
Distance Measures for Permutations in
Combinatorial Efficient Global Optimization

Martin Zaefferer, Jörg Stork, and Thomas Bartz-Beielstein

Cologne University of Applied Sciences
Faculty for Computer and Engineering Sciences, 51643 Gummersbach, Germany

firstname.lastname@fh-koeln.de

Abstract. For expensive black-box optimization problems, surrogate-
model based approaches like Efficient Global Optimization are frequently
used in continuous optimization. Their main advantage is the reduction
of function evaluations by exploiting cheaper, data-driven models of the
actual target function. The utilization of such methods in combinatorial
or mixed spaces is less common. Efficient Global Optimization and re-
lated methods were extended recently to such spaces, by replacing con-
tinuous distance (or similarity) measures with measures suited for the
respective problem representations.
This article investigates a larg set of distance measures for their applica-
bility to various permutation problems. The main purpose is to identify,
how a distance measure can be chosen, either a-priori or online. In de-
tail, we show that the choice of distance measure can be integrated into
the Maximum Likelihood Estimation process of the underlying Kriging
model. This approach has robust, good performance, thus providing a
very nice tool towards selection of a distance measure.

Keywords: Efficient Global Optimization, Surrogate Model, Combina-
torial Optimization, Permutation, Distance Measure, Genetic Algorithm

1 Introduction

One frequent issue in real-world optimization problems are costly objective
function evaluations. These may be caused by time-consuming simulations or
complex trials and measurements. In continuous optimization, surrogate-model
based approaches use cheaper, data-driven models to reduce the number of ob-
jective function evaluations, e.g. in the Efficient Global Optimization (EGO)
algorithm [14]. In combinatorial optimization, surrogate models received less at-
tention. Recently, approaches from continuous modeling and optimization have
been extended to mixed or purely combinatorial problem spaces. This Radial
Basis Function Networks (RBFN), Kriging and EGO [23, 34]. A short overview
of these previous studies will be given in Sec. 2

The employed modeling tools base their prediction on measures of similarity
or distance between candidate solutions. The core idea of the extension presented
in this paper is therefore to replace the distance measures used in continuous
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spaces (e.g., euclidean or similar measures) with distance measures more suited
for the given solution representations. Two questions arise in this context:
– Which distance measure is most suited?
– How can this measure be chosen a priori as well as during the optimization

procedure, i.e., offline and online, for a given problem?
This article tries to provide answers to both questions for an important so-

lution representation type: permutations. The permutation representation is re-
quired in a large array of problems. The reader may consider production pro-
cesses, which have to be divided into several jobs to be scheduled for one or
more machines in order to achieve a timely completion. Here, several distance
measures in a Kriging model will be used to solve various problem types and
instances. The employed distance measures, Kriging model and EGO will be
introduced in Sec. 3. The performance of the various methods will be examined
in an experimental study, as outlined in Sec. 4. Observations will be described in
Sec. 5 and discussed in Sec. 6. Finally, the paper is summarized and an outlook
on future research is given in Sec. 7.

2 Previous Research

Compared to their frequent usage for continuous problem domains, surrogate
model driven approaches are relatively unknown in combinatorial or mixed opti-
mization [13]. Regarding data-driven approaches for black-box problems (which
are in the focus of this paper), Li et al. [22] proposed Radial Basis Function
Network (RBFN) models based on a weighted distance measure, replacing the
usual distance measures employed in RBFN. Their RBFN models were able
to model to mixed-integer problems. Mixed problems also occur in algorithm
tuning, where continuous, discrete, and categorical parameters may occur. In
this context, Random Forest models have been used due to their ability to cap-
ture discrete and categorical parameters [2]. Hutter [12] also describes a Kriging
model with a Hamming distance based kernel function to handle categorical
variables.

