
Martin Zaefferer, Boris Naujoks, Thomas Bartz-Beielstein

A Gentle Introduction to
Multi-Criteria Optimization with
SPOT

Schriftenreihe CIplus, Band 1/2013

Herausgeber: T. Bartz-Beielstein, W. Konen, H. Stenzel, B. Naujoks

A Gentle Introduction to Multi-Criteria
Optimization with SPOT

Martin Zaefferer, Boris Naujoks, and Thomas Bartz-Beielstein

Faculty for Computer and Engineering Sciences
Cologne University of Applied Sciences, 51643 Gummersbach, Germany

firstname.lastname@fh-koeln.de

Schriftenreihe CIplus
TR 1/2013. ISSN 2194-2870

Abstract. Multi-criteria optimization has gained increasing attention
during the last decades. This article exemplifies multi-criteria features,
which are implemented in the statistical software package SPOT. It de-
scribes related software packages such as moo and emoa and gives a
comprehensive introduction to simple multi criteria optimization tasks.
Several hands-on examples are used for illustration. The article is well-
suited as a starting point for performing multi-criteria optimization tasks
with SPOT.

1 Multi Criteria Optimization: A Simple Example

Optimization in general is fully integrated into todays life. We decide for the
best prize when comparing similar groceries or choose the best quality when
comparing different jackets. However, such decisions are generally more difficult,
more complex than just deciding either for the best price or the best quality.
Some sort of compromise solution might be preferable. This is where multi-
criteria optimization comes into play.

Of course, the same holds for industrial processes. Input material has to be
selected and the process itself can be steered in different directions via control-
ling some input variables. All these decisions will influence the quality of the
final product, whereas quality can be expressed in form of different criteria or
objectives (e.g., price, robustness, speed). As a consequence, a decision regarding
the above mentioned input parameters can rarely be made without considering
multiple criteria at once.

There are some aspects that make such decisions more complicated than
classical single objective problems. The most apparent one is the loss of total
order. Comparing two products or processes just based on their price is easy.
The cheaper is the better. If quality comes into play, life is much harder. Several
products might exist which represent different compromises between quality and
price. For example, let us consider the choice of selecting a car. Car no. 1 may be
the cheapest, but also the one with the highest milage, whereas car no. 2 is the
one with the least milage but also most expensive one. There may exist several

MCO with SPOT 3

more cars which represent different compromises between milage and price. An
example of that situation is represented in Fig. 1.

Price [€]

Milage
 [l / 100 km]

20.000 30.000

5

15

10

25000

Fig. 1: Graphical comparison of 6 cars, regarding price and milage.

These solutions cannot be sorted by their relative quality to each other since
the two goals (milage and price) are conflicting. The total order of solutions is
lost. Only the car marked by the red dot is clearly worse, because there exist
cars which are better with regards to both objectives.

Of course, things get more difficult (and even more computationally expen-
sive) if more than just two criteria have to be considered. For example, one could
consider additional criteria like environmental sustainability or safety of the car.
At the same time, this decision process can be made regarding different input
parameters. For the consumer, the choice that affects the different criteria is
merely that of the six cars available. For the producer of the cars, the cars can
be defined by different parameters like their material, shape or type of motor.

The field of Multi Criteria Optimization (MCO) deals with that type of
problems. The Sequential Parameter Optimization Toolbox offers methods from
that field, which employ surrogate models to speed up the optimization progress.
The following Sec. 2 introduces the field of MCO as well as the nomenclature.
Afterwards, Sec. 3 presents the programming environment R and some basic
tools for MCO in that environment. To give an easy to use example, Sec. 4
introduces a simple MCO test function, and shows how to optimize this with

4 Zaefferer et al.

classical MCO algorithms. The very same test functions is optimized with the
Sequential Parameter Optimization Toolbox SPOT in Sec. 5. To give more details
on the usage of SPOT additional features are shown in Sec. 6. Finally, the reader
can test his understanding of the presented information in Sec. 7.

