Author Archives: bartz6

Grants Available: SIGEVO Summer School #GECCO2017

***************************************************************
***       S I G E V O     S U M M E R     S C H O O L


***                   For GECCO students!
***        We have grants to ease your participation!


………. Held along with ACM GECCO 2017 Conference ……….

July 14-20-21 (plus activities in July 15-19) BERLIN Continue reading

Last chance: Free access to article about Model-based Methods #optimization

If you are interested in “Model-based Methods for Continuous and Discrete Global Optimization“, you can freely access the article until April 11, 2017:
https://authors.elsevier.com/a/1Ub295aecSVmv2
The SPO Toolbox was used for performing the experiments described in this article. The Sequential Parameter Optimization Toolbox 2.0.1 is a major update of the SPOT R package. It provides a set of tools for model based optimization and tuning of algorithms. It includes surrogate models, optimizers and design of experiment approaches. The main interface is spot, which uses sequentially updated surrogate models for the purpose of efficient optimization. The main goal is to ease the burden of objective function evaluations, when a single evaluation requires a significant amount of resources. See: https://CRAN.R-project.org/package=SPOT

UTOPIAE M. S. Curie Research Training Network: Early Stage Researcher positions available – Deadline: 16th April 2017

The UTOPIAE (Uncertainty Treatment and OPtimisation In Aerospace Engineering) Marie Sklodowska Curie Research Training Network is currently recruiting 15 Early Stage Researchers to work in the field of Uncertainty Quantification and Optimisation. The list of the available positions and main rules to apply follow below. Recently graduated or graduating students who are interested, find further information on the page http://utopiae.eu/employment-opportunities/
All applications should be emailed to apply@utopiae.eu by Sunday, 16 April 2017.  Continue reading

New Article: Conditional Inference Trees for the Knowledge Extraction from Motor Health Condition Data #ComputationalIntelligence #MachineLearning

The article “Conditional Inference Trees for the Knowledge Extraction from Motor Health Condition Data” (Alexis Sardá-Espinosaa, Subanatarajan Subbiah, Thomas Bartz-Beielstein), which will be published in the journal “Engineering Applications of Artificial Intelligence“, can be freely downloaded until May 20, 2017 from
https://authors.elsevier.com/a/1Uojb3OWJ8l3Gq
Anyone who clicks on the link until May 20, 2017, will be taken to the final version of your article on ScienceDirect for free. No sign up or registration is needed – just click and read!

Abstract: Computational tools for the analysis of data gathered by monitoring systems are necessary because the amount of data steadily increases. Machine learning algorithms can be used in both regression and classification problems, providing useful insights while avoiding the bias and proneness to errors of humans. In this paper, a specific kind of decision tree algorithm, called conditional inference tree, is used to extract relevant knowledge from data that pertains to electrical motors. The model is chosen due to its flexibility, strong statistical foundation, as well as great capabilities to generalize and cope with problems in the data. The obtained knowledge is organized in a structured way and then analyzed in the context of health condition monitoring. The final results illustrate how the approach can be used to gain insight into the system and present the results in an understandable, user-friendly manner.

Keywords: Decision tree; Conditional inference tree; Health condition monitoring; Machine learning; Knowledge extraction

Authors: Alexis Sardá-Espinosa (ABB AG German Research Center, Technische Hochschule Köln),  Subanatarajan Subbiah (ABB AG German Research Center), Thomas Bartz-Beielstein (Technische Hochschule Köln)

Here is the DOI: 10.1016/j.engappai.2017.03.008

 

 

Publish or …

A successful week in the SPOTSeven lab. Three papers (1 x journal, 2 x conference) were accepted for publication:

  • A. Sarda-Espinosa, S. Subbiah, and T. Bartz-Beielstein. Conditional Inference Trees for the Knowledge Extraction from Motor Health Condition Data. Engineering Applications of Artificial Intelligence, 2017.
  • M. Zaefferer, A. Fischbach, B. Naujoks, and T. Bartz-Beielstein. Simulation-based test functions for optimization algorithms. In GECCO ’17: Proceedings of the 2017 Annual Conference on Genetic and Evolutionary Computation, 2017.
  • J. Heinerman, J. Stork, M. A. R. Coy, J. Hubert, T. Bartz-Beielstein, A. Eiben, and E. Haasdijk. Is social learning more than parameter tuning? In GECCO ’17: Proceedings of the 2017 Annual Conference on Genetic and Evolutionary Computation, 2017.