Moraglio and Kattan [23] adapted an RBFN to arbitrary distance measures
to model arbitrary combinatorial optimization problems. They performed first
tests with NK-Landscapes. Their approach has since been applied to Quadratic
Assignment Problems (QAP) [25], package-deal negotiation [8], and tree-based
problems from Genetic Programming (GP) [24]. GP has also been coupled with
RBFNs to evolve better discrete surrogate models [17]. As Moraglio and Kat-
tan [23] indicate, the generalization of RBFN for arbitrary distance is also pos-
sible with other models, e.g., with Kriging. This was recently investigated by
Zaefferer et al. [34]. Besides a linear modeling approach, Kriging and RBFN
were employed in a model-based optimization algorithm, as well as compared to
model-free algorithms. Kriging and RBFN may provide an error estimate, thus
enabling the calculation of the Expected Improvement of a candidate solution.
Hence, Efficient Global Optimization (EGO) was implemented for combinato-
rial problems. Zaefferer et al. [34] employed Hamming, Swap and Interchange
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distance. Kriging-based EGO was shown to outperform all other model-based ap-
proaches, as well as all model-free approaches. It was also shown that the choice
of distance measure has a very strong influence on optimization performance.

In this article, we will therefore focus on Kriging-based EGO only. We will
look at a much larger array of permutation problems and distance measures. Our
goal is to find problem-features, which help to identify promising distance mea-
sures. Furthermore, we will derive recommendations for the selection of problem-
specific distance measures.

3 Methods

3.1 Distance measures

In other context, some research investigated distance measures for permutations,
e.g., for the purpose of landscape analysis [29] or diversity preservation [30].
These previous studies illustrate that a large array of distance measures is avail-
able.

For the purpose of distance-based modeling for permutation problems, only
Hamming and Swap [25] as well as Interchange Distance [34] were used. Although
Hamming distance worked very well, several questions remain unanswered. This
includes performance of various other measures,or a practical decision method
towards selecting a measure when building a model.

In this study, we will analyse 14 different distance measures, as summarized in
Table 1. The given runtime complexity refers to the employed implementations.
More efficient variants may be available. All distance measures were implemented
in R1, which uses efficient C code whenever it is possible. The large runtime of
Interchange Distance is due to an unresolved dependency on slower R code.

To avoid scaling bias, all distance measures are scaled to yield values from
[0; 1]. Furthermore, cyclic or reversal independency are not guaranteed: for some
problems, a permutation may be left or right shifted (cyclic independency) or
even reversed (reversal independency), but will still yield the same function
value, e.g., in the Traveling Salesman Problem (TSP). This will not be reflected
by the distance measures in this work, but may be of interest for future research.
To give further information on the employed measures, we describe their basic
features. Since naming of measures in literature varies, this clarification is useful
to avoid confusion.

– Levenshtein and edit distance are sometimes used as synonyms. In fact, Lev-
enshtein is only one example of an edit distance. It calculates the minimum
number of deletions, insertions, or substitutions required to transform one
string (or here: permutation) into another. For an implementation we refer
to Wagner and Fischer [32].

– A swap operation is the transposition of two adjacent elements in a per-
mutation. The Swap distance is defined as the minimum number of swaps

1 R is a language for statistical computing, see www.r-project.org
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Table 1. List of investigated distance measures. TODO complexity needs revision.
Second column reports runtime complexity. Third column reports median runtime
distance calculations for permutation of size N = 30, estimated by 1000 evaluations.

Name complexity runtime [µs] Abbrev.

Levenshtein O(n2) 7 Lev
Swap O(n2) 6 Swa.
Interchange O(n2) 14 Int.
Longest Common Subsequence O(n2) 8 LCSeq
Longest Common Substring O(n2) 8 LCStr
R O(n2) 5 R
Adjacency O(n2) 6 Adj.
Position O(n2) 6 Pos.
Position2 O(n2) 6 Posq.
Hamming O(n) 2 Ham.
Euclidean O(n) 6 Euc.
Manhattan O(n) 4 Man.
Chebyshev O(n) 3 Che.
Lee O(n) 6 Lee

required to transform one permutation into another. It has also been called
precedence distance [29], or Kendall’s Tau [18, 30]. It can be computed as
described in [30]:

δSwa.(π, π
′) =

∑n
i=1

∑n
j=1 zij where zij =

{
1 if πi < πj and π′i > π′j ,
0 otherwise

.

– An interchange operation is the transposition of two arbitrary elements in
a permutation. Respectively, the Interchange (also: Cayley) distance is the
minimum number of interchanges required to transform one permutation to
another [29].