2 Short overview on MCO

Considering only one objective in applied optimization is a simplification that
does not mirror the complexity of the underlying application in most (or almost
all) cases. Normally, more than one and up to hundreds or thousands of objectives
f1, . . . , fn need to be considered. The most common way to deal with multiple
objectives appears to be aggregation, e.g., to a weighted sum f(x) =

∑
i wifi(x).

In contrast, multi-criteria or multiobjective optimization (MCO) offers a different
way to handle multiple objectives in a more principled, maybe more effective way.

In MCO, a well-known concept is Pareto dominance, i.e., a solution x from a
decision space A dominates another solution y ∈ A iff x is better in at least one
dimension of the decision space and not worse in all the others. More formally
and considering minimization, this reads (A ⊂ Rn, i, j ∈ {1, . . . , n}):

x ≺ y iff ∀i : fi(x) ≤ fi(y) ∧
∃j : fj(x) < fj(y).

If a solution x is not dominated by any other solution in the search space (or
generated by the algorithm), it is said to be nondominated, i.e.

∀y ∈ A : y 6≺ x.

This concept allows for ranking sets of solutions in the multi-dimensional
objective space. As a consequence, MCO algorithms aim for a set A∗ of solutions
with the property that every two solutions x and y from A∗ are mutually non-
dominated, i.e.

y 6≺ x ∧ x 6≺ y.

A set {x ∈ A | 6 ∃y ∈ A : y ≺ x} of such solutions is also called a Pareto-front.
Coming back to the car example from above, all but the car marked in red

in Fig. 1 are non-dominated, and thus represent the Pareto-front. The red point
is dominated by two other dots.

2.1 Evolutionary Multiobjective Optimization Algorithms

Beside the sheer number of objectives, there is a structural change in the step
from one to more objectives. The strict order of solutions in the single-objective
objective space turns to a partial order in the multi-objective objective space
(with respect to Pareto dominance). This is one of the reasons why population-
based optimization approaches like EA are very successful in tackling MCO

MCO with SPOT 5

problems. This structural change also implies that besides Pareto dominance a
secondary quality indicator is required for ranking and thus for rank-based selec-
tion in an EA. As a result, evolutionary multiobjective optimization algorithms
(EMOA) became very popular over the last decade(Deb, 2001a; Coello Coello
et al., 2007).

Such algorithms always keep a set of solutions, also called a population,
during the optimization run and thus provide a decision maker with a set of
comparably good, non-dominated solutions, not just one final best like in single-
objective optimization. As a consequence, the decision maker has the chance and
the burden to choose the final solution, the one to really implement, from a set
of such solutions.

In recent years, the hypervolume indicator turned from a frequently used
quality indicator to a well-established selection operator for EMOA (Zitzler &
Thiele, 1998; Zitzler, 1999). The hypervolume of a Pareto front A∗ is defined
as the n-dimensional volume of the space spanned by the Pareto front and a
reference point yref, which needs to be defined by the user:

Λ

(⋃
a∈A∗

{y′ | a ≺ y′ ≺ yref}

)

with Λ being the Lebesgue measure of the given set.
Maximization of the hypervolume covered by the population results in maxi-

mization of possibe trade-offs. Implicitly this covers the traditional goals of con-
vergence of the solution set to the optimal front as well as good solution spread.
Most prominent instances of hypervolume based selection MCO algorithms are
SMS-EMOA (Beume et al., 2007a), Hyp-E (Bader & Zitzler, 2011), as well as
MO-CMA-ES (Igel et al., 2007).

The (µ + 1) selection mechanism in SMS-EMOA (cf. Alg. 1) provides an
elegant way to enlarge and diminish the population size online. Therefore this
algorithm is used for the present study.

