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Abstract. Kernel based surrogate models like Kriging are a popular
remedy for costly objective function evaluations in optimization. Often,
kernels are required to be definite. Highly customized kernels, or kernels
for combinatorial representations, may be indefinite. This study investi-
gates this issue in the context of Kriging. It is shown that approaches
from the field of Support Vector Machines are useful starting points, but
require further modifications to work with Kriging. This study compares
a broad selection of methods for dealing with indefinite kernels in Krig-
ing and Kriging-based E�cient Global Optimization, including spectrum
transformation, feature embedding and computation of the nearest defi-
nite matrix. Model quality and optimization performance are tested. The
standard, without explicitly correcting indefinite matrices, yields func-
tional results, which are further improved by spectrum transformations.

1 Introduction

When optimization requires time-consuming experiments, surrogate models are a
well established approach to reduce the load of objective function evaluations [8].
Kernel-based models are a popular choice, e.g., Support Vector Machines (SVM)
and especially Kriging. Often, kernels are required to be positive semi-definite
(PSD), e.g., to allow for the existence of a map to a higher dimensional fea-
ture space (kernel trick) or to allow for interpretation of kernel matrices as a
correlation matrices [20, 5]. While ordinary kernels are PSD, users may have
to apply uncommon kernels [19]. One example are distance-based kernels for
combinatorial optimization problems, that may not be definite [17, 26, 25]. Even
in real-valued search spaces, prior knowledge can be used to design promising,
custom, indefinite kernels. While research on indefinite kernels with Kriging is
sparse, the SVM field provides an useful starting point [19].

This study outlines existing techniques for dealing with indefinite distances
and kernels. The issues of their application to Kriging are elaborated and possible
solutions are explained. A comparative test-study with transparent, artificial
test-functions is presented, with the goal of determining the benefit of di↵erent
indefiniteness correction methods.

2 Terms and Definitions

This study makes use of the following concepts.
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Input space: The input space is a non-empty set X .
Sample: A sample x 2 X can be a vector (continuous or discrete), string, tree
or some other object.
Kernel function: A symmetric function k(x, x0) with k : X ⇥ X ! R.
Distance function: A symmetric function d(x, x0) with d : X ⇥ X ! R,
d(x, x0) � 0 and d(x, x0) = 0 if x = x

0.
Distance metric: A distance function d(x, x0) which a) is zero i↵ x = x

0 and
b) fulfills the triangle inequality d(x, x0) + d(x0

, x

00) � d(x, x00).
Kernel matrix: A matrix K with element kij = k(xi, xj).
Distance matrix: A matrix D with element dij = d(xi, xj).
Ill-conditioning: A symmetric matrix is ill-conditioned if |�n|/|�1| is large. �n

is the largest and �1 the smallest eigenvalue. Ill-conditioning is not in the focus
of this paper, but may require related methods.
Definiteness: A symmetric n⇥nmatrixA is positive definite (PD) i↵ cAcT > 0
for all c 2 Rn. This is equivalent to all eigenvalues �1  �2  ...  �n of A
being positive. Respectively, a matrix is negative definite (ND) i↵ all eigenvalues
are negative. The matrix is Positive or Negative Semi-Definite (PSD, NSD), i↵
all eigenvalues are non-negative (i.e., some are zero) or non-positive. A kernel
matrix is usually required to be PSD. A broader class are Conditionally PSD
or NSD (CPSD, CNSD) matrices, with the condition

Pn
i=1 ci = 0. If a matrix

matches none of these criteria, it is indefinite.
A function k is PSD (NSD) i↵

Pn
i=1

Pn
j=1 cicjk(xi, xj) � () 0, for all n 2 N

and x 2 X . It is conditionally definite if
Pn

i=1 ci = 0. A distance measure
d(x, x0) is CNSD i↵ the Gaussian kernel k(x, x0) = exp(�✓d(x, x0)) is PSD for
all ✓ > 0 [20, Proposition 2.28]. In case of SVM, PSD kernels guarantee that the
mapping into some higher dimensional feature space exists (kernel trick) [20].
Correlation function: A special case of PSD kernels are correlation functions.
Their values should be �1  k(x, x0)  1, and k(x, x0) = 1 if x = x