– The longest common subsequence distance counts the largest number of
elements that follow each other in both permutations, with interruptions.
We use the algorithm provided by Hirschberg [11].

– The longest common-substring distance counts the largest number of ele-
ments that follow each other in both permutations, without interruption,
i.e., all elements are adjacent. We use the implementation from [33].

– The R-distance [7, 30] counts the number of times that one element follows
another in one permutation, but not in the other. It is the same as the uni-
directional adjacency distance measure [27]. It is computed by

δR(π, π′) =
∑n−1

i=1 yi where yi =

{
1 if ∃j : πi = π′j and πi+1 = π′j+1,
0 otherwise.

– The (bi-directional) adjacency distance [27, 29] counts the number of times
two elements are neighbors in one, but not in the other permutation. Unlike
R-distance (uni-directional adjacency), the order of the two elements does
not matter.

– The Position Distance [29] is the same as Deviation Distance or Spearman’s
footrule [30], δPos(π, π

′) =
∑n

k=1 |i− j| where πi = π′j = k.
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– The Squared Position distance is Spearman’s rank correlation coefficient [30].
In contrast to the Position distance, the term |i− j| is replaced by (i− j)2

– The Hamming distance or Exact Match distance simply counts the number
of unequal elements in two permutations, i.e.

δHam.(π, π
′) =

∑n
i=1 ai where ai =

{
0 if πi = π′i,
1 otherwise

It can also be understood as an edit distance with substitutions only.
– The Euclidean distance is δEuc.(π, π

′) =
√∑n

i=1(πi − π′i)2.
– The Manhattan distance is δMan.(π, π

′) =
∑n

i=1 |πi − π′i|. It is the same as
the A-distance [30, 7].

– The Chebyshev distance is δChe.(π, π
′) = max

1≤i≤n
(|πi − π′i|).

– The Lee Distance [21] can be adapted to permutations with
δLee(π, π

′) =
∑n

i=1min(|πi − π′i|, n− |πi − π′i|).

Other distance measures are possible (and could be evolved with GA [6] or
Genetic Programming), but are not considered in this study.

3.2 Kriging for combinatorial optimization

For a detailed description of Kriging, we refer to Forrester et al. [9]. The adap-
tation to combinatorial or mixed problems was described by Zaefferer et al. [34].

The following notation is adopted from Forrester et al. [9]. Given a set of
n solutions X = {x(i)}i=1...n in a k-dimensional continuous search space with
observations y = {y(i)}i=1...n, Kriging is a method to find an expression for a
predicted value at an unknown point by interpreting the observed responses y
as if they are realizations of a stochastic process. The following set of random
vectors Y = {Y (x(i))}i=1...n is used to define this stochastic process. The random
variables Y (·) are correlated as follows [9]:

cor
[
Y (x(i)), Y (x(l))

]
= exp

− k∑
j=1

θj |x(i)j − x
(l)
j |

pj

 . (1)

The weights θj and the shape parameter pj have to be estimated. All pairs {(i, l)}
are collected in the correlation matrix Ψ . It is used in the Kriging predictor

ŷ(x) = µ̂+ψTΨ−1(y − 1µ̂), (2)

where ŷ(x) is the predicted function value of a new sample x, µ̂ is the maximum
likelihood estimate of the mean and ψ is the vector of correlations between
training samples X and the new sample x. The error of the prediction can be
estimated with

ŝ2(x) = σ̂2(1−ψTΨ−1ψT ), (3)

where σ̂2 is another parameter of the model to be estimated. The (usually small)
contribution of error due to estimation of µ̂ is omitted.