Algorithm 1: SMS-EMOA

1 P0 ← init() ; // Initialize µ individuals randomly

2 t← 0 ;
3 repeat
4 qt+1 ← generate(Pt) ; // Generate offspring by variation

5 Pt+1 ← reduce(Pt ∪ {qt+1}) ; // Select new population

6 t← t+ 1

7 until stopcriterium reached ;

In Algorithm 2

∆S(s,RI) := S(RI)− S(RI \ {s}) (1)

6 Zaefferer et al.

Algorithm 2: Reduce(Q)

1 R← fast-nondominated-sort(Q) ; // all I non-dominated fronts of Q
2 r ← argmins∈RI [∆S(s,RI)] ; // eliminate element with lowest ∆S(s,RI)
3 Q′ ← Q \ {r} return Q′

calculates the sole contribution of a single solution s to the hypervolume of a
Pareto front RI .

MCO with SPOT 7

3 MCO in R: Language, Packages, Algorithms

In R, the open source programming environment for statistical computing,
some packages implement functionality for MCO1. We introduce three packages,
which implement several important functions and algorithms. There are more
MCO-relevant packages, which are not covered here. We encourage additional
research for interested users2.

3.1 The mco package

The mco package provides several functions concerning MCO with genetic
algorithms. Most importantly, it provides an implementation of the NSGA2 algo-
rithm. Several measures of a Pareto fronts quality are available as functions (e.g.,
Spread, Hypervolume, Epsilon-Indicator). Additionally, several typical MCO test
functions are provided (e.g., ZDT1-3).

3.2 The emoa package

The emoa package provides several useful functions, including several mea-
sures like hypervolume contribution or crowding distance. It also has several test
functions that are not in the mco package.

3.3 The SPOT package

The SPOT package provides mainly the means to do multi objective surrogate
model based optimization. Additionally, it uses the emoa package to construct
a very basic SMS-EMOA implementation. More information will be given in
section 5.

4 A simple Testfunction: ZDT2

The test function used in the following examples is part of the ”mco” R-
package3. In this example, it is expected that this package is already installed.
To install, uncomment the first two lines below. The mco package also contains
the NSGA2 algorithm (Deb, 2001b). SPOT should be loaded, too, for the purpose
of optimization.

> #install.packages("mco")

> #install.packages("SPOT")

> require("mco")

> require(SPOT)

1 R, and all packages mentioned in this document, are available from the CRAN
platform: http://cran.r-project.org/

2 The http://www.rseek.org/ home page might be a first start point for a search on
MCO in R.

3 http://cran.r-project.org/web/packages/mco/

http://cran.r-project.org/
http://www.rseek.org/
http://cran.r-project.org/web/packages/mco/

8 Zaefferer et al.

The ZDT functions are MCO testfunctions with scalable decision space di-
mension n (Zitzler et al., 2000). To guarantee a low number of function evalua-
tions as well as easy visualization of results, both, the dimension of the decision
and the objective space are set to 2 in following example. The function ZDT2
R2 → R2 is defined as:

f1 = x1

g = 1 + 9x2

f2 = g

(
1−

(
x1
g

)2
)

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

Both objectives f1 and f2 have to be minimized. In the R-package mean(), the
ZDT2 function can be called as follows.

> x=c(0.5,0.4) #Input vector

> y=zdt2(x)

> print(y)

[1] 0.500000 4.545652

The objective space of the ZDT2 function can be visualized in separate
surface plots. Therefore, we will consider the following function: R2 → R :
(x1, x2) 7→ f1(x1, x2). Note, we will use the apply(x) command to define

an anonymous function.

> apply(x,1,f)

will apply f to rows of x,

> apply(x,2,f)

will apply f to columns of x.

> ## Define function that calls ZDT2 in a vectorized manner

> ## but returns only first objective:

> ZDT2obj1=function(x)apply(x,1,zdt2)[1,]

> ## Plot first objective in given boundaries

> ## (lo for lower, up for upper)

> spotSurfContour(f=ZDT2obj1,lo=c(0,0),up=c(1,1))

MCO with SPOT 9

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

To visualize the impact of the second objective, we will consider the following
function: R2 → R : (x1, x2) 7→ f2(x1, x2):

> ## Define function that calls ZDT2 in a vectorized manner,

> ## but returns only second objective:

> ZDT2obj2=function(x)apply(x,1,zdt2)[2,]

> ## Plot second objective in given boundaries

> ## (lo for lower, up for upper)

> spotSurfContour(f=ZDT2obj2,lo=c(0,0),up=c(1,1))

10 Zaefferer et al.

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

The first objectives landscape is completely linear, with all minima on the x2
axis. The second objective exhibits a slight curvature, with a minimum in the
lower right corner of the plot. To find the Pareto front, the ZDT2 function can
be optimized with the NSGA2 algorithm in R:

> resNSGA<-nsga2(zdt2,2,2,lower.bounds=c(0,0),

+ upper.bounds=c(1,1),popsize=32,generations=30)

> par(mfrow=c(1,2))

> objective=resNSGA$value

> parameter=resNSGA$par

> plot(parameter, main="Pareto set",ylim=c(0,1))

> plot(objective, main="Pareto front")

●● ● ● ●●● ● ●● ●●● ●● ●● ● ●●● ●●● ● ●● ● ●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto set

parameter[,1]

pa
ra

m
et

er
[,2

]

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto front

objective[,1]

ob
je

ct
iv

e[
,2

]

The plots indicate the approximated Pareto front and set. Here, all members
of the Pareto set reside on or near to the second parameters lower boundary (e.g.
x2 ≈ 0). Of course, any other adequate algorithm can be used for optimization

MCO with SPOT 11

as well. The following code calls a straight-forward SMS-EMOA (Beume et al.,
2007b), which is shipped with the SPOT package.

> resSMS <- spotSmsEmoa(zdt2,

+ lower=c(0,0),

+ upper=c(1,1),

+ control=list(mu=32,maxeval=960))

> par(mfrow=c(1,2))

> objective=t(resSMS$value)

> parameter=t(resSMS$par)

> plot(parameter, main="Pareto set",ylim=c(0,1))

> plot(objective, main="Pareto front")

● ● ● ●● ●●

●

●● ● ●● ● ●● ●● ● ● ●● ●● ●●● ● ●●● ●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto set

parameter[,1]

pa
ra

m
et

er
[,2

]

● ● ●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●
● ●

●

●

●

●
●

● ●

●

●
● ●

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

Pareto front

objective[,1]

ob
je

ct
iv

e[
,2

]

Both, SMS-EMOA and NSGA2 approximate the Pareto front roughly with
960 function evaluations. Using a reference point, the hypervolume can be com-
puted for both Pareto fronts received from SMS-EMOA and NSGA2.

> volNSGA<-dominated_hypervolume(t(resNSGA$value),c(11,11))

> volNSGA

[1] 120.2826

> volSMS<-dominated_hypervolume(resSMS$value,c(11,11))

> volSMS

[1] 119.1131

5 MCO with SPOT

Up to version 0.1.1550, SPOT could only be applied to single objective opti-
mization problems (Bartz-Beielstein et al., 2005). Despite this, many real world
applications feature more than just one quality criterion. Therefore, SPOT was
extended to be applicable to MCO. This application of SPOT is referred to as
MSPOT.

12 Zaefferer et al.

The basic principle of SPOT remains the same for MCO problems. An initial
design is created based on sampling in the decision space, e.g, by a Latin Hy-
percube Design (LHD) design. This design is evaluated on the target function.
Based on this information, one surrogate model is build for each objective of
the MCO problem. The models are exploited to suggest promising new design
points, which are evaluated on the target function. Based on this new informa-
tion, a better model can be build. This process is iterated until a termination
criterion is reached.

Several surrogate models in SPOT can be used for MCO. To exploit the
generated models, two tools are available in MSPOT. The first one is the naive
sampling approach, the second one is the utilization of typical MCO algorithms.
Both will be demonstrated in this document.