0. Correlation
matrices are required for statistical models like Kriging. The PSD requirement
becomes clear when considering a linear combination of random variables. In-
definite matrices would imply negative variances of such combinations.
Kriging: This definition is based on [5] and some adaptations in [26]. Given
a set of n samples X = {xi}, observations y = {yi} and i = 1 . . . n, Kriging
interprets the observed responses y as realizations of a stochastic process. The
set of random vectors Y = {Y (xi)} is used to define this stochastic process.
Correlations can, e.g., be modeled by the kernel

cor [Y (x), Y (x0)] = k(x, x0) = exp(�✓d(x, x0)). (1)

with ✓ 2 R+. Both k(x, x0) and d(x, x0) can be chosen depending on the problem.
For example, in case of combinatorial optimization d(x, x0) can be a distance
measures for binary strings, permutations, or trees [16, 26].
Kriging predictor: The correlation matrix K is used in the predictor function

ŷ(x) = µ̂+ kTK�1(y � 1µ̂), (2)
where ŷ(x) is the predicted function value of a new sample x, µ̂ is the Maximum
Likelihood Estimate (MLE) of the process mean, 1 is a vector of ones and k
is the column vector of correlations between training samples X and the new
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sample x. Kernel parameters (e.g., ✓) are determined by MLE. The MLE based
on uncorrected, indefinite correlation matrices can be very misleading, producing
unusable models. As an indefinite matrix can not be a correlation matrix, a basic
assumption of the model is violated. Hence, indefiniteness requires correction.
Uncertainty estimate: The uncertainty of the prediction is estimated with

ŝ

2(x) = �̂

2(1� kTK�1k), (3)
where �̂

2 is an estimate of the process variance, also determined by MLE.
E�cient Global Optimization: The uncertainty estimate ŝ(x) is used in the
E�cient Global Optimization (EGO) algorithm [10]. In EGO, a Kriging model
is first built based on an initial set of observations y with elements yi = f(xi).
Here, f : X ! R is an objective function to be minimized. It is assumed to be
very expensive to evaluate (due to consumption of time or other resources). If
ŝ(x) > 0, the Expected Improvement (EI) [14] of a sample is

EI(x) = (min(y)� ŷ(x))�

✓
min(y)� ŷ(x)

ŝ(x)

◆
+ ŝ(x)�

✓
min(y)� ŷ(x)

ŝ(x)

◆
,

else EI(x) = 0, where � is the normal cumulative distribution function, and �

the normal probability density function. The sample x that maximizes EI(x) is
evaluated with f(x). The resulting data is used to update the model. This repeats
until a termination criterion is fulfilled (e.g., function evaluation budget).

3 Handling Indefinite Kernels

Several recent studies on SVMs (and related methods) dealt with indefinite ker-
nels, cf. the survey in [19]. This topic has seen less attention in connection to
Kriging [12, 3, 2]. Four types of methods can be identified. Spectrum transforma-

tions attempt to transform the matrix such that all eigenvalues have the desired
sign. They have been used for SVMs [19] and, to some extend, for Gaussian
Processes [2]. They are outlined and extended by repair methods in Sec. 3.1 to
3.3. Nearest matrix algorithms (Sec. 3.4) try to find matrices that are definite as
well as close to the original matrices. Feature embedding (Sec. 3.5) understands
the indefinite similarities (or distances) as features, and uses a standard, definite
kernel to compute a surrogate similarity based on these features. Method modi-

fications have been introduced to remove the necessity of definiteness in SVMs,
e.g., by converting the quadratic programming problem to a linear one (LP-SVM
or 1-norm SVM [13, 27, 11]). Method modifications are usually not transferable
to Kriging and hence not considered here.

In the following, K̃ denotes the definiteness-corrected variant of K. Respec-
tively, k̃ will be the modified variant of k (cf. Eq. (2)). For distances, D̃ and d̃
are employed equivalently.

3.1 Spectrum Transformation: Kernel

The basis for the spectrum transformation is the decomposition of the kernel
matrix K = U⇤UT

, where U is the matrix of eigenvectors of K, ⇤ = diag(�)
the diagonal matrix containing the eigenvalues of K. Following Chen et al. [4],
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the spectrum transformation can be written as a linear transformation based on
some vector a 2 Rn:

K̃ = AK with A = Udiag(a)UT
. (4)

Several choices for a are available [23, 19].