As described by Zaefferer et al. [34], Eq. (1) has to be transformed for com-
binatorial or mixed spaces:

cor
[
Y (x(i)), Y (x(l))

]
= exp(−θd(x(i),x(l))p), (4)
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where d(·) can be any distance measure for the given problem representation.
Maximum Likelihood Estimation (MLE), which comprehends an optimiza-

tion procedure, is used to determine the model parameters, i.e., θ, p, σ̂ ,and
µ̂. MLE requires a matrix inversion (also later in the prediction step, see (2)),
which can usually be performed directly or via Cholesky decomposition. In the
previous article [34], standard inversion was used. Here, we observed a problem
with standard inversion for 4 of the 14 distance measures (Int., Lev., LCSeq,
Che.). While all others worked well, these four measures may produce numerical
instability, as exemplified in Fig. 1. In case of standard inversion, the depicted
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Fig. 1. Negative concentrated log-likelihood plotted versus log θ. Likelihood landscape
for a Kriging model based on 100 solutions of the tho30 QAP instance, using Lev-
enshtein distance. Standard matrix inversion is compared to inversion via Cholesky
Decomposition. Missing values in the right plot represent non positive semi-definite
correlation matrices.

spikes in the likelihood landscape lead to a wrong choice of θ. Hence, Cholesky
decomposition is chosen instead. Preliminary experiments showed that this does
not change behavior of the other 10 distance measures.

3.3 Choosing a distance measure in Kriging

In standard/continuous Kriging, the distance measure is not actually fixed.
Rather, it can partially be understood as a parametrized distance measure. E.g.,
it may resemble Euclidean (p = 2) or manhattan (p = 1) distance. These choices
may or may not be included in the MLE process.

In combinatorial spaces, one may also have such parameters (e.g., the cost
for each of the three edit operations in the Levenshtein distance may be seen
as parameters). Apart from such special cases, the primary interest is not to
determine parameters, but rather to select from a discrete set of measures. We
suggest a very simple approach to this problem: perform MLE for each distance
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measures separately. Afterwards, the distance measure that yielded best likeli-
hood is chosen for the model. This approach will be referred to as ”All” in the
comparison of the various single distance measures.

It has to be expected, that this approach can never be as good as any ap-
proach based on the best single distance measure. This is due to the fact, that
wrong choices will occur, especially while data is still very sparse. An exception
would be the case where the underlying optimization problem has some dynamic
behavior. Then, one distance measure may be adequate in the beginning of the
optimization run, whereas another becomes better suited at the end. This is not
expected for the simple benchmark problems examined in this study. Therefore,
we expect the performance of choosing distance measure with MLE to be equal
to or worse than the best single measure.

3.4 Efficient Global Optimization

The Kriging model introduced in Sec. 3.2 can be employed in an Efficient Global
Optimization algorithm. EGO was introduced by Jones et al. [14] and recently
extended to combinatorial problems by Zaefferer et al. [34]. In this algorithm, a
Kriging model is first build based on an initial set of solutions. Based on this,
the Expected Improvement (EI) of a candidate solution is computed with [9]

EI(x) = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝφ

(
ymin − ŷ(x)

ŝ(x)

)
,

otherwise EI(x) = 0. Here, ymin is the lowest target function value found so
far. EI determines how much improvement can be expected from the candidate
solution to be predicted. The solution that maximizes EI is evaluated with the
target function. The result is used to update the Kriging model until a termina-
tion criterion is fulfilled (here: a fixed budget of target function evaluations).

4 Experimental Setup

4.1 Correlation between distances

As a first step, correlation between the 14 different distance measures is investi-
gated. Distances between all solutions of length n = 7 are computed (i.e., 5040
distance values for each measure), and the correlation of the distance values is
calculated.

4.2 Matrix condition

To quickly assess whether all measures yield positive semi-definite correlation
matrices, we performed an experimental test. Ten samples were created ran-
domly, while another 90 are created by consecutive interchange mutations. This
yields 100 samples of varying distances. This was done for various dimensions
(n = {5, 6, 7, 8, 9, 10, 20, 50, 100}). In case of the smallest instance, the 100 sam-
ples represent a very large section of the search space (which has a size of
N ! = 120), whereas the larger instances yield less crowding.
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Since θ will influence the correlation matrix condition, it was varied from
10−10 to 1010. For each distance measure, each dimension n, and each θ the
correlation matrix is computed and its condition checked.

4.3 Benchmark Problems

For all further experiments, 5 different permutation problem types are investi-
gated.
– As in [34], four instances of the Quadratic Assignment Problem (QAP) [4]

from the QAPLIB [5] are chosen (nug30, nug12, tho30 and kra32). In the
QAP N facilities have to be assigned to N locations. Assignment cost is
minimized, based on flow between facilities and distance between locations.