5.1 The naive sampling approach

One way to do multi objective optimization with SPOT, is to exploit the
surrogate models by evaluating a large LHD. The ”best” points of the design will
be suggested for evaluation on the real target function. In this context, ”best” is
defined to be the lowest dominated sorting rank. If the rank of several points is
the same, the hypervolume contribution of each single point will be considered
to choose between them. To test this approach with MSPOT, a configuration
list is created first:

> config=list()

The NSGA2 and SMS-EMOA algorithms used 960 function evaluations. This
is quite a lot for SPOT, as building the models is rather expensive. In fact,
SPOT is mostly used in problems that use only a small but costly number of
function evaluations, like algorithm tuning or industrial real world applications.
Therefore, the budget for SPOT is restricted to just 40 evaluations:

> config$auto.loop.nevals=40

Next, the size of the large LHD is specified with 1 000 points.

> config$seq.design.size=1000

In each sequential SPOT step, a certain number of design points will be
evaluated on the target function. In this case, 10 points are chosen for each step.

> config$seq.design.new.size=10

Since the invoked test function is not noisy, old design points do not have
to be reevaluated. As a consequence, repeats in the sequential or initial design
are not needed. SPOT’s OCBA feature should not be used with deterministic
problems either (Chen, 1995) .

MCO with SPOT 13

> config$seq.design.oldBest.size=0

> config$spot.ocba=FALSE

> config$seq.design.maxRepeats = 1

> config$init.design.repeats = 1

Two functions have to be chosen in the list. The first function is the surrogate
model interface. For multi objective optimization ”spotPredictForrester”, ”spot-
PredictMlegp”, ”spotPredictEarth”, ”spotPredictRandomForest” and ”spotPre-
dictLm” are good choices. Since it is fast and robust, the Multivariate Adaptive
Regression Spline Model (”spotPredictEarth”) is selected (Friedman, 1991) .

The second function specifies how the surrogate model is optimized. This is
NA in this case, because only the sampling approach is used. Alternatively, it
can be ”spotModelParetoOptim”, which will be demonstrated in the following
section 5.2.

> config$seq.predictionModel.func="spotPredictEarth"

> config$seq.predictionOpt.func<-NA

Finally, SPOT needs some information about the target function. Its region
of interest, in which the parameters are varied, has to be specified, as well as the
name of target function itself. Additionally, a reference point can be given.

> config$alg.func=zdt2

> config$alg.roi=spotROI(lower=c(0,0),upper=c(1,1))

> config$mco.refPoint=c(11,11)

Now, using the above configuration, SPOT can be started.

> res1<-spot(spotConfig=config)

spot.R::spot started

The results can for instance be plotted as follows.

> par(mfrow=c(1,2))

> objective=res1$mco.val

> parameter=res1$mco.par

> plot(parameter, main="Pareto set",ylim=c(0,1))

> plot(objective, main="Pareto front")

14 Zaefferer et al.

●●

●

●

●

●

●

●

●

●● ● ● ●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto set

VARX1

V
A

R
X

2

●
●

●

●

●

●

●

●

●

●
● ●

●
●

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8

Pareto front

Y.1

Y.
2

5.2 Optimization of the surrogate models

The results observed in the previous section were far from good. Although
they were based on a low number of function evaluations, they can be improved
by choosing better settings. Therefore, SMS-EMOA is chosen to optimize the
surrogate models. Moreover, instead of creating one large design in each step,
SMS-EMOA is provided with a large budget.

> config$seq.design.size=10

> config$seq.predictionOpt.func="spotModelParetoOptim"

> config$seq.predictionOpt.method="sms-emoa"

> config$seq.predictionOpt.budget=1000

> config$seq.predictionOpt.psize=20

SPOT is started again with the altered configuration.

> res2<-spot(spotConfig=config)

spot.R::spot started

Again we can plot the results.

> par(mfrow=c(1,2))

> objective=res2$mco.val

> parameter=res2$mco.par

> plot(parameter, main="Pareto set",ylim=c(0,1))

> plot(objective, main="Pareto front")

MCO with SPOT 15

● ●● ●●●● ●● ●● ●● ●●● ● ●● ●● ●● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto set

VARX1

V
A

R
X

2

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto front

Y.1

Y.
2

Additionally, the hypervolume of the found fronts can be used to compare
the different results generated.