I) Spectrum flip transforms the eigenvalues to their absolute values, with �̃i =
|�i| and aflip = sign(�). With Eq. (6) and using aflip, the resulting approach is
very similar to the one described by Loosli et al. [11] for SVMs in Krein spaces.

II) Spectrum clip removes negative eigenvalues by setting them to zero, with
�̃i = max(�i, 0) and aclip = {I(�1), ..., I(�n)}, where I(�i) = 1 if �i � 0 else
I(�i) = 0. Spectrum clip relates to the Moore–Penrose pseudoinverse [15], which
is sometimes used in case of ill-conditioned K.

III) Spectrum shift uses �̃i = �i+ ⌘ with ⌘ 2 R+ and K̃ = K+ ⌘In. Shifting is
the same as the nugget e↵ect that may be used in the Kriging model, where ⌘ is
an additional parameter determined by MLE. It may be reasonable to combine
it with some of the other transformations, e.g., to deal with numerical issues or
noise. The nugget e↵ect is often used to regularize ill-conditioned K [15].

IV) Spectrum square uses �̃i = (�i)2 and asqr = �. Also: K̃ = KK.

V) Spectrum di↵usion uses �̃i = exp(�i) and adiff = exp(�)/�. This leads to
the di↵usion Kernel, with K̃ = exp(K) [23].

Of all these transformations, only shift (cf. nugget e↵ect [5, 15]) and clip (cf.
pseudo-inverse [15] or multi dimensional scaling [3]) have been used with Kriging,
although mostly for the purpose of dealing with noise or ill-conditioning.

The same transformationA has to be applied to k for prediction (see Eq. (2)):

k̃ = Ak. (5)
In case of spectrum shift, Eq. (5) is not required since the spectrum shift only
a↵ects self-similarities k(x, x). While computing k̃ is a consistent way to treat
new test samples [4], it has been noted as a drawback due to the e↵ort of (5)
for each single prediction [11]. This issue can be remedied as follows. In the
Kriging predictor given in Eq. (2), kTK�1 is computed. With the respective
transformations we can prove that:

k̃T K̃�1 = (Ak)T K̃�1 = kTAT K̃�1
. (6)

The computation of AT K̃�1 has to be performed only once after training, since
it does not depend on the new sample. Afterwards, prediction requires only the
usual computational e↵ort of the Kriging predictor. Using Eq. (4) and UT =
U�1 we can also prove that

k̃T K̃�1 = kTK�1
. (7)

Similarly, the uncertainty estimate in Eq. (3) uses kTK�1k. With Eq. (4), (5)
and (6) this becomes:

k̃T K̃�1k̃ = kTAT K̃�1Ak. (8)
Hence, AT K̃�1A needs to be computed only once. In the following, PSD-

correction refers to all methods that transform the spectrum of the kernel matrix,
with K̃ = SPECPSD(K).
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3.2 Spectrum Transformation: Distance

Spectrum transformations can also be applied to distances. PSD-correction can
be applied directly via D̃ = SPECNSD(D) = �SPECPSD(�D). New data is
handled accordingly, i.e., d̃ = Ad. Equations (6), (7) and (8) are not useful in
this case. Thus, e↵ort increases for prediction but decreases for MLE.

Alternatively, spectrum transformations can be used to generate CNSD ma-
trices as described by Glunt et al. [6]. First, Q = I � (2vvT )/(vTv) with

v = 1, 1, ..., 1,
p
n is computed and used to yield bD = Q(�D)Q. Then, bD(�n,�n)

is extracted, which is bD without last row and column. The matrix Ď is then
constructed using SPECPSD( bD�n,�n) and the unchanged last row and column

of bD. Finally, the matrix in the original form is D̃ = �QĎQ. With spectrum
clip, this approach is similar to Multi Dimensional Scaling, as used by Boisvert
et al. [3] to correct indefiniteness in a Kriging model.

Due to the more complex transformations in the CNSD case, d̃ = Ad is no
longer valid. Instead, the augmented distance matrix Daug is computed, which
includes distances between all training and new data. Then,

Daug =


D d
dT 0

�
and (after transformation)


D̃ d̃
d̃T

�̃

�
= D̃aug, (9)

where �̃ is the potentially non-zero self-distance of the transformed new data. The
resulting d̃ can be used in Eq. (1) and Eq. (2). In the following, spectrum trans-
formations of the distance matrix are denoted with NSD- or CNSD-correction.

