learning. Evolut Comput

27(1):99–127

Khan N, Goldberg DE, Pelikan M (2002) Multi-objective Bayesian

optimization algorithm. In: Proceedings of the 4th annual

conference on genetic and evolutionary computation,

GECCO’02. Morgan Kaufmann Publishers Inc., San Francisco,

p 684. http://dl.acm.org/citation.cfm?id=2955491.2955599

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization.

arXiv preprint arXiv:14126980

Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by

simulated annealing. Science 220(4598):671–680

Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct

search: new perspectives on some classical and modern methods.

SIAM Rev 45(3):385–482

Koza JR (1992) Genetic programming: on the programming of

computers by means of natural selection, vol 1. MIT Press,

Cambridge

Kushner HJ (1964) A new method of locating the maximum point of

an arbitrary multipeak curve in the presence of noise. J Basic

Eng 86(1):97–106

Larrañaga P, Lozano JA (2001) Estimation of distribution algorithms:

a new tool for evolutionary computation, vol 2. Springer, Berlin

Larrañaga P, Etxeberria R, Lozano JA, Peña JM (1999) Optimization

by learning and simulation of Bayesian and Gaussian networks

Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey.

Oper Res 14(4):699–719

Leon A (1966) A classified bibliography on optimization. Recent

advances in optimization techniques. Wiley, New York,

pp 599–649

Lewis RM, Torczon V, Trosset MW (2000) Direct search methods:

then and now. J Comput Appl Math 124(1):191–207

Lim D, Jin Y, Ong YS, Sendhoff B (2010) Generalizing surrogate-

assisted evolutionary computation. IEEE Trans Evolut Comput

14(3):329

Lindauer M, Hoos HH, Hutter F, Schaub T (2015) Autofolio: an

automatically configured algorithm selector. J Artif Intell Res

53:745–778

Liu DC, Nocedal J (1989) On the limited memory BFGS method for

large scale optimization. Math Program 45(1–3):503–528

Lizotte DJ (2008) Practical Bayesian optimization. University of

Alberta

Lobo F, Lima CF, Michalewicz Z (2007) Parameter setting in

evolutionary algorithms, vol 54. Springer, Berlin

Locatelli M (2002) Simulated annealing algorithms for continuous

global optimization. In: Handbook of global optimization.

Springer, pp 179–229

López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle

T (2016) The irace package: iterated racing for automatic

algorithm configuration. Oper Res Perspect 3:43–58

Loshchilov I, Schoenauer M, Sebag M (2012) Self-adaptive surro-

gate-assisted covariance matrix adaptation evolution strategy. In:

Proceedings of the 14th annual conference on genetic and

evolutionary computation. ACM, pp 321–328

J. Stork et al.

123

http://arxiv.org/abs/171109846
http://dl.acm.org/citation.cfm?id=2955491.2955599
http://arxiv.org/abs/14126980

Marler RT, Arora JS (2004) Survey of multi-objective optimization

methods for engineering. Struct Multidiscip Optim

26(6):369–395

Marsden AL, Wang M, Dennis JE Jr, Moin P (2004) Optimal

aeroacoustic shape design using the surrogate management

framework. Optim Eng 5(2):235–262

Martin MA, Tauritz DR (2013) Evolving black-box search algorithms

employing genetic programming. In: Proceedings of the 15th

annual conference companion on genetic and evolutionary

computation, pp 1497–1504

McKay B, Willis MJ, Barton GW (1995) Using a tree structured

genetic algorithm to perform symbolic regression. In: First

international conference on genetic algorithms in engineering

systems: innovations and applications, 1995. GALESIA. (Conf.

Publ. No. 414). IET, pp 487–492

Mercer RE, Sampson J (1978) Adaptive search using a reproductive

meta-plan. Kybernetes 7(3):215–228

Mersmann O, Bischl B, Trautmann H, Preuss M, Weihs C, Rudolph G

(2011) Exploratory landscape analysis. In: Proceedings of the

13th annual conference on genetic and evolutionary computa-

tion, GECCO ’11. Association for Computing Machinery, New

York, pp 829–836. https://doi.org/10.1145/2001576.2001690

Mladenović N, Dražić M, Kovačevic-Vujčić V, Čangalović M (2008)

General variable neighborhood search for the continuous opti-

mization. Eur J Oper Res 191(3):753–770

Mockus J (1974) On Bayesian methods for seeking the extremum. In:

Proceedings of the IFIP Technical Conference. Springer,

pp 400–404

Mockus J (1994) Application of Bayesian approach to numerical

methods of global and stochastic optimization. J Glob Optim

4(4):347–365

Mockus J (2012) Bayesian approach to global optimization: theory

and applications, vol 37. Springer, Berlin

Molina D, Lozano M, Garcı́a-Martı́nez C, Herrera F (2010) Memetic

algorithms for continuous optimisation based on local search

chains. Evolut Comput 18(1):27–63

Montgomery DC, Montgomery DC, Montgomery DC (1984) Design

and analysis of experiments, vol 7. Wiley, New York

Moscato P et al (1989) On evolution, search, optimization, genetic

algorithms and martial arts: Towards memetic algorithms.