> volsamp<-res1$mco.hvolume

> volopt<-res2$mco.hvolume

> volNSGA

[1] 120.2826

> volSMS

[1] 119.1131

> volsamp

[1] 118.7766

> volopt

[1] 119.9143

The hypervolumes generated are in a similar range. Of course, this is only a
single experiment and would have to be reevaluated several times with different
seeds to gain statistical significance. It has to be noted that MSPOT uses 40
evaluations of the target function only. Moreover, a complete archive of all non
dominated solutions is kept for MSPOT. For a fair comparison, this should
be compared against a similar archive of SMS-EMOA and NSGA2, instead of
comparing it against the final populations.

6 MSPOT: Advanced Topics

6.1 Surface plot report

SPOT can do more but just solve the optimization problem. It also provides
the means to gain information on the behaviour of the problem landscape. One
easy way to do so is to use the surface plot report functions, which are ”spotRe-
port3d” and ”spotReportContour”.

Running these functions yields:

16 Zaefferer et al.

> spot(spotConfig=append(list(report.func="spotReportContour",

+ report.interactive=FALSE),res2),spotTask="rep")

0

2

4
6

8

10

●●●● ● ●●● ●●● ●● ●● ●● ●●●

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

predicted Model: Y.2

VARX1

V
A

R
X

2

0.0

0.2

0.4

0.6

0.8

1.0

●●●● ● ●●● ●●● ●● ●● ●● ●●●

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

predicted Model: Y.1

VARX1

V
A

R
X

2

In these contour plots, crosses indicate a point sampled on the target function
and black dots (here: very close to the horizontal axis) indicate points that belong
to the approximated Pareto front.

With the above setting of report.interactive = FALSE, the surface plots
will always show the behavior of the first two optimized parameters. If more
than two are optimized, the user can use a simple GUI (see Fig. 2) to choose
two parameters for plotting:

> spot(spotConfig=append(list(report.func="spotReportContour",

+ report.interactive=TRUE),res2),spotTask="rep")

Fig. 2: Twiddler interface

Here, the user can choose which parameters to plot, using the sliders a and b.
Slider C specifies which point from the Pareto front should be used to determine
the remaining parameters, which are assumed to be constant for the plot. When
just two parameters are optimized, this choice has no influence.

6.2 Different models for each objective

In the above examples, each objective was modeled by the same chosen surro-
gate modeling technique. It could however occur, that the user wishes to model

MCO with SPOT 17

the first objective with a Kriging model and the second with a Random Forest
model.

This is possible, by using the following configuration:

> config$seq.predictionModel.func="spotPredictMCO"

> config$mco.configs=list(list(seq.predictionModel.func="spotPredictForrester"),

+ list(seq.predictionModel.func="spotPredictRandomForest"))

> res3<-spot(spotConfig=config)

spot.R::spot started

> res3$mco.hvolume

[1] 110.097

Here, the mco.configs element is a meta-list containing several configuration lists.
Any settings not specified in mco.configs will be taken from the main config-
uration list (here: config) or set to default values. Instead of selecting different
models, one can use the mco.configs meta list to choose different settings for
two models of the same type.

7 Tasks

Imagine you have two target functions, both with a spherical shape, but with
their center at different points. Assume that both functions are defined as:

f1(x1, x2) = (x1 − 2)2 + (x2 + 4)2 (2)

f2(x1, x2) = (x1 + 1)2 + (x2 − 3)2 (3)

Together, these functions form a two-objective optimization problem, where
both f1 and f2 are minimized. Please try to solve the following tasks:

1. Implement the optimization problem in R.
2. Plot the target functions separately.
3. Without using the computer any further, what do you expect the Pareto

front to look like? Describe and/or draw your idea.
4. Optimize the problem, using the NSGA2 Algorithm in R.
5. Plot Pareto front and Pareto set of the NSGA2 results.
6. Optimize the problem using SPOT.
7. Plot the Pareto front and set, compare with NSGA2 results. Why do results

differ? Also, Compare with expectation from question 3.
8. Plot the surrogate models with SPOT and check whether they represent the

actual target functions. If not, why?
9. In your opinion, which is the most suited way to solve this specific optimiza-

tion problem, and why?