3.3 Spectrum Transformations: Condition-Repair

The spectrum transformations may yield definite matrices that do not fulfill the
additional conditions required for distance and correlation functions (cf. Sec. 2).
One consequence is, that uncertainty estimates for observed samples (training
data) become non-zero. This may stall the optimization progress (cf. a similar
issue with the nugget e↵ect described in [5]). Methods that mend this issue are
referred to as condition-repair.

A correlation matrix can be repaired with k̃

⇤
ij = k̃ij/sqrt(k̃iik̃jj) [18]. A

CNSD distance matrix D̃ can be repaired with d̃

⇤
ij = 2d̃ij � d̃ii � d̃jj . The result

is CNSD, non-negative and has zero diagonal [21]. In case of condition-repair,
correlations k̃ and distances d̃ between training data and new samples have to
be derived as outlined in Eq. (9). Spectrum shift only changes the diagonal of K.
Its influence on the uncertainty estimate can be remedied by re-interpolation [5].

3.4 Nearest Matrix Approach

Finding the nearest correlation matrix [7] or nearest euclidean distance ma-
trix [6] is closely related to spectrum transformation. An alternating projections
approach can be used to compute the nearest matrices. The first projection
employs the spectrum clip. The second projection sets diagonals to one (correla-
tion) or zero (distance). Thus, further condition-repair is not required. Unfortu-
nately, these methods lack an e�cient way of handling new data. Similarly to the
condition-repair procedures, Eq. (9) can be used to derive d̃ (or k̃ analogously).
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3.5 Feature Embedding

In feature embedding [11], non-CNSD distances can be used as input features for
a CNSD distance function: d̃ij = ddef(di·,dj·), where di· and dj· are the ith and
jth rows ofD, and ddef (x, x0) is a CNSD distance function (here: Euclidean). Dis-
tances d between training and new data have to be subject to d̃i = ddef (d,di·).

4 Experimental Setup

Test-problems: The samples x were restricted to be permutations, to enable
a well understandable and controllable test case. Other object types are possi-
ble but were omitted for the sake of brevity. Di↵erent numbers of permutation
elements were tested: m = 5, 7, 10. The experiments were performed with sim-
ple test-functions f(x) = mini d(x, �i), where x is a sample (permutation), and
the respective function value f(x) is the minimum distance to randomly chosen
centers �i 2 X , with i = 1, ..., w. For the sake of this test, the function f(x) was
assumed to be expensive. The number of centers w control the multi-modality of
the function. In case of w = 1, f(x) is unimodal (as used in [17]). For the experi-
ments, w = 1, 3 and 5 was tested. Two distance measures for permutations were
used: The Interchange Distance is the minimal number of transpositions of arbi-
trary elements required to transform one permutation into another. It is metric,
but not CNSD. As a more pathological (yet admittedly quite artificial) test-case,
we chose the non-metric, non-CNSD distance dLp(x, x0) = (

Pn
i=1 |xi � x

0
i|p)1/p

with p = 1/2. Here, the permutations are interpreted as a vector of integers.
Performance measures: Two sets of experiments were performed, 1) testing
for modeling performance (including the quality of the uncertainty estimate)
and 2) for optimization performance. The Root Mean Squared Error (RMSE)
was used to estimate prediction accuracy. To assess the uncertainty estimate,
standardized residuals r = (y � ŷ)/ŝ were computed, cf. [10, 22]. These are used
to calculate the Cramèr-von Mises (CVM) test statistic [1] (comparing against a
normal distribution with zero mean and unit variance). 10-fold cross validation
is used to receive statistically sound results. For the modeling experiments, the
number of samples is n = 20, 40 and 60. For the optimization performance, best
values found after 20 and 100 objective function evaluations are reported.
Model settings: The Dividing Rectangles algorithm [9] was chosen to optimize
the model parameters (✓, ⌘) during MLE. For each parameter, 200 likelihood
evaluations were allowed. A relative tolerance of 1e�6 was used to detect earlier
convergence. For (uncorrected) indefinite matrices, the logarithmic likelihood
evaluation was set to return a penalty of �1e4 + �1, to drive the search into
the direction of PSD matrices. In all cases, PSD matrices could be established.
However, the resulting matrix was sometimes numerically intractable in case of
spectrum di↵usion, which was hence excluded from further analysis (see Sec. 5).
Re-interpolation [5] was employed to correct the uncertainty estimates in case of
spectrum shift. Note, that ⌘ was always added to the diagonal of K̃, i.e., after
applying other correction methods. The models always used the same distance
functions that were employed in the test function, combined with the kernel in
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Eq. (1). This simulates the case where an adequate distance is chosen by prior
knowledge. All experiments were repeated 20 times.
Optimization settings: For optimization, most settings remain unchanged.
The budget of evaluations of f(x) was set to 100. Ten initial samples were chosen
at random and evaluated with f(x). In each following step, the candidate that
maximized EI (cf. Sec. 2) was determined by a Genetic Algorithm (GA). The
GA had a budget of 2000 model evaluations for each step, except for m =
5, where brute force was used (m! = 120 model evaluations). The GA used
interchange mutation (transposition of arbitrary elements) and cycle crossover.
The population size was 20, the mutation rate 1/m and the recombination rate
0.5. As a baseline-comparison, a simple and model-free random search with 100
objective function evaluations was performed. All experiments were repeated 20
times.