Caltech concurrent computation program, C3P Report 826:1989

Müller J (2016) MISO: mixed-integer surrogate optimization frame-

work. Optim Eng 17(1):177–203

Müller J, Shoemaker CA (2014) Influence of ensemble surrogate

models and sampling strategy on the solution quality of

algorithms for computationally expensive black-box global

optimization problems. J Glob Optim 60(2):123–144

Naujoks B, Beume N, Emmerich M (2005) Multi-objective optimi-

sation using s-metric selection: application to three-dimensional

solution spaces. In: The 2005 IEEE Congress on Evolutionary

Computation, vol 2. IEEE, pp 1282–1289

Nelder JA, Mead R (1965) A simplex method for function

minimization. Comput J 7(4):308–313

Neumaier A (2004) Complete search in continuous global optimiza-

tion and constraint satisfaction. Acta Numer 13:271–369

Ong YS, Nair P, Keane A, Wong K (2005) Surrogate-assisted

evolutionary optimization frameworks for high-fidelity engi-

neering design problems. In: Knowledge Incorporation in

Evolutionary Computation. Springer, pp 307–331

Papa G, Doerr C (2020) Dynamic control parameter choices in

evolutionary computation: Gecco 2020 tutorial. In: Proceedings

of the 2020 genetic and evolutionary computation conference

companion, pp 927–956

Pearl J (1985) Heuristics. intelligent search strategies for computer

problem solving. The Addison-Wesley series in artificial intel-

ligence. Addison-Wesley, Reading, Reprinted version

Pittenger AO (2012) An introduction to quantum computing

algorithms, vol 19. Springer, Berlin

Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker

PK (2005) Surrogate-based analysis and optimization. Prog

Aerosp Sci 41(1):1–28

Rechenberg I (1973) Evolutionsstrategie—Optimierung technischer

Systeme nach Prinzipien der biologischen Evolution. From-

mann-Holzboog

Rechenberg I (1994) Evolutionsstrategie ’94. Frommann-Holzboog

Regis RG, Shoemaker CA (2013) Combining radial basis function

surrogates and dynamic coordinate search in high-dimensional

expensive black-box optimization. Eng Optim 45(5):529–555

Rehbach F, Zaefferer M, Stork J, Bartz-Beielstein T (2018) Compar-

ison of parallel surrogate-assisted optimization approaches. In:

Proceedings of the genetic and evolutionary computation

conference. ACM, pp 1348–1355

Richter SN, Tauritz DR (2018) The automated design of probabilistic

selection methods for evolutionary algorithms. In: Proceedings

of the genetic and evolutionary computation conference com-

panion, pp 1545–1552

Rozenberg G, Bck T, Kok JN (2011) Handbook of natural computing.

Springer, Berlin

Ruder S (2016) An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:160904747

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and

analysis of computer experiments. Stat Sci 4:409–423

Santana R (2017) Gray-box optimization and factorized distribution

algorithms: where two worlds collide. arXiv preprint arXiv:

170703093

Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose

GS, Plank JS (2017) A survey of neuromorphic computing and

neural networks in hardware. arXiv preprint arXiv:170506963

Schwefel HP (1977) Numerische Optimierung von Computer-Model-

len mittels der Evolutionsstrategie: mit einer vergleichenden

Einführung in die Hill-Climbing-und Zufallsstrategie. Birkhäu-

ser, Basel

Schwefel HPP (1993) Evolution and optimum seeking: the sixth

generation. Wiley, Hoboken

Shanno DF (1970) Conditioning of quasi-Newton methods for

function minimization. Math Comput 24(111):647–656

Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In:

The 1998 IEEE international conference on evolutionary com-

putation proceedings, 1998. IEEE World Congress on Compu-

tational Intelligence. IEEE, pp 69–73

Shir OM, Bäck T (2005) Niching in evolution strategies. In:

Proceedings of the 7th annual conference on genetic and

evolutionary computation. ACM, pp 915–916

Siarry P, Berthiau G (1997) Fitting of tabu search to optimize

functions of continuous variables. Int J Numer Methods Eng

40(13):2449–2457

Siarry P, Berthiau G, Durdin F, Haussy J (1997) Enhanced simulated

annealing for globally minimizing functions of many-continuous

variables. ACM Trans Math Softw (TOMS) 23(2):209–228

Smit S, Eiben A (2011) Multi-problem parameter tuning using

bonesa. In: Artificial evolution, pp 222–233

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian

optimization of machine learning algorithms. In: Advances in

neural information processing systems, pp 2951–2959

Søndergaard J, Madsen K, Nielsen HB (2003) Optimization using

surrogate models-by the space mapping technique. Ph.D. thesis,

Technical University of Denmark

Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing

neural networks through neuroevolution. Nat Mach Intell

1(1):24–35

Stork J, Zaefferer M, Bartz-Beielstein T, Eiben A (2019) Surrogate

models for enhancing the efficiency of neuroevolution in

A new taxonomy of global optimization algorithms

123

https://doi.org/10.1145/2001576.2001690
http://arxiv.org/abs/160904747
http://arxiv.org/abs/170703093
http://arxiv.org/abs/170703093
http://arxiv.org/abs/170506963

reinforcement learning. In: Proceedings of the genetic and

evolutionary computation conference, pp 934–942

Swersky K, Snoek J, Adams RP (2013) Multi-task Bayesian

optimization. In: Advances in neural information processing

systems, pp 2004–2012

Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics

8(5):541–564

Talbi EG (2009) Metaheuristics: from design to implementation, vol

74. Wiley, Hoboken

Törn A, Zilinskas A (1989) Global optimization. Springer, Berlin

Van Groenigen J, Stein A (1998) Constrained optimization of spatial

sampling using continuous simulated annealing. J Environ Qual

27(5):1078–1086

van Rijn S, Wang H, van Stein B, Bäck T (2017) Algorithm

configuration data mining for CMA evolution strategies. In:

Proceedings of the genetic and evolutionary computation

conference, GECCO ’17. ACM, New York, pp 737–744.

https://doi.org/10.1145/3071178.3071205

Vermetten D, van Rijn S, Bäck T, Doerr C (2019) Online selection of

CMA-ES variants. In: Proceedings of the genetic and evolution-

ary computation conference, GECCO ’19. ACM, New York,

pp 951–959. https://doi.org/10.1145/3321707.3321803

Whitley LD, Chicano F, Goldman BW (2016) Gray box optimization

for Mk landscapes (Nk landscapes and MAX-KSAT). Evolut

Comput 24(3):491–519

Woeginger GJ (2003) Exact algorithms for NP-hard problems: a

survey. In: Combinatorial optimization—eureka, you shrink!.

Springer, pp 185–207

Won KS, Ray T (2004) Performance of kriging and cokriging based

surrogate models within the unified framework for surrogate

assisted optimization. In: Congress on evolutionary computation,

2004. CEC2004, vol 2. IEEE, pp 1577–1585

Zaefferer M, Stork J, Friese M, Fischbach A, Naujoks B, Bartz-

Beielstein T (2014) Efficient global optimization for combina-

torial problems. In: Proceedings of the 2014 annual conference

on genetic and evolutionary computation, pp 871–878

Zlochin M, Birattari M, Meuleau N, Dorigo M (2004) Model-based

search for combinatorial optimization: a critical survey. Ann

Oper Res 131(1–4):373–395

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

J. Stork et al.

123

https://doi.org/10.1145/3071178.3071205
https://doi.org/10.1145/3321707.3321803

	A new taxonomy of global optimization algorithms
	Abstract
	Introduction
	Modern optimization algorithms
	Exact algorithms
	Heuristics and metaheuristics
	Surrogate-based optimization algorithms
	Meta-optimization and hyperheuristics

	A new taxonomy
	History of taxonomies
	The four elements of algorithm design

	The definition of intuitive algorithm classes
	Hill-climbing class: ‘‘The Mountaineer’’
	Trajectory class: ‘‘The Sightseer’’
	Exploring trajectory algorithms
	Systematic trajectory algorithms

	Population class: ‘‘The Team’’
	Regular population algorithms
	Model-based population algorithms

	Surrogate class: ‘‘The Surveyor’’
	Surrogate-based algorithms
	Surrogate-assisted algorithms

	Hybrid class: ‘‘The Chimera’’
	Predetermined hybrid algorithms
	Automated hybrid algorithms

	Taxonomy: summary and examples

	Algorithm selection guideline
	Concluding remarks
	Open Access
	References