8 Solutions

Solutions to the tasks can be requested from the authors via E-Mail.

Bibliography

Bader, J. & Zitzler, E. (2011). HypE: An Algorithm for Fast Hypervolume-Based
Many-Objective Optimization. Evolutionary Computation, 19(1), 45–76.

Bartz-Beielstein, T., Lasarczyk, C., & Preuß, M. (2005). Sequential parameter
optimization. In B. McKay & others (Eds.), Proceedings 2005 Congress on
Evolutionary Computation (CEC’05), Edinburgh, Scotland, volume 1 (pp. 773–
780). Piscataway NJ: IEEE Press.

Beume, N., Naujoks, B., & Emmerich, M. (2007a). SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of Operational
Research, 181(3), 1653–1669.

Beume, N., Naujoks, B., & Emmerich, M. (2007b). SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of Operational
Research, 181(3), 1653–1669.

Chen, C. H. (1995). An effective approach to smartly allocate computing budget
for discrete event simulation. In Proceedings of the 34th IEEE Conference on
Decision and Control (pp. 2598–2605).

Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2007). Evolu-
tionary Algorithms for Solving Multi-Objective Problems. Springer, New York,
2nd edition.

Deb, K. (2001a). Multi-Objective Optimization using Evolutionary Algorithms.
Wiley-Interscience Series in Systems and Optimization. New York NY: Wiley,
1 edition.

Deb, K. (2001b). Multi-Objective Optimization using Evolutionary Algorithms.
New York NY: Wiley.

Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Stat.,
19(1), 1–141.

Igel, C., Hansen, N., & Roth, S. (2007). Covariance Matrix Adaptation for
Multi-objective Optimization. Evolutionary Computation, 15(1), 1–28.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evo-
lutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2),
173–195.

Zitzler, E. & Thiele, L. (1998). Multiobjective Optimization Using Evolutionary
Algorithms—A Comparative Study. In A. E. Eiben (Ed.), Parallel Problem
Solving from Nature (PPSN V) (pp. 292–301).: Springer, Berlin.

Kontakt/Impressum

Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe ”CIplus”. Alle
Veröffentlichungen dieser Reihe können unter
www.ciplus-research.de

oder unter
http://opus.bsz-bw.de/fhk/index.php?la=de

abgerufen werden.

Köln, Januar 2012

Herausgeber / Editorship

Prof. Dr. Thomas Bartz-Beielstein,
Prof. Dr. Wolfgang Konen,
Prof. Dr. Horst Stenzel,
Dr. Boris Naujoks
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
Cologne University of Applied Sciences,
Steinmüllerallee 1,
51643 Gummersbach
url: www.ciplus-research.de

NA
Prof. Dr. Thomas Bartz-Beielstein,
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
Cologne University of Applied Sciences,
Steinmüllerallee 1, 51643 Gummersbach
phone: +49 2261 8196 6391
url: http://www.gm.fh-koeln.de/~bartz/
eMail: thomas.bartz-beielstein@fh-koeln.de

ISSN (online) 2194-2870

www.ciplus-research.de
http://opus.bsz-bw.de/fhk/index.php?la=de
www.ciplus-research.de
http://www.gm.fh-koeln.de/~bartz/

	A Gentle Introduction to Multi-Criteria Optimization with SPOT
	Multi Criteria Optimization: A Simple Example
	Short overview on MCO
	Evolutionary Multiobjective Optimization Algorithms

	MCO in R: Language, Packages, Algorithms
	The mco package
	The emoa package
	The SPOT package

	A simple Testfunction: ZDT2
	MCO with SPOT
	The naive sampling approach
	Optimization of the surrogate models

	MSPOT: Advanced Topics
	Surface plot report
	Different models for each objective

	Tasks
	Solutions