5 Observations and Discussion

To summarize overall performance, statistical multiple-comparison tests were
used. Since the data were non-normal and the variances inhomogeneous, a rank
transformation was performed for each combination of n, w,m and distance func-
tion. Then, Tukey’s Honest Significant Di↵erences (HSD) test [24] was used with
a significance level ↵ = 0.05. Results were largely confirmed by a non-parametric
test, which disagreed in about 2 % of the cases. With the resulting pair-wise com-
parison, a ranking was computed. All methods that were not significantly worse
than any other received rank 1 and were removed. From the remainder, every
method that was not significantly worse than any other received rank 2, and so
on. Results from the spectrum di↵usion approach were excluded as it performed
poorly and failed several times, due to numerical issues with excessively large
numbers. Table 1 reports the respective ranks. Interestingly, the ranks for model
accuracy and optimization performance disagree often. One reason may be, that
optimization only requires a locally accurate model.

It could be observed, that usable models were achieved by the standard
approach, as it outperformed the random search. That is because even a non-
CNSD distance matrix may yield a PSD kernel matrix if ✓ is chosen large enough,
but not too large. This becomes obvious with lim✓!1 K = I, which is of course
PD. However, if ✓ ! 1, Eq. (2) will just yield the mean of observations y.

Enhancing the standard approach by spectrum shift improved optimization
performance, but received the worst RMSE ranks. In general, a clear benefit of
shift could not be observed. In combination with other indefiniteness-correcting
methods, it either improved or deteriorated results. Due to the additional cost
of fitting ⌘, it may be undesirable for non-noisy data.

The simple feature embedding performed robustly, but not for smaller data
sets. The performance after 20 evaluations (Fa in Tab. 1) was suboptimal. Fea-
ture embedding seemed to require larger data-sets to learn the embedding.

Spectrum transformations were among the best performers. Their main draw-
back is the di�culty of deciding on a) usage of condition-repair b) type of trans-
formation and c) whether NSD-, CNSD- or PSD-correction should be used. For
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Table 1. Ranks for RMSE (R), CVM values (C), best value after 20 evaluations (Fa)
and 100 evaluations (Fb). Ranks are based on Tukey’s HSD test, small values are better.
P indicates percentage of cases where the optimum was found within 100 evaluations,
large values are better. Table is sorted by Fa + Fb, with tie-breaker P . Color indicates
a rank of 1, or P � 0.9. In the names columns, the leading boolean denotes whether
condition-repair was used (T) or not (F). CNSD/NSD/PSD : the correction type, fea-
ture: feature embedding, near : nearest matrix approach, standard : no specific correction
and random: random search. Other terms refer to the spectrum transformations.