– Four instance of the Flow-shop Scheduling Problem (FSP) [31] are chosen
(reC05, reC13, reC19, reC31 [26]) from the OR-Library [3]. Here, the finish-
ing time of the last of n jobs sequenced on m machines is minimized.

– Three TSP instances are chosen from the TSPLIB [28] (bayg29, fri26, gr24).
In the TSP, the cost or length of a route through several locations is mini-
mized, where each location has to be visited once.

– Three instances of the Asymetric TSP (ATSP) are generated. For each in-
stance, a distance matrix is created randomly with a uniform distribution.
The three instances are of size 10, 20, and 30 (i.e., the number of locations to
visit). The main difference to TSP is that the cost (or duration) of traveling
between two locations is not independent of direction. Thus, the distance
matrix can be asymmetric. The instances are referred to as atsp10, atsp20
and atsp30.

– Finally, four instances of the single-machine total Weighted Tardiness prob-
lem (WT) [1] are chosen, also from the OR-Library [3] (the first four of
length 40, i.e., wt40a, wt40b, wt40c, wt40d). Here, n jobs are sequenced on
one machine that can handle one job at a time. The tardiness of a schedule
for all jobs, weighted by a set of n given weights is minimized. It depends on
the given processing times and due dates of each job.
For QAP, TSP, ATSP and WT the dimension (i.e. length of the permutation)

is given by the number in the instance name. For FSP, the length (n) is 20, 20,
30 and 50 for reC05, reC13, reC19 and reC31 respectively.

We use this benchmark set under the artificial assumption of costly target
function evaluation. While some of these problems have actual real world rele-
vance (e.g., based on real world data), none may be considered expensive. This
allows for a more in-depth study, providing first results, which of course should
be validated with actually expensive problems from industry.

4.4 Local Fitness distance correlation

Fitness Distance Correlation [15] is a popular measure for the analysis of fitness
landscapes. Several samples are drawn from the search space. Their fitness values
and their distances to the known optimum are determined and the corresponding
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correlation (between fitness and distance) is computed. In the context of mini-
mization, small distances should correlate with low fitness values in case of easy
problems, i.e., positive correlation. Misleading problems on the other hand may
yield negative correlation. Thus, the FDC values may represent an indicator of
how difficult a problem is.

We are interested in FDC from a different perspective. Rather than calculate
FDC to estimate the difficulty of a landscape based on a given distance measure,
it would be interesting to see whether FDC is of any use to identify a suitable
distance measure for a given fitness landscape.

To avoid the issue of unknown global optima, one can resort to several ways
of replacing the optimum by other reference solutions. All these have their own
drawbacks (cf. Kubiak [20]). Kallel and Schoenauer [16] suggested to use the
best solution in the set instead of the global optimum to asses the FDC value,
thus yielding a Local FDC (LFDC), due to the fact that the reference sample
is only a local optimum. In the experiments, LFDC will be calculated based on
20,000 unique, randomly created individuals for each instance.

4.5 Optimization performance: EGO versus GA versus RS

Finally, we compare optimization performance. To that end, the Kriging based
EGO, a model-free GA and Random Search (RS) are used to optimize the given
problem instances under a strictly limited budget of up to 200 function evalu-
ations. GA and RS are baselines in this comparison. Their main purpose is to
identify whether the various EGO variants with different distance measures work
or not. That means, any of the 15 EGO variants (14 distance measures, and a
combination of all) that does not outperform RS or GA should be disregarded.

The GA used in the comparison will use cycle crossover and the mutation
operator is an interchange of arbitrary elements. Furthermore the algorithm will
use a population size of ten, crossover rate 0.5, mutation rate 1/N , tournament
selection with tournament size two and tournament probability 0.9. Basically,
the very same GA is used to optimize the surrogate models in the EGO variants.
However, due to the assumption that the surrogate model is much cheaper, the
budget is increased to 10,000 function evaluations, and the population size is
increased to 20. The EGO algorithm will start with an initial set of ten solutions.