names R C Fa Fb P names R C Fa Fb P
T.flip.PSD 6 4 1 1 1 T.square.PSD.shift 6 5 2 2 0.91
F.clip.CNSD 1 6 1 1 0.99 standard.shift 7 4 2 2 0.91
F.clip.CNSD.shift 1 8 1 1 0.98 T.square.NSD 3 2 2 2 0.89
T.clip.NSD 1 2 1 1 0.96 T.square.CNSD 3 2 2 2 0.89
T.clip.CNSD 1 2 1 1 0.96 T.square.CNSD.shift 3 4 3 2 0.92
F.flip.CNSD.shift 1 10 1 1 0.95 F.square.PSD 4 4 2 3 0.86
near.CNSD 3 4 1 1 0.94 T.square.PSD 5 3 2 3 0.85
F.flip.CNSD 1 7 1 1 0.94 T.clip.PSD 4 3 2 3 0.84
T.flip.PSD.shift 3 5 2 1 0.98 F.clip.PSD 4 3 2 3 0.84
T.clip.CNSD.shift 2 3 2 1 0.98 standard 4 3 2 3 0.84
near.CNSD.shift 3 5 2 1 0.98 near.PSD 5 3 2 3 0.83
F.clip.PSD.shift 3 5 2 1 0.97 F.clip.NSD.shift 2 9 3 3 0.84
T.clip.PSD.shift 3 7 2 1 0.97 F.clip.NSD 2 9 3 3 0.84
T.clip.NSD.shift 2 3 2 1 0.97 F.flip.NSD.shift 4 8 3 3 0.83
F.flip.PSD 7 4 2 1 0.96 F.flip.NSD 4 6 3 3 0.82
F.flip.PSD.shift 6 4 2 1 0.95 near.PSD.shift 3 8 3 4 0.8
T.flip.NSD.shift 2 2 2 1 0.94 F.square.PSD.shift 3 6 3 4 0.76
feature 3 1 2 1 0.94 F.square.CNSD 4 8 3 5 0.7
T.flip.NSD 1 1 1 2 0.92 F.square.CNSD.shift 3 9 4 5 0.73
feature.shift 3 2 3 1 0.94 F.square.NSD.shift 2 9 4 5 0.69
T.flip.CNSD.shift 2 2 2 2 0.93 F.square.NSD 4 10 3 6 0.67
T.square.NSD.shift 3 4 2 2 0.92 random 5 7 0.35
T.flip.CNSD 1 1 2 2 0.92

a), the results are not quite conclusive, but a large block of the worse perform-
ing methods (Fb > 2 in Tab. 1) does not employ condition-repair. CVM statistic
values are often better if condition-repair is used. For b), spectrum square is
clearly worse than clip or flip, yet it may provide good results in combination
with spectrum shift. Spectrum flip was not significantly di↵erent from spectrum
clip. For c), the results were mixed, but RMSE ranks seemed to better with NSD-
and CNSD-correction compared to PSD-correction. Intuitively, this makes sense:
NSD- and CNSD-correction correct the distance matrix, which was the source
of the indefiniteness. If the kernel function is the source, only PSD-correction is
applicable. Despite very similar performance, NSD- may be preferred to CNSD-
correction due to higher computational complexity of the latter.

The nearest matrix approaches required the most computational e↵ort, with
tenfold run-times or more. This is due to the necessity of solving an optimiza-
tion problem for each correction. Since they performed no better than the related
spectrum clip methods, the nearest matrix approaches can be disregarded.
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6 Conclusions and Outlook

This study dealt with indefinite kernels in the Kriging-based EGO algorithm.
Working Kriging models could be derived, even when indefiniteness was not ex-
plicitly corrected (besides the penalty described in Sec. 4). Methods based on
spectrum transformations improved the performance. The spectrum transfor-
mations were compared to feature embedding and computations of the near-
est definite matrix. As some of the resulting matrices were no proper correla-
tion matrices, further condition-repair mechanisms were included. In some cases,
this additional condition-repair was beneficial. From the set of spectrum trans-
formations, spectrum flip and clip performed best, while square and di↵usion
performed poorly, in the latter case producing numerically intractable results.

Overall, the results indicate that choosing an adequate method automatically
may be problematic. Cross-validation is an option, but not ideal, due to the lack
of agreement between model accuracy and optimization performance. Also, some
of the worst performing models reported large likelihoods, hence disqualifying a
selection based on likelihood. More extensive experiments or a theoretical anal-
ysis of the various approaches could help dealing with this issue. For theoretical
considerations, it is promising to see that spectrum flip works so well, since it
is theoretically well-founded for SVMs [11]. Furthermore, these results may also
be of interest in the context of regularization or ill-conditioning, especially with
respect to condition-repairing procedures and handling of new data samples.
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