For a fair comparison of actual competitors, all these parameters would re-
quire tuning. But since the basic GA is rather just a baseline, this is not neces-
sary. Also, the various EGO variants use the exact same settings thus yielding
a fair comparison among themselves.

5 Observations

5.1 Correlation, LFDC

5.2 Matrix condition

It could be observed, that for most measures, a positive semi-definite matrix
could be determined for each n, but naturally not for each θ. The lower θ is, the
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Fig. 2. Heatmap of correlation between distance measures (left). Heatmap with LFDC
values (right).

more likely are correlation matrices that are not positive semi-definite. The ex-
ception was the adjacency distance measure. Here, for the two smallest problem
sizes (n = 5, n = 6), none of the calculated correlation matrices was posi-
tive semi-definite. While these low numbers of N do not occur in any of the
benchmarks used in this paper, one should keep in mind to avoid using adja-
cency distance when the number of samples may represent a large portion of the
search space.

5.3 Optimization performance

Figure 3 shows the results of the optimization experiments, comparing the me-
dian of the final best values found. The distance measures (e.g. Lee., Ham.)
indicate EGO with a Kriging model based on the respective measure.

EGO based on Chebyshev distance (Che.) is not shown, as it is the only
distance measure to never outperform random search. Some structure can be
discovered, regarding similarity of results for the different instances. Three main
groups can be identified: first, The QAP instances, second, the TSP and ATSP
instances, and third, the WT and FSP instances. Members of each group have a
similar pattern, although the best performing method may not be identical for
all members of a group. These three blocks do coincide with the (more vague)
structure that was visible in the LFDC results. At the same time, large LFDC
values may not be directly associated with improved optimization performances.
For instance, Pos. and Posq. had large LFDC values for the FSP instances, but
never rank better than on the fourth position. Posq. Distance has especially
bad optimization performance for reC13 and reC19, in spite of showing largest
LFDC.

Overall, including all measures in the MLE process (All) never ranks worse
than 3rd best, making it the most robust method in this test bed. All ranks
first place in 7 of 18 instances. The single best distance measures is Hamming
distance, yielding best results in 6 of the 18 test problems, but receiving much
lower ranks for some of the other instances. Considering the various problem



Permutation Distance Measures in EGO 11

types, the single best distance measures are: Ham. for QAP, Lev. for FSP, Adj. for
TSP, R for ATSP, Pos. for WT. Random search performs worst, as expected, only
the Chebyshev distance based approach has similar performance. The model-free
GA is always outperformed by at least 5 EGO variants. Choosing the wrong
distance measure may however yield to performance worse than the model-free
GA.
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Fig. 3. Optimization performance: Median performance of each method and each prob-
lem instance. Smaller values are better.

6 Discussion

While it was shown that LFDC does expose some similar structure as the opti-
mization performance, it is apparently unable to identity an well-suited measure
for a specific problem. Thus, one should take great care when using such kind
of indicators to select a measure. Even more so, as it was not even tested for
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smaller sample sizes. Investing more effort into LFDC does seem unprofitable,
considering these results.

Rather, the nice and robust performance of choosing a distance measure dur-
ing MLE makes for a promising result. Here, the only issue is to carefully avoid
numerical problems, i.e., to use matrix inversion via Cholesky decomposition. At
the same time, the computational effort may make it necessary to restrict the
set of distance measures used in this approach. In such cases, Hamming distance
should always be in the set. It is the single best performing measure, and the
cheapest, too.

7 Summary and Outlook

This work investigated the suitability of various distance measures in surrogate
modeling for the optimization of several permutation problems. It was shown,
that each problem type may require a different distance measure. Correlation
between distance and fitness values (LFDC) proved to be a poor way of selecting
a distance measure for a given problem class or instance. On the other hand,
integrating the selection of a measure into the MLE process of a Kriging model
proved to be a very well performing and robust approach.

Research may also focus on learning distance function for Kriging-based mod-
els in combinatorial spaces. Learning of correlation (or kernel) functions with
Genetic Programming is not new [10, 19]. Also, distance functions have been
evolved with GA [6] in the context of string matching. Combining both ideas
to evolve better distance functions for distance-based models may thus be an
interesting path to follow. If interpretable distance measures evolve, this may
also give interesting insight into the underlying problems.